BAYESOWSKA ANALIZA MODELI DYSKRETNEGO WYBORU (DWUMIANOWYCH) 1

Podobne dokumenty
BADANIE NIESPŁACALNOŚCI KREDYTÓW ZA POMOCĄ BAYESOWSKICH MODELI DYCHOTOMICZNYCH - ZAŁOŻENIA I WYNIKI Wprowadzenie.

BAYESOWSKI MODEL TOBITOWY Z ROZKŁADEM t STUDENTA W ANALIZIE NIESPŁACALNOŚCI KREDYTÓW 1

Uogólnienie dychotomicznego modelu probitowego z wykorzystaniem skośnego rozkładu Studenta *

Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu

WNIOSKOWANIE STATYSTYCZNE

Pobieranie próby. Rozkład χ 2

licencjat Pytania teoretyczne:

Dyskretny proces Markowa

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

BAYESOWSKA ANALIZA WIELOMIANOWEGO MODELU

DYNAMIKA KONSTRUKCJI

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

DYNAMICZNE MODELE EKONOMETRYCZNE

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r.

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

WPŁYW CEN SKUPU ŻYWCA NA CENY DETALICZNE MIĘSA

[ ] [ ] [ ] [ ] 1. Sygnały i systemy dyskretne (LTI, SLS) y[n] x[n] 1.1. Systemy LTI. liniowy system dyskretny

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

DYNAMICZNE MODELE EKONOMETRYCZNE

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój

VII. ZAGADNIENIA DYNAMIKI

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

DYNAMICZNE MODELE EKONOMETRYCZNE

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Wybrane dwuwymiarowe modele dla zmiennych licznikowych w ekonomii 1

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

DYNAMICZNE MODELE EKONOMETRYCZNE

Zawansowane modele wyborów dyskretnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Aleksander Jakimowicz. Dynamika nieliniowa a rozumienie współczesnych idei ekonomicznych

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PRÓBKOWANIE RÓWNOMIERNE

BADANIA WPŁYWU KÓŁ PRZEDNICH I TYLNYCH WYBRANYCH CIĄGNIKÓW ROLNICZYCH NA UGNIATANIE GLEBY LEKKIEJ

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

WŁASNOŚCI DYSKRYMINACYJNE ZNANYCH WSKAŹNIKÓW TECHNICZNYCH A KALIBRACJA ICH PARAMETRÓW

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Wykład 6. Badanie dynamiki zjawisk

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO

Agata Boratyńska Statystyka aktuarialna... 1

XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r.

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Urządzenia i Układów Automatyki Instrukcja Wykonania Projektu

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Modele zapisane w przestrzeni stanów

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej

Matematyka ubezpieczeń majątkowych r.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

Copyright by Politechnika Białostocka, Białystok 2017

Prawdopodobieństwo i statystyka

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Rachunek Prawdopodobieństwa Anna Janicka

Rozkłady statystyk z próby

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

STATYSTYKA

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

Weryfikacja hipotez statystycznych

KOOF Szczecin:

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

Metody systemowe i decyzyjne w informatyce

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu. Własności procesów STUR w świetle metod z teorii chaosu 1

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

ψ przedstawia zależność

Krzysztof Piontek Akademia Ekonomiczna we Wrocławiu. Modelowanie warunkowej kurtozy oraz skośności w finansowych szeregach czasowych

DYNAMICZNE MODELE EKONOMETRYCZNE

2. Próbkowanie równomierne

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Wygładzanie metodą średnich ruchomych w procesach stałych

Wykład 6. Badanie dynamiki zjawisk

Rozdział 3. Majątek trwały

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego

PROFILOWE WAŁY NAPĘDOWE

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1

Statystyka Matematyczna Anna Janicka

Mikroekonometria 14. Mikołaj Czajkowski Wiktor Budziński

METODY STATYSTYCZNE W FINANSACH

2. Wprowadzenie. Obiekt

Metody systemowe i decyzyjne w informatyce

Mikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

1.1. Bezpośrednie transformowanie napięć przemiennych

Matematyka ubezpieczeń majątkowych r.

Transkrypt:

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie JERZY MARZEC BAYESOWSKA ANALIZA MODELI DYSKRETNEGO WYBORU (DWUMIANOWYCH) 1 1. WSTĘP W laach siedemdziesiąych ubiegłego sulecia nasąił gwałowany rozwój ekonomerycznych modeli dla zmiennych dyskrenych (jakościowych), kóre w skrócie nazywa się modelami dyskrenego wyboru (ang. quanal resonse or discree choice models). Podsawową cechą ych modeli jes o, że zmienna endogeniczna rzyjmuje ylko skończoną liczbę warości. W chwili obecnej ekonomeryczne modelowanie zmiennych jakościowych w ujęciu klasycznym sanowi sandardową reść średnio zaawansowanych anglojęzycznych odręczników ekonomerii, n. Greene [7]. W olskiej lieraurze jednym z ierwszych monograficznych ujęć meod ekonomerycznej analizy zjawisk jakościowych była raca Wiśniewskiego [19], naomias monografia Gruszczyńskiego [8] sanowi rezenację akualnego dorobku mikroekonomerii sosowanej w finansach i bankowości, ineresującą z unku widzenia badań rowadzonych rzez auora niniejszego oracowania. Z drugiej srony, w ciągu osanich dwudziesu la na gruncie ekonomerii bayesowskiej ojawiło się wiele meodologicznych roozycji doyczących bayesowskiej secyfikacji, esymacji i uogólnień klasycznych modeli dyskrenego wyboru. Jednymi z ierwszych auorów byli Zellner [1] oraz Zellner i Rossi []. Głównych celem niniejszego oracowania jes rezenacja nowych (bayesowskich) odejść do modelowania zmiennych jakościowych i ich zasosowanie w analizie rzeczywisych danych finansowych. W szczególności, w niniejszej racy rzedsawimy secyfikację bayesowskich modeli dwumianowych, zn. dla zmiennych binarnych (dychoomicznych), zaroonowaną rzez Albera i Chiba [1]. Zarezenujemy rzyadek modelu oarego na rozkładzie -Sudena z nieznaną (odlegającą esymacji) liczbą soni swobody, kóry sanowi uogólnienie najczęściej sosowanego w rakyce modelu robiowego. Nasęnie zasosujemy o odejście do badania ryzyka kredyowego ojedynczej umowy kredyowej dla klienów dealicznych ewnego olskiego banku komercyjnego. W celu uzyskania momenów i gęsości brzegowych rozkładów a oseriori 1 Auor ragnie wyrazić odziękowania Profesorowi Jackowi Osiewalskiemu za cenne uwagi meryoryczne w rakcie owsawania niniejszego oracowania. Praca wykonana w ramach badań sauowych finansowanych rzez Akademię Ekonomiczną w Krakowie w roku 003 r. 1

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie aramerów modeli wykorzysamy losowanie Gibbsa. Wyniki a oseriori okazują, że zaroonowane uogólnienie (związane z rozkładem -Sudena) leiej oisuje dane emiryczne, więc jego wykorzysanie w badaniach jes w ełni uzasadnione.. MODEL DYSKRETNEGO WYBORU Niech y 1,,y T będzie ciągiem niezależnych zmiennych losowych o rozkładzie zerojedynkowym z rawdoodobieńswem sukcesu Pr(y =1) równym. W lieraurze zależność między a wekorem zmiennych egzogenicznych x (lub znanych ich funkcji, jak w części 5) oisuje się za omocą modelu dyskrenego wyboru (ang. binary choice models). Model en, nazywany akże modelem dwumianowym lub dychoomicznym, ma osać ( y = ) = F( x β ) Pr 1 dla =1,,T, (1) gdzie β o wekor k 1 nieznanych aramerów, zaś x =(x 1 x k ) oznacza wekor usalonych warości k zmiennych egzogenicznych, F( ) jes znaną funkcją wiążącą rawdoodobieńswo z x i β, określającą klasę modelu. Jeżeli F( ) jes dysrybuaną zmiennej losowej o sandaryzowanym rozkładzie normalnym, o mamy do czynienia z modelem robiowym. Teoreyczne odsawy innych definicji modeli dyskrenego wyboru rzedsawia m.in. Amemiya w racy []. Równoważną secyfikację modelu dwumianowego orzymamy wrowadzając T niezależnych zmiennych ukryych (nieobserwowalnych) z 1,,z T. Jeżeli założymy, że obserwujemy y =1, gdy z 0 i y =0 w rzeciwnym rzyadku, o model dyskrenego wyboru zaiszemy za omocą dwóch równań z = x β + ε y = I ( z ), { 0, ) gdzie I Ω (w)=1, gdy w Ω i I Ω (w)=0, jeżeli w Ω ; zob. n. [1] lub [17]. Powyższa konsrukcja modelu ma szersze znaczenie, onieważ wykorzysuje się ją akże do konsrukcji modelu dla danych wielomianowych; zob. [3], [9] i [13]. Najczęściej sosowany model robiowy orzymamy rzyjmując dla składników losowych ε sandaryzowane (niezależne) rozkłady normalne, ε ~N(0, 1). Wówczas zmienne ukrye z osiadają rozkład normalny o warości oczekiwanej x β i jednoskowej wariancji, z ~N(x β, 1). Zauważmy, że znamy jedynie znak nieobserwowalnych zmiennych z, zaem wariancja składnika losowego jes nieidenyfikowalnym aramerem, sąd rzyjmuje się, że wynosi ona jeden. Korzysając z definicji dysrybuany możemy ławo srawdzić równoważność secyfikacji (1) i (): () Drugim najczęściej sosowanym modelem w rzyadku analizy danych jakościowych jes model logiowy, kóry uzyskujemy rzyjmując za F( ) dysrybuanę rozkładu logisycznego.

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie 0 x β ( y = 0) = 1 f N ( w x β, 1) dw = 1 f N ( w 0, 1) dw = 1 F( x β ) = F( x β ) = 1 Pr, (3) gdzie f N ( a,b) jes funkcją gęsości rozkładu normalnego o warości oczekiwanej a i wariancji b. Powyższa zależność jes rawdziwa nie ylko w rzyadku rozkładu normalnego, ale dla zmiennej z o dowolnym ciągłym rozkładzie rawdoodobieńswa z symeryczną funkcją gęsości. W niniejszej racy w celu esymacji modelu () wykorzysamy odejście bayesowskie, kóre w rzyadku analizy danych jakościowych sosują m.in. auorzy rac: [1], [1], [13], [1] i []. 3. BAYESOWKI MODEL PROBITOWY. Na gruncie bayesowskim każdą nieznaną wielkość rakujemy jako zmienną losową, a zaem funkcja (gęsości) rawdoodobieńswa jej rozkładu odzwierciedla ełną wiedzę o ej wielkości. Różne elemeny modelu saysycznego (obserwacje - y i aramery - θ) rakowane są symerycznie, więc wsęną wiedzę o wszyskich nieznanych wielkościach (obserwowalnych i nieobserwowalnych) osiadaną rzed zaobserwowaniem zjawiska emirycznego odzwierciedla łączny rozkład rawdoodobieńswa o funkcji gęsości (y, θ) (lub uogólnionej gęsości w rzyadku rozkładu mieszanego, dyskreno-ciągłego). W bayesowskim modelu saysycznym ogólne zasady esymacji aramerów srowadzają się do wyznaczenia z rozkładu łącznego (y, θ) warunkowej gęsości dla wekora aramerów θ, rzy zaobserwowanym wekorze y, czyli funkcji gęsości zw. rozkładu a oseriori, danej wzorem Bayesa: ( θ y) = ( y, θ ) ( y) = Θ ( yθ ) ( θ ) ( yθ ) ( θ ) l dθ ( θ y) ( θ ), (4) gdzie l(θ y) jes funkcją wiarygodności, wyznaczoną z rozkładu róbkowego (l(θ y)=(y θ)), a jes znakiem roorcjonalności, zob. Osiewalski [14]. Model () jes rzykładem modelu hierarchicznego, więc łączna funkcja uogólnionej gęsości dla aramerów β i wielkości nieobserwowalnych z=(z 1,,z T ) oraz wekora obserwacji y=(y 1,,y T ), charakeryzująca jednoznacznie bayesowski model saysyczny, ma osać 3 ( y, z, β ) ( y z, β ) ( z, β ) = ( y z, β ) ( z β ) ( β ), = (5) gdzie (β) o rozkład a riori, a (z β) o gęsość warunkowego rozkładu wekora zmiennych ukryych z, kórej osać zależy od osaci rzyjęego rozkładu dla ε w równaniu (). Korzysając ze wzoru (4), gdzie θ=(β z ) orzymujemy osać łącznej funkcji gęsości rozkładu a oseriori dla β i z rzy danym y: 3 W zaisie ominięo, że wszyskie funkcje gęsości rawdoodobieńswa są warunkowe względem egzogenicznej macierzy danych X=(x 1,,x T ). 3

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie ( z β y) ( y, z, β ) ( y), =,, gdzie (6) ( y z β ) ( z β ) ( β ) zdegenerowany (jednounkowy) rozkład róbkowy dla zaobserwowanego wekora y (warunkowy względem z i β) ma osać T ( y z ) = ( y I ( z ) + ( y ) I ( z )) = 1 [ 0, ) 1 (,0), β. (7) W celu uzyskania z formuły (6) brzegowych rozkładów a oseriori owinniśmy dokonać wielokronego całkowania, rzy czym uzyskanie n. brzegowej gęsości a oseriori (β y) wymaga T-kronego całkowania (względem T zmiennych ukryych), gdzie T o liczba obserwacji. Za srawą niesandardowej osaci rozkładu róbkowego (6) całkowanie analiyczne jes wykluczone. W ego yu zagadnieniach wykorzysuje się meody numerycznej aroksymacji brzegowych rozkładów a oseriori sosując losowanie Gibbsa. (ang. Gibbs Samling). W meodzie ej osługujemy się jedynie rozkładami warunkowymi, z kórych uzyskujemy orzez wielokrone generowanie liczb seudolosowych róbę z rozkładu a oseriori (choć ylko w sensie asymoycznym), zob. n. [4], [15] i [18]. W rzyadku modelu robiowego, gdy wekor składników losowych ε=( ε 1,,ε T ) ma wielowymiarowy rozkład normalny o jednoskowej macierzy kowariancji (I T ) scenrowany wokół zera, ε ~ N (T) (0,I T ), łączna funkcja gęsości dla β i z rzy danym y ma osać T ( z, β y) ( β ) ( y I ( z ) + ( 1 y ) I ( z )) f ( z x β, ) = 1 [ 0, ) (,0) N 1. (8) W celu zasosowania algorymu Gibbsa wyznaczamy z gęsości (8) warunkowy względem z rozkład a oseriori dla β, co zaiszemy jako (β z,y), oraz rozkład a oseriori dla z warunkowy względem β. Zauważmy, że ze wzoru (8) orzymujemy T ( z, y) ( β ) f ( z x β,1) = 1 β, (9) N co odowiada rzyadkowi normalnej regresji liniowej osaci z=xβ+ε, gdzie ε ~ N (T) (0,I T ); nie ojawiają się u zmienne dyskrene y. W zasosowaniach wnioskowania bayesowskiego isony jes dobór rozkładu a riori. Przy jego doborze róbujemy ogodzić zasadę wiernego odzwierciedlenia wsęnej wiedzy o aramerze (w naszym rzyadku jej braku) i unikanie komlikacji obliczeń na eaie wyznaczania rozkładu a oseriori. W omawianym rzyadku wybór rozkładu a riori dla β nie sanowi roblemu. Jeżeli rzyjmiemy jako (β) niewłaściwy rozkład jednosajny na całej rzesrzeni R k, o warunkowy względem z rozkład a oseriori dla β o k-wymiarowy rozkład normalny o wekorze warości oczekiwanych βˆ z i macierzy kowariancji (X X) -1, co zaisujemy ( k ) 1 ( ˆ β z, y ~ N β, ( X X ) ), gdzie = ( X X ) X z z ˆβ. (10) z 4

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie Jeżeli naomias dla β rzyjmiemy informacyjny rozkład a riori, j. normalny o warości oczekiwanej β * i macierzy kowariancji H *, kóry należy do zw. srzężonej rodziny rozkładów, o oszukiwany rozkład a oseriori dla wekora aramerów β (warunkowy względem z i y) jes akże rozkładem normalnym ~ ( β, H ) ( ) β z, y ~ N, (11) k ~ o nasęujących aramerach ~ β = H ~ = ~ * * H ( H β + X z) * ( H + X X ). W ym rzyadku isone znaczenie ma dobór sałych β * i H *, aby rzyjęy rozkład a riori dobrze rerezenował wsęną wiedzę badacza. Pełny warunkowy rozkład a oseriori dla wekora z wyznaczamy w oarciu o wzór (8). Założyliśmy wcześniej, że zmienne z=(z 1,,z T ) są niezależne (rzy usalonym β), więc β ma rozkład ( β, 1) z, z N ucięy na lewo (na rawo) od zera, gdy y =1 (y =0). (1) x Aby uzyskać róbę z rozkładu a oseriori (8) sosując schema Gibbsa, w ojedynczym cyklu losujemy najierw z gęsości rozkładu normalnego (1), a nasęnie (w zależności od rzyjęego rozkładu a riori dla β) losujemy z gęsości (10) albo (11). Za warości inicjujące łańcuch Markowa rzyjmiemy dla β oceny uzyskane meodą największej wiarygodności (MNW) lub oceny esymaora meody najmniejszych kwadraów dla liniowego modelu rawdoodobieńswa, czyli korzysając z formuły (X X) -1 X y. 4. BAYESOWSKI MODEL -STUDENTA. Secyfikacja modelu dwumianowego orzez wrowadzenie w () zmiennych ukryych z ozwala na uogólnienie modelu robiowego. Rozszerzenie klasy modelu można uzyskać orzez wrowadzenie dla ε rozkładu z rodziny -Sudena jak roonują Alber i Chib [1]. Jeżeli rzyjmiemy, że aramerem odlegającym esymacji jes również liczba soni swobody ν>0, o wówczas ozwolimy danym emirycznym wyznaczyć najbardziej rawdoodobną a oseriori warość ego arameru, a warości zakładane a riori w innych modelach mogą odlegać esowaniu. Sosowanie ej rodziny rozkładów jes ym bardziej uzasadnione, że (jak zauważyli auorzy racy [1]) częso sosowany model logisyczny w rzybliżeniu odowiada rzyjęciu założenia o około 8 soniach swobody dla rozkładu -Sudena. 4 Zaem w ramach modelu z 4 Alber i Chib [1] uzyskali m.in. wyniki a oseriori dla modelu -Sudena z 8 soniami swobody zbliżone do wyników dla modelu logiowego. Ponado G. Mudholkar i E. George ( A Remark on he Shae of he Logisic 5

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie rozkładem -Sudena można dokonać saysycznej weryfikacji obu najbardziej znanych modeli dla danych dychoomicznych: logisycznego ν 8 i robiowego ν=+. W szczególności, gdyby uzyskane wyniki wskazywały na dużą liczbę soni swobody, o wówczas model robiowy byłby wysarczająco adekwany. Zaem rzyjmijmy, że zmienne z w równaniu () mają niezależne rozkłady -Sudena z ν soniami swobody, aramerem ołożenia (niecenralności) x β i jednoskowym aramerem skali. Równoważną secyfikację ego modelu uzyskujemy budując model hierarchiczny, kóry uwzględnia dodakowe zmienne λ 1,, λ T o rozkładzie gamma z aramerami ν/ i ν/ i rzyjmując dla z warunkowy (względem λ ) rozkład normalny o aramerach x β i λ -1 : z β, λ Ν x λ ν Gamma ( β, λ ) ( ν/, ν/ ) Powyższa dekomozycja wynika z ożsamości ( z β, ν ) = ( z, λ β, ν ) dλ = f N ( z x β, λ ) fg ( λ ν, ν ) dλ f S ( z ν, x β,1) = 0 0 gdzie f G ( a,b) jes funkcją gęsości rozkładu gamma o warości oczekiwanej a/b i wariancji a/b, naomias f S ( ) jes funkcją gęsości rozkładu -Sudena (zob. [14]). Przyjmując za auorami [1] niewłaściwy rozkład a riori dla β, orzymamy łączną gęsość rozkładu a oseriori dla z, β, λ i ν (rzy zaobserwowanym y) osaci ( z, β, λ, ν y) ν ν ( ) f ( z x β, λ ) f ( λ, ), T ( ν ) y I ( z ) + ( 1 y ) I ( z ) = 1 [0, ) (,0) N G gdzie (ν) o rozkład a riori dla soni swobody. Warunkowe rozkłady a oseriori dla z, β i λ, będące odsawą do wykorzysania algorymu Gibbsa, wyrowadzamy z łącznej gęsości (14) uzyskując x ( β, λ ) z β, λ, ν, y ~ N ucięy na lewo (na rawo) od zera, gdy y = 1 (y = 0). (15) ( k ) β z, λ, ν, y ~ N ( ˆ β, ( X WX ) ), gdzie = ( X WX ) X Wz z, λ ν 1 ( ( ) 1, ν + ( z x ) ˆ z, λ, (13) (14) β, (16) λ z, β, ν, y ~ Gamma + β, (17) gdzie W jes diagonalną macierzą o wymiarach T na T zawierającą na rzekąnej elemeny λ, czyli W = Diag(λ 1,, λ T ). Naomias warunkowy rozkład a oseriori dla ν nie jes gęsością żadnego ze znanych rozkładów rawdoodobieńswa, rzy czym jądro ego rozkładu ma osać Disribuion, Biomerica, 1978) okazali, że rozkład logisyczny ma idenyczną kurozę, jak rozkład -Sudena z 9 soniami swobody. 6

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie T ( ) ( ) = Γ ν 1 ( ) ν ν ( ) ν / 1 ν ν z, β, λ, y ν 1 λ ex λ. (18) Jako rozkład a riori dla arameru swobody rzyjmujemy, jak w racy [6], rozkład wykładniczy z aramerem γ, o funkcji gęsości (ν)=γ ex(- γ ν). Warość arameru γ równa n. 10-1 imlikuje rozkład a riori o warości oczekiwanej 10 i wariancji 100, kóry możemy uznać za rawie nieinformacyjny rozkład a riori. Uwzględniając wykładniczy rozkład a riori, osać warunkowego rozkładu a oseriori dla ν ma osać T Tν ( ν z, β, λ, y) = c c Γ( ) ( ν ) ( ν c ) c 0 sała normująca, c = = ν, gdzie (19) 0 1 ex T 1 λ 1 1 T T γ oraz c = γ + ( λ lnλ ), rzy czym wielkości c 0 i c 1 nie mają znaczenia w dalszej, gdyż nie zależą od ν. Zaem w rzyadku arameru ν musimy zasosowań inną echnikę uzyskiwania realizacji z rozkładu a oseriori, mianowicie wykorzysujemy losowanie z odrzucaniem (ang. acceance rejecion samling) oisane w omawianym rzyadku m.in. w racy [6] lub [16]. Schema losowania z odrzucaniem olega na ym, że chcąc uzyskać realizację z ciągłego rozkładu (19), kóry oznaczymy (ν; T, c ), w ierwszym kroku losujemy realizację innej zmiennej losowej - ν * - z rozkładu omocniczego g(ν * ; α), gdzie α jes aramerem ego rozkładu. Zakładamy, że isnieje kres górny ilorazu obu gęsości: su ν [(ν; T, c )/g(ν; α)] = c(α)<. Nasęnie jeżeli zachodzi nierówność [c(α)] -1 (ν * ; T, c )/g(ν * ; α)>u rzyjmujemy, że ν =ν *, gdzie u jes realizacją z rozkładu jednosajnego na rzedziale (0;1). Oznacza o, że losując z gęsości omocniczej g(ν * ; α), z rawdoodobieńswem akceacji równym [c(α)] (ν * ; T, c )/g(ν * ; α), uzyskaliśmy realizację zmiennej ν z rozkładu (ν; T, c ). W rzeciwnym razie owarzamy losowanie z g(ν * ; α), aż do sełnienia owyższej nierówności. Bezwarunkowe rawdoodobieńswo sełnienia owyższej nierówności jes równe sałej [c(α)] -1, więc ak dobieramy aramer funkcji omocniczej α, aby o rawdoodobieńswo było maksymalne. W omawianym rzyadku niech g(ν * ; α) będzie gęsością rozkładu wykładniczego z aramerem α. Nasęnie konsruujemy funkcje omocniczą: Q ln ( ν, α; T, c ) = ( ν; T, c0, c1, c ) g( ν; α ) = ln ν ν ( c c ) T lnγ( ) + Tν ln( ) + ν ( α c ) lnα, 0 1 aby znaleźć oymalne α i sałą c(α) rozwiązując nasęujący roblem inf su α ν ( Q( ν, α; T, c )). (0) 7

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie Zauważmy, że Q/ α=ν/α, więc oymalna warość arameru α gęsości omocniczej wynosi 1/ν. Zaem warunek konieczny (i wysarczający) na isnieje eksremum funkcji, rzy czym α=1/ν, ma osać: Q T ν lnγ = ln 1 + ν ν ν ( ) c + α = 0. (1) Nasęnie numerycznie rozwiązujemy równanie (1), uzyskując rozwiązanie oymalne ν o. Podsumowując, losowanie z odrzucaniem w omawianym rzyadku składa się z nasęujących kroków: 1. losujemy ν * z rozkładu wykładniczego z aramerem 1/ν o, czyli o warości oczekiwanej ν o i wariancji (ν o ),. losujemy u z rozkładu jednosajnego (0;1), 3. jeżeli zachodzi oniższa nierówność Γ 0.5 T ν 0.5 T ν * T T o o ν ν ν ν * * ( ν o ν )( c / ν o ) ( ) Γ( ) e * * u, o owarzamy losowanie z unku 1, 4. w rzeciwnym rzyadku rzyjmujemy, że ν * ochodzi z rozkładu o gęsości (19). Przedsawione owyżej losowanie z odrzucaniem (dla uzyskania realizacji z warunkowego rozkładu a oseriori arameru ν) będziemy sosować w ramach losowania Gibbsa. Mając dane z (q), β (q), λ (q), ν (q) jako rezula q-ego losowania, w kolejnym cyklu dokonujemy nasęujących kroków: z (q+1) jes losowane z rozkładu o gęsości (15) dla β=β (q), λ= λ (q), β (q+1) jes losowane z rozkładu o gęsości (16) dla z=z (q+1), λ= λ (q), λ (q+1) (=1,,T) jes losowane z rozkładu o gęsości (17) dla z=z (q+1), β=β (q+1), ν=ν (q), ν (q+1) jes losowane z rozkładu o gęsości (19) dla λ= λ (q+1) w sosób oisany wcześniej, rzy czym rzyjmujemy akie same warości ocząkowe dla β (0) jak w rzyadku bayesowskiego modelu robiowego, naomias λ (0) =1 dla =1,,T oraz ν (0) =10. Zasadniczą kwesią w syuacji, gdy sosujemy schema Gibbsa jako numeryczną meodę aroksymacji brzegowych rozkładów a oseriori, jes zbadanie zbieżności ego algorymu, kórą w rakyce uzyskuje się o wykonaniu odowiednio dużej liczby cykli losowań Gibbsa. Możemy sodziewać się, że sabilizacja w kolejnych cyklach warości oczekiwanych i odchyleń sandardowych a oseriori o odrzuceniu odowiedniej liczby ocząkowych losowań, zw. cykli salonych, oznacza osiągnięcie zbieżności ej meody. Jedną z graficznych meod badania zbieżności algorymu jes meoda CumSum, zaroonowana rzez Yu i Myklanda i oisana m.in. w racy [5]. 8

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie Chcąc zasosować w rakyce wnioskowanie bayesowskie dla rozważanego modelu dychoomicznego, musimy w ierwszej kolejności usalić aramery rozkładów a riori dla wekora β i arameru ν. W rzyadku rozkładu a riori dla β rzyjęliśmy, że β * jes wekorem zerowym, a macierz kowariancji H * =σ ε I - macierzą diagonalną. Warości sałej σ ε usaliliśmy w rzech warianach na oziomie odowiednio 49, 100 i 56. Ponado rzyjęliśmy, że warość oczekiwana i wariancja wykładniczego rozkładu a riori dla soni swobody ν wynosi odowiednio 10 i 100, a zaem γ=10-1. Uzyskane wyniki emiryczne (w osaci rozkładów a oseriori oraz odowiednich charakerysyk ych rozkładów dla aramerów β i wielkości rawdoodobieńswa ) nie były wrażliwe rzyjęe na warości aramerów rozkładów a riori. 5. WYNIKI EMPIRYCZNE W celu emirycznej rezenacji bayesowskich modeli dychoomicznych: robiowego i -Sudena wykorzysamy dane o kredyach dealicznych, j. kredyach konsumcyjnych i hioecznych, kóre zosały udzielone klienom indywidualnym rzez jeden z dużych, olskich banków komercyjnych w okresie 01.01.000-30.09.001 r. Wcześniej wykorzysano e dane w racy [10] i [11] do esymacji m.in. modelu logiowego i robiowego meodą największej wiarygodności. Niech objaśniana zmienna dychoomiczna y rzyjmuje nasęujące warości: y =1 w rzyadku, gdy kredyobiorca na dzień 30.09.001 ma zaległości w słacie ra kaiałowo-odsekowych, zn. oóźnienie w słacie osaniej ray wynosi więcej niż jeden miesiąc. W ym rzyadku bank ma obowiązek odrowadzić rezerwy celowe w wysokości 0%, albo 50%, albo 100% warości zadłużenia w zależności od okresu niesłacania ra rzez kliena 5. y =0 w rzyadku, gdy kredyobiorca na dzień 30.09.001 w erminie słaca ray kaiałowoodsekowe od zaciągnięego kredyu. Dla uroszczenia możemy zaem rzyjąć, że z unku widzenia banku jeżeli y =1, o kredyobiorca jes złym klienem, a w rzeciwnym rzyadku dobrym. W niniejszej analizie wykorzysaliśmy rawie 40 ysięcy rachunków kredyowych, a jako oencjalne zmienne egzogeniczne wyjaśniające ryzyko ojedynczej umowy kredyowej rzyjęliśmy (jak w racy [10] i [11]]): 6 łeć (zmienna rzyjmuje warość 1, jeżeli klienem jes mężczyzna, 0 w rzyadku kobiey), 5 Uchwała nr 8/1999 Komisji Nadzoru Bankowego z grudnia 1999 r. sanowi zasady worzenia rzez banki rezerw celowych od należności zagrożonych. 6 Podsawowe charakerysyki ego zbioru danych zosały rzedsawione w racy [10]. 9

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie wiek kliena (w sekach la, aby odowiednio wyskalować dane), wływy, zn. wielkość miesięcznych wływów w laach 000-001 (w sekach ys. zł) na rachunki a visa kredyobiorcy w badanym banku (rzede wszyskim rachunki oszczędnościowo-rozliczeniowe ROR); jeżeli nie osiada rachunku ROR w ym banku rzyjęo, że wływy wynoszą zero, osiadanie rzez kredyobiorcę rachunku ROR w analizowanym banku (1 - osiada, 0 nie osiada), informację o ym, czy kredyobiorca osiada kary łanicze lub kredyowe wydane rzez rozważany bank (1 - osiada choć jedną karę, 0 - nie osiada), sosób udzielenia klienowi kredyu (1 udzielono go orzez ośrednika kredyowego, 0 bezośrednio rzez bank), y kredyu (1 - kredy konsumcyjny, 0 kredy hioeczny), odsawowe źródło dochodu uzyskiwanego rzez kredyobiorcę (zmienna zrdoch), j. umowa o racę, albo rena lub emeryura, albo własna działalność, umowa o dzieło lub umowa zlecenie, albo inne źródło (n. syendium). Zmienna zrdoch rzyjmuje czery różne warości. Chcąc ją uwzględnić w równaniu regresji z wyrazem wolnym, za referencyjną warość ej zmiennej rzyjęliśmy umowę o racę (dla 75% kredyobiorców sanowi odsawowe źródło dochodu). Ty źródła dochodu określony jes rzez rzy nasęujące zmienne zerojedynkowe zrdoch1, zrdoch, zrdoch3, rzy czym źródłem dochodu kredyobiorcy jes umowa o racę, jeżeli wszyskie e zmienne rzyjmują warość jeden. W ozosałych rzyadkach, gdy źródłem dochodu kredyobiorcy jes rena lub emeryura, o zrdoch1 = 0 i zrdoch=zrdoch3 = 1, źródłem dochodu kredyobiorcy jes własna działalność, umowa o dzieło lub umowa zlecenie, o zrdoch = 0 i zrdoch1=zrdoch3 = 1, źródło dochodu jes inne niż wcześniej wymienione, n. syendium, o zrdoch3 = 0 i zrdoch1=zrdoch = 1. Podsawowe charakerysyki wykorzysywanego zbioru danych rzedsawiamy w racy [10]. W niniejszej racy - w odróżnieniu do rac [10] i [11] - założyliśmy, że w modelu (1) rawdoodobieńswo niedorzymania umowy rzez kredyobiorcę ( ) może zależeć liniowo (orzez funkcję F) nie ylko od zmiennych egzogenicznych w j, a akże od iloczynów ych zmiennych oraz kwadraów zmiennych ciągłych (wiek, wływy), co rowadzi do nasęującego, bardziej ogólnego niż w [10] i [11], modelu: z = β1 + wj β j + j j i j y = I {0, ) ( z ). w w β + ε j i ij () 10

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie W efekcie wymiar wekora aramerów β zwiększył się z 11 do 54 (o uwzględnieniu faku, że zmienna ośrednik deerminuje y kredyu). Z unku widzenia omówionych wcześniej meod wnioskowania, sosób wrowadzenia zmiennych egzogenicznych w formule () nie wnosi żadnych komlikacji, gdyż z jes nadal liniowo zależne od aramerów β. Powyższa modyfikacja ozwoli na lesze oszacowanie i umożliwi oszukiwanie oymalnych warości zmiennych ciągłych (ze względu na minimalizację wielkości ). Zauważmy, że jeżeli w modelu () założymy β ij =0, wówczas iloraz ochodnych cząskowych rawdoodobieńswa względem zmiennych w i i w j, zw. efeków krańcowych, jes równy ilorazowi aramerów, j. β i /β j, a zaem nie zależy od warości ych zmiennych. Zaem uwzględnienie w () iloczynów i kwadraów zmiennych egzogenicznych w j owoduje, że iloraz efeków krańcowych zależy od wszyskich zmiennych egzogenicznych, czyli dla każdej obserwacji może być inny. Powyższe rozszerzenie liczby czynników wyjaśniających może być rzedmioem saysycznej weryfikacji, co okazujemy w dalszej części. Wyniki rzerowadzonych badań wskazują (zgodnie z inuicją), że w rzyadku bardzo dużej liczby obserwacji, wyniki dla modelu robiowego uzyskane meodą największej wiarygodności są idenyczne z rezulaami dla bayesowskiego modelu o normalnym rozkładzie zmiennej ukryej z (or. [11]). Zaem w dalszej części rzedsawiamy rzede wszyskim wyniki esymacji bayesowskiego modelu -Sudena o nieznanej liczbie soni swobody na le klasycznego modelu robiowego, kóry jes najczęściej wykorzysywany w rakyce. Tabela 1 zawiera warości oczekiwane i odchylenia sandardowe a oseriori dla aramerów modelu -Sudena, czyli dla wekora β oraz soni swobody ν. Tabela 1 Warość oczekiwana a oseriori dla soni swobody wynosi około 1,3 rzy niewielkim odchyleniu sandardowym, a zaem założenie normalności składnika losowego w równaniu () jes bezzasadne 7. Rozkład róbkowy dla zmiennych z charakeryzuje się rozkładem o ak bardzo grubych ogonach, że nie osiada wariancji. Innymi słowy, dysrybuana F w (1) jes znacznie słaszczona w sosunku do modelu robiowego. W świele wyników dla ν ogólniejszy model -Sudena jes zdecydowanie bardziej referowany rzez dane niż model ze składnikiem losowym o rozkładzie normalnym. Ogólna osać () wrowadzająca iloczyny i kwadray zmiennych w j, może być rzedmioem esowania. Przy weryfikacji ej secyfikacji wykorzysaliśmy bayesowski odowiednik klasycznego esu F na redukcję modelu, osługując się formą kwadraową: 7 W rzyadku bayesowskiego modelu -Sudena z 11 aramerami warość oczekiwana dla arameru soni swobody wynosi około, or. Marzec [003b]. 11

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie T u( β )= ( β -b() ) H ( - b() )/ k, gdzie β () = [β 1 β 54 ]. (3) () () β () Jeżeli brzegowy rozkład a oseriori wekora β () jes k -wymiarowym rozkładem -Sudena o T-k soniach swobody (1 k k), wekorze niecenralności b () i macierzy recyzji H -1, o rozkład a oseriori u(β () ) jes rozkładem F-Snedecora o (k, T-k) soniach swobody; or. Zellner [0]. Dla resrykcji β () = [β 1 β 54 ] = [0 0], kóra odowiada redukcji modelu () do modelu liniowego względem w j, warość u([0 0] ) wynosi około 79. Jes o warość z ogona rozkładu F(k,T-k), kóry jes dobrą aroksymacją rozkładu a oseriori ej formy kwadraowej. Wobec ego wybrany elemen odrzesrzeni aramerów β () = [0 0] znajduje się w odzbiorze warości aramerów mało rawdoodobnych a oseriori. W akim wyadku nie jeseśmy skłonni rzyjąć, że β () = [0 0] i nie dokonujemy redukcji modelu. Tesy wyraźnie wskazują na rzewagę modelu z 54 aramerami (ogólniejszego) nad modelem z 11 aramerami (zagnieżdżonym) 8. Posługując się najrosszymi skalarnymi miernikami doasowania modelu do danych emirycznych nie uzyskujemy ak jednoznacznych wyników (faworyzujących model leiej sarameryzowany). Wsółczynnik deerminacji Efrona - R = 1- (y - ˆ ) / (y - y ) (zob. n. [1]) - dla obu ych modeli rzyjmuje zbliżone warości rzędu 0.8 0.7, rzy czym ak niskie warości są yowe z uwagi na dychoomiczny charaker zmiennej y. Oba modele - ogólniejszy i zagnieżdżony równie dobrze rognozują Pr(y =1), zn. udział złych rognoz zmiennej y w obu rzyadkach wynosi około 19%, rzy czym w modelu () jes on nieznacznie niższy. Przez złą rognozę rozumiemy syuację, gdy obserwujemy y = 1, a oszacowane rawdoodobieńswo jes mniejsze od 0.5 oraz gdy y = 0, a jes co najmniej 0.5 (zob. n. [], [7]). Pojedyncze aramery β j badanego modelu () nie mają bezośredniej inerreacji. W celu orównania wyników obu modeli z 11 i 54 aramerami, obliczyliśmy średnie arymeyczne o wszyskich obserwacjach dla efeków krańcowych względem zmiennych egzogenicznych, j. dla Pr(y =1)/ w j. Wyniki e rzedsawia Tabela. Tabela Należy zwrócić uwagę na zgodność znaków badanych charakerysyk w rzedsawionych owyżej modelach, z wyłączeniem znaku rzy zmiennej ROR. Z uwagi na o, że sośród rzedsawionych modeli dane zdecydowanie referują ogólniejszy model -Sudena z 54 aramerami, zaem inerreację wyników rzedsawimy rzede wszyskich dla ego modelu. Dodani znak efeku krańcowego informuje nas, że wzros w j owoduje wzros szans, że y = 1. Zaem, jeżeli hioeycznym klienem okazuje się być mężczyzna, o ryzyko niedorzymania rzez niego umowy jes wyższe niż w rzyadku kobiey. Analogicznie osiadanie rzez kredyobiorcę rachunku ˆ 1

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie oszczędnościowo-rozliczeniowego, w rzeciwieńswie do osiadania choć jednej kary łaniczej lub kredyowej, wiąże się z wyższym rawdoodobieńswem niesłacenia rzez niego kredyu. Udzielenie kredyu orzez ośrednika, odobnie jak udzielenie kredyu konsumcyjnego zamias hioecznego, zwiększa ryzyko kredyowe. W rzyadku zmiennych określających źródło dochodu wszyskie rzy modele zgodnie informują, że sudenci korzysający z kredyu sudenckiego (zrdoch3) oraz emeryci i renciści (zrdoch1) są mniej ryzykownymi kredyobiorcami niż klienci zarudnieni na umowę o racę. Największe ryzyko kredyowe wiąże się z udzieleniem kredyu dealicznego klienom rowadzącym własną działalność gosodarczą (zrdoch). Podsumowując, sośród zmiennych zero-jedynkowych w j największy wływ na ryzyko kredyowe ma y udzielonego kredyu oraz fak, czy klien osiada karę łaniczą lub kredyową czy nie. Ponado wraz z wiekiem kredyobiorcy i wielkością jego wływów na rachunek ROR maleje rawdoodobieńswo niedorzymania umowy kredyowej. Iloraz efeków krańcowych względem ary zmiennych n. w i i w j informuje, ile razy większa jes reakcja Pr(y =1) na jednoskowy rzyros w i, w orównaniu z reakcją Pr(y =1) na jednoskowy rzyros w j. Przykładowo, w bayesowskim modelu -Sudena z 54 aramerami, reakcja rawdoodobieńswa niedorzymania umowy rzez kredyobiorcę ze względu na sosób udzielenia kredyu jes około 8,5 razy większa niż reakcja Pr(y =1) na o, czy kredyobiorcą jes kobieą, czy mężczyzną. Naomias w klasycznym modelu robiowym oraz w drugim modelu -Sudena (k=11) aramerami iloraz en wynosi odowiednio około 31 i 90. Przedsawione modele różnią się znacząco ze względu na warość i ranking efeków krańcowych oraz ilorazy ych wielkości. Ponado zbadaliśmy, czy isnieją oymalne ze względu na warości zmiennych ciągłych, j. wieku i wływów. Dla czerech hioeycznych kredyobiorców (or. Tabela 3) obliczyliśmy oymalne warości obu zmiennych, kóre minimalizują, jednakże wykraczają one oza zakres obserwowanych warości ych zmiennych. Ponado ze saysycznego unku widzenia duże odchylenie sandardowe a oseriori dla arameru β 1 (rzy kwadracie zmiennej wiek) w sosunku do warości oczekiwanej wskazuje, że zerowa warość ego arameru jes wysoce rawdoodobna a oseriori. Zaem rozroszenie rozkładu a oseriori dla oymalnego wieku kredyobiorcy byłoby relaywnie duże, a wnioskowanie o ej wielkości byłoby słabe. Oszacowane modele możemy wykorzysać do celów rognosycznych, czyli rognozowania rawdoodobieńswa złego kredyu w rzyadku oencjalnego kredyobiorcy. Dla uroszczenia rozważmy czery hioeyczne sylweki oencjalnych klienów sarających się o kredy, kóre rzedsawia Tabela 3 (zob. akże [10] i [11]). Wszyskie modele zgodnie rognozują, że największe ryzyko kredyowe związane jes z klienem będącym młodym mężczyzną, kóry urzymuje się z 8 Podobne wyniki orzymaliśmy akże w rzyadku klasycznego modelu robiowego, w kórym warość ilorazu wiarygodności modelu ogólniejszego i zagnieżdżonego wynosi około 377. 13

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie rowadzenia własnej działalności i nie korzysa z jakichkolwiek innych usług badanego banku orócz kredyu, kóry zosał mu udzielony orzez ośrednika. Preferowany rzez dane model -Sudena z 54 aramerami wskazuje, że rawdoodobieńswo niedorzymania umowy kredyowej ( ) rzez ego młodego biznesmena jes bardzo wysokie i wynosi 0,55 (±0,05). Jednocześnie we wszyskich modelach recyzja wnioskowania o dla młodego biznesmena jes najmniejsza w orównaniu do ozosałych klienów. Najmniejsze ryzyko kredyowe, sośród czerech rozważanych kredyobiorców, związane jes ze sarszą anią urzymującą się z emeryury, kórej udzielono kredy hioeczny. Model -Sudena (k=54) wskazuje, że rakycznie brak jes jakiegokolwiek ryzyka w rzyadku ego kliena. Największe różnice w oszacowaniu doyczą najczęsszego kliena, zn. o cechach najczęsszych w róbie (doyczy zmiennych jakościowych) i rzecięnych (dla zmiennych ciągłych) w badanej zbiorowości, kóry uzyskał kredy orzez ośrednika. W rzyadku ego kliena, w modelu -Sudena (k=54) rawdoodobieńswo złego kredyu wynosi 0,044, o jes isonie mniej niż w rzyadku modelu robiowego, kóry szacuje ę wielkość na oziomie 0,3-0,19. W rzyadku najczęsszego kliena, kóry uzyskał kredy konsumcyjny bezośrednio z banku, model -Sudena (k=54) szacuje na oziomie 0,015, co z rakycznego unku widzenia oznacza brak ryzyka. Także ozosałe modele rognozują o rawdoodobieńswo na odobnym oziomie. Podsumowując, widoczne są isone różnice w wielkości oszacowanego rawdoodobieńswa złego kredyu między referowanym rzez dane modelem -Sudena (k=54), a częso sosowanym modelem robiowym, a akże modelem logisycznym; or. [9]. Naomias różnice między dwoma bayesowskimi modelami -Sudena z 54 i 11 aramerami nie są już ak wyraźne. Tabela 3 6. PODSUMOWANIE W niniejszym oracowaniu rzedsawiliśmy, odwołując się do lieraury rzedmiou, secyfikację bayesowskich modeli dla danych dwumianowych, zarówno z normalnym składnikiem losowym, jak i z rozkładem -Sudena o nieznanej liczbie soni swobody. Dla ej klasy modeli omówiliśmy szczegółowo wykorzysanie losowania Gibbsa jako meody numerycznej aroksymacji brzegowych rozkładów a oseriori. Przerowadzone badania emiryczne wskazują, że odejście bayesowskie ozwoliło na uzyskanie nowych wyników. Waro amięać, że na gruncie klasycznym meoda największej wiarygodności, wysarczająca w rzyadku ak dużej liczbie obserwacji, nie ma zbadanych własności w rzyadku modelu -Sudena, sąd orzeba zasosowania odejścia bayesowskiego. Ponado w rzyadku małej róby odejście bayesowskie jes olecane z uwagi na 14

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie nieasymoyczne (małoróbkowe) własności, o czym w rzyadku analizy modeli dychoomicznych isze n. Zellner [1]. Wyniki emiryczne wyraźnie referują model -Sudena z około jednym soniem swobody, j. model z rozkładem Cauchy ego. Zaem zasosowanie w ym rzyadku modelu robiowego czy logiowego jes nieuzasadnione ze saysycznego unku widzenia, zwłaszcza, że uzyskane rognozy rawdoodobieńswa niesłacenia kredyu czy efeky krańcowe są bardzo rozbieżne w modelach: robiowym i -Sudena. Akademia Ekonomiczna w Krakowie LITERATURA [1] Alber J. Chib S., 1993, Bayesian Analysis of Binary and Polychoomous Resonse Daa, Journal of he American Saisical Associaion, 88, s. 669-679. [] Amemiya T., 1981, Qualiaive Resonse Models: A Survey, Journal of Economic Lieraure, 19. [3] Amemiya T., 1985, Advanced Economerics, Harvard Universiy Press, Cambrige Massachuses. [4] Casella G., E. George, 199, Exlaining he Gibbs Samler, The American Saisician, 46. [5] Cowles M.K., B.P. Carlin, 1996, Markov Chain Mone Carlo Covergence Diagnosic: A Comaraive Review, Journal of he American Saisical Associaion, 91, s. 883-904. [6] Geweke J., 1996, Mone Carlo Simulaion and Numerical Inegraion in H. Amman, D. Kendrick and J. Rus (eds.), Handbook of Comuaional Economics, Amserdam: Norh- Holland. [7] Greene W.H., 1993, Economeric Analysis, Macmillan Publishing Comany, New York. [8] Gruszczyński M., 001, Modele i rognozy zmiennych jakościowych w finansach i bankowości, Monografie i Oracowania SGH, Warszawa, nr 6. [9] Maddala G.S., 1983, Limied deenden and qualiaive variables in economerics, Cambrigde Universiy Press, Cambrigde. [10] Marzec J., 003a, Badanie niewyłacalności kredyobiorcy na odsawie modeli logiowych i robiowych, Zeszyy Naukowe Akademii Ekonomicznej w Krakowie nr 68 (w druku). [11] Marzec J., 003b, Badanie niesłacalności kredyów za omocą bayesowskich modeli dychoomicznych - założenia i wyniki, Meody ilościowe w naukach ekonomicznych (red. A. Welfe), Wydawnicwo SGH w Warszawie (w druku). [1] McCulloch R.E, N.G. Polson, P. E. Rossi, 000, A Bayesian Analysis of he Mulinomial Probi Model wih Fully Idenified Parameers, Journal of Economerics, 99, s. 173-193. [13] McCulloch R.E., P. E. Rossi, 1993, An exac Likelihood Analysis of he Mulinomial Probi Model, Journal of Economerics, 64, s. 07-40. [14] Osiewalski J., 1991, Bayesowska esymacja i redykcja dla jednorównaniowych modeli ekonomerycznych, Akademia Ekonomiczna w Krakowie, Zeszyy Naukowe, Seria secjalna: Monografie, nr 100, Kraków. [15] Osiewalski J., 001, Ekonomeria bayesowska w zasosowaniach, Wydawnicwo Akademii Ekonomicznej w Krakowie, Kraków. [16] Pajor A., 00, Bayesowska esymacja i rognozowanie w modelu sochasycznej zmienności z błędem -Sudena, Dynamiczne Modele Ekonomeryczne (VII Ogólnoolskie Seminarium Naukowe 4-6 września 001), Wydawnicwo Uniwersyeu M. Koernika, Toruń, s. 56-74. [17] Poirier D.J., P.A. Ruud, 1988, Probi wih deenden observaions, Review of Economics Sudies, 55, s. 593-614. 15

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie [18] Tierney L., 1994, Markov chains for exloring oserior disribuions (wih discussion), Annals of Saisics,, s. 1701-176. [19] Wiśniewski J., 1986, Ekonomeryczne badanie zjawisk jakościowych (sudium meodologiczne), Uniwersye M. Koernika, Toruń [0] Zellner A., 1971, An Inroducion o Bayesian Inference in Economerics, J. Wiley, New York 1971. [1] Zellner A., 1983, Bayesian Analysis of Simle Mulinomial Logi Model, Economics Leers, 11, s. 133-136. [] Zellner A., P. Rossi, 1984, Bayesian Analysis of Dichoomous Quanal Resonse Models, Journal of Economerics, 5, s. 365-393. Tabela 1. Warości oczekiwane i odchylenia sandardowe a oseriori aramerów bayesowskiego modelu -Sudena o nieznanej liczbie soni swobody ν. Zmienna aramer E( y) D( y) Zmienna Paramer E( y) D( y) Sała β 1-73.376 13.139 w w 10 β 9-1.76 1.367 Płeć (w 1 ) β.445 1.990 (w 3 ) β 30 0.1 0.008 Wiek (w ) β 3-3.93 7.399 w 3 w 4 β 31 5.59 7.477 Wływy (w 3 ) β 4-45.893 35.095 w 3 w 5 β 3-4.468.65 ROR (w 4 ) β 5 5.060 9.691 w 3 w 6 β 33 54.15 3.917 Kary (w 5 ) β 6-6.388 31.318 w 3 w 7 β 34-47.51 4.39 Pośrednik (w 6 ) β 7 9.807 3.949 w 3 w 8 β 35 69.560 17.40 Ty kredyu (w 7 ) β 8 64.46 1.374 w 3 w 9 β 36-55.88 3.85 Zrdoch1 (w 8 ) β 9 1.83 10.314 w 3 w 10 β 37 341.74 14.861 Zrdoch (w 9 ) β 10-3.798 1.678 w 4 w 5 β 38 45.30 30.35 Zrdoch3 (w 10 ) β 11 10.570 14.561 w 4 w 6 β 39-1.67 0.59 w 1 w β 1-0.56 0.57 w 4 w 7 β 40-45.69 9.006 w 1 w 3 β 13-0.94.148 w 4 w 8 β 41-0.04 0.490 w 1 w 4 β 14 0.395 0.40 w 4 w 9 β 4 1.536 0.37 w 1 w 5 β 15 0.56 0.305 w 4 w 10 β 43-6.385 3.81 w 1 w 6 β 16-0.338 0.03 w 5 w 6 β 44 0.856 0.300 w 1 w 7 β 17 -.444 1.963 w 5 w 7 β 45 0.081 1.449 w 1 w 8 β 18-0.030 0.083 w 5 w 8 β 46-0.74 0.667 w 1 w 9 β 19 0.33 0.166 w 5 w 9 β 47-0.863 0.371 w 1 w 10 β 0 0.6 0.313 w 5 w 10 β 48 17.953 6.037 (w ) β 1 0.064 1.006 w 6 w 8 β 49-0.808 0.451 w w 3 β 11.445 15.377 w 6 w 9 β 50 1.599 0.63 w w 4 β 3 0.469 1.110 w 6 w 10 β 51-8.167 3.818 w w 5 β 4-0.715 1.388 w 7 w 8 β 5-11.904 10.85 w w 6 β 5 0.568 0.964 w 7 w 9 β 53 1.58 1.63 w w 7 β 6 0.473 7.149 w 7 w 10 β 54-1.947 14.147 w w 8 β 7 0.975 0.483 - ν 1.30 0.067 w w 9 β 8 1.715 0.810 Źródło: obliczenia własne. 16

Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie Tabela. Oceny MNW oraz warości oczekiwane i odchylenia sandardowe a oseriori dla uśrednionych efeków krańcowych. Model robiowy - MMW (11 aramerów) Bayesowski model Sudena (11 aramerów) Bayesowski model Sudena (54 aramerów) Zmienna Oceny Błędy szacunku Sa. E( y) D( y) E( y) D( y) łeć 0,008 0,003,4 0,004 0,005 0,019 0,006 wiek -0,170 0,017-10,0-0,1 0,03-0,66 0,031 wływy -0,333 0,044-7,6-8,97 0,7-15,733 5,04 ROR -0,056 0,008-7,5 0,18 0,017 0,66 0,39 kary -0,034 0,007-5, -0,053 0,019-7,907 5,74 ośrednik 0,51 0,006 43,3 0,358 0,011 0,54 0,036 y kredyu 0,036 0,013,8 0,37 0,069 9,41 1,511 Zrdoch1 0,018 0,006 3,1 0,01 0,007 0,076 0,031 Zrdoch -0,06 0,008-7,6-0,018 0,014-0,030 0,019 Zrdoch3 0,045 0,015 3,1 0,101 0,07 0,59 0,085 Źródło: obliczenia własne. Tabela 3. Warości oczekiwane i odchylenia sandardowe a oseriori rawdoodobieńswa niesłacenia kredyu - Pr(y =1)=F(x β). Najczęsszy Klien Młody Sarsza Zmienna Pośrednik=1 Pośrednik=0 Biznesmen Pani Sała 1 1 1 1 Płeć 1 1 1 0 Wiek ( w laach) 40, 40, 1 60 Wływy (w ys. zł) 10, 10, 0 1 ROR 1 1 0 1 Kary łanicze 0 0 0 1 Pośrednik 1 0 1 0 Ty kredyu: 1 1 1 0 konsumcyjny Zrdoch1 1 1 1 0 Zrdoch 1 1 0 1 Zrdoch3 1 1 1 1 Model robiowy (MNW, 11 aramerów) Ocena 0,306 0,038 0,664 0,011 Błąd szacunku (0,014) (0,00) (0,016) (0,00) Model robiowy (MNW, 54 aramerów) Ocena 0,193 0,08 0,551 4,16 10-6 Błąd szacunku (0,047) (0,003) (0,04) (4,84 10-4 ) Bayesowski model -Sudena (ν esymowane, 11 aramerów) E( y) 0,034 0,016 0,584 0,039 D( y) (0,00) (0,001) (0,05) (0,007) Bayesowski model -Sudena (ν esymowane, 54 aramerów) E( y) 0,044 0,015 0,553 0,009 D( y) (0,006) (0,00) (0,053) (0,009) Źródło: obliczenia własne. 17