Zadanie 1 x 2 2mx+4m 3=0 ma dwa różne pierwiastki? Odp: m ( ; 1) (3 ; ) Zadanie 2 mx 2 +(2m 2) x+m+1=0 ma dwa różne pierwiastki? Odp: m ( ;0) (0; 1 3 ) Zadanie 3 ma jeden pierwiastek? Odp: m = -2, m = 8 x 2 +mx+4+ 3 2 m=0 Zadanie 4 3mx 2 (3m 6)x+m 4=0 ma jeden pierwiastek? Odp: m = -2, m = 0, m = 6 Zadanie 5 Dla jakich wartości parametru m funkcja miejsce zerowe? Odp: ; 1 3 f (x)=mx 2 +(2m 2)x+m+1 ma co najmniej jedno Zadanie 6 x 2 2mx+m=0 nie ma pierwiastków? Odp: m (0 ; 1) Zadanie 7 (5m+1) x 2 +(7m+3) x+3m=0 nie ma pierwiastków? ; 11) 3 (3 ; ) Zadanie 8 Zbadaj liczbę rozwiązań równania: x 2 mx+2m 2 9=0 w zależności od wartości parametru m. odp: 2 rozwiązania dla m ( 6 7 ; 6 7 7 7 )
1 rozwiązanie dla m= 6 7 7 lub m= 6 7 7 7 ) ; 6 7 brak rozwiązań dla m ( ; 7 ) ( 6 7 Zadanie 9 Zbadaj liczbę rozwiązań równania: (m 5) x 2 4mx+m 2=0 w zależności od wartości parametru m. odp: 2 rozwiązania dla m ( ; 10 3 ) (1;5) (5; ) 1 rozwiązanie dla m= 10 lub m = 1 lub m = 5 3 brak rozwiązań dla m ( 10 3 ;1 ) Zadanie 10 Zbadaj liczbę miejsc zerowych funkcji wartości parametru m. odp: 2 miejsca zerowe dla m ( ;0) ( 0 ; 1 2) ( 1 2 ; ) f (x)=(2m 1) x 2 (3m 2) x+m 1 w zależności od 1 miejsce zerowe dla m = 0 lub m= 1 2 Zadanie 11 Nie obliczając pierwiastków x 1, x 2 równania 10x 2 +5x 2=0, oblicz wartość wyrażenia 2x 2 2 1 +3x 1 x 2 +2x 2 x 1 x 2 2 +x 2 1 x 2. odp:7 Zadanie 12 x 2 +2(m 4) x+m 2 +6m=0 ma dwa pierwiastki o różnych znakach? Odp: m ( 6 ; 0) Zadanie 13 (m 1) x 2 4x+m+2=0 ma dwa pierwiastki o różnych znakach? Odp: m ( 2 ;1) Zadanie 14 x 2 (2m+3) x+m 2 5=0 ma dwa różne pierwiastki o jednakowych znakach? 29 12 ; 5 ) ( 5; )
Zadanie 15 x 2 x+m 2=0 2; 9 4) Zadanie 16 (m 1) x 2 +2mx+m 3=0 3 4 ;1 ) Zadanie 17 Dla jakich wartości parametru k równanie: (2k 5) x 2 2(k 1) x+3=0 Odp: k ( 5 4 ;4 ) (4; ) Zadanie 18 2x 2 2(m 1) x+m 2 m 4=0 ma dwa różne pierwiastki ujemne? 1 17 Odp: m ( 3; 2 ) Zadanie 19 (m+1) x 2 4m x+2m+3=0 ma dwa różne pierwiastki ujemne? 1 ; 1 2) Zadanie 20 Dla jakich wartości parametru m równanie warunek x 2 1 + x 2 2 =68? odp: m = -2, m = 2 x 2 5mx+4m 2 =0 ma dwa pierwiastki spełniające Zadanie 21 Dla jakich wartości parametru m pierwiastki x 1 i x 2 równania x 2 +(2 3m) x+2m 2 5m 3=0 spełniają warunek 2 x 1 x 2 <x 2 2 1 +x 2 odp: m R/{ 4}? Zadanie 22 Dla jakich wartości parametru m pierwiastki równania x 2 + 5 mx+m 2 +m+3=0 spełniają warunek x 1 2 + x 2 2 3 x 1 x 2 odp: m ; 3
Zadanie 23 Znajdź wszystkie wartości m, dla których suma różnych rozwiązań równania x 2 2m(x 1) 1=0 jest równa sumie ich kwadratów. Wskazówka: równanie należy najpierw uporządkować. Odp: m= 1 2 Zadanie 24 Dla jakich wartości parametru p pierwiastki x 1, x 2 równania 3x 2 2px+3p=0 spełniają warunek x 2 1 + x 2 2 =6x 1 x 2? odp: 0, 18 Zadanie 25 Dla jakich wartości parametru m równanie jest równa? Odp: m = -5, m = 5 x 2 +2mx+16=0 ma dwa pierwiastki, których różnica Zadanie 26 Dla jakich wartości parametru m równanie x 2 (m 4) x+2m=0 ma dwa pierwiastki dodatnie, z których jeden jest dwa razy większy od drugiego? Odp: m = 16 Zadanie 27 Dla jakiej wartości parametru a równanie 8x 2 6x+5a=0 jest równe kwadratowi drugiego? Odp: a= 1 5, a= 27 5 ma dwa rozwiązania, z których jedno Zadanie 28 Dla jakich wartości parametru a jeden z pierwiastków równania większy od 1, a drugi mniejszy od 1? odp: a ( 1 2 ; 1 2) (2a+1) x 2 ax+a 2=0 jest Zadanie 29 Dla jakich wartości parametru msuma kwadratów pierwiastków równania osiąga najmniejszą wartość? Odp: 2 x 2 +mx+3 m=0 Zadanie 30 Dla jakich wartości parametru p rozwiązaniem nierówności x 2 +25x p 2 +3>0 jest przedział (2 ; 23)? odp: p = -7, p = 7 Zadanie 31 Dla jakich wartości parametru m nierówność x 2 +5mx+1>0 jest spełniona dla każdego x R odp: m ( 2 5 ; 2 5)
Zadanie 32 Wyznacz wszystkie wartości parametru a, dla których nierówność (a 1) x 2 (a 1) x+a+1>0 jest spełniona przez każdą liczbę rzeczywistą. Odp: a ( 5 3, ) Zadanie 33 Dla jakich wartości parametru m dziedziną funkcji f (x)= mx 2 8x+4m jest zbiór wszystkich liczb rzeczywistych? Odp: m 2; Zadanie 34 Dla jakich wartości parametru m funkcja dodatnie dla każdego x R? odp: m (3; 5) f (x)=x 2 +(m+1) x+ 1 (5m 7) przyjmuje wartości 2 Zadanie 35 Niech Y oznacza zbiór wartości funkcji określonej wzorem f (x)=(m+5) x 2 (3+m) x+1. Wyznacz wszystkie wartości parametru m, dla których Y (0 ; ) odp: m ( 1 2 3; 1+2 3) Zadanie 36 Dla jakich wartości parametru m nierówność mx 2 +(m+3) x m+1 0 jest spełniona dla każdego x R? odp: m ( ; 0) Zadanie 37 Dla jakich wartości parametru m nierówność 4mx 2 4(1 2m) x+9m 8 0 jest spełniona dla każdego x R? odp: m ; 1 5 Zadanie 38 Dla jakich wartości parametru m nierówność mx 2 +(m+3) x 1<0 x R? odp: m ( 9 ; 1) jest spełniona dla każdego Zadanie 39 Dla jakich wartości parametru a suma kwadratów pierwiastków równania x 2 +(a 3) x+a 2=0 jest najmniejsza? Odp: a