Klasa 6. Liczby dodatnie i liczby ujemne
|
|
- Stanisław Mazurkiewicz
- 7 lat temu
- Przeglądów:
Transkrypt
1 Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie liczby 1? A 4 B 5 C 6 D 3 2 Wypisz wszystkie liczby całkowite ujemne, które są większe od 8 3 Wstaw znak < lub > : a) b) 0 18 c) 6 2 d) Podkreśl wszystkie liczby większe od 1,2 1, ,1 1,3 2 5 Liczbą przeciwną do jest: A B C 2 11 D Zaznacz na poniższej osi liczbowej liczby: 0, 35, 20, 35, Uporządkuj liczby: 8,4, 10,2, 7,8, 7,6, 5,9, 9,5 od największej do najmniejszej 8 Uporządkuj liczby w kolejności od najmniejszej do największej Czy poniższe równania i nierówności są prawdziwe? Wstaw znak X w odpowiednią kratkę 6 > 0 TAK NIE 7 = 7 TAK NIE 2 < 2 TAK NIE 4 > 1 TAK NIE 10 Dokończ zdania Wybierz właściwe odpowiedzi spośród A lub B oraz C lub D Na prawo od liczby 5 na osi liczbowej znajdziemy liczbę A 6 B 4 Liczbą mniejszą od 80 jest liczba C 79, 99 D 80, 01
2 gr A str 2/3 11 Oceń prawdziwość zdań Wstaw znak X w odpowiednią kratkę Liczbą przeciwną do liczby 901 jest liczba 901 Jest dokładnie 8 liczb całkowitych większych od 6 i mniejszych od 2 Między liczbą 6 i liczbą do niej przeciwną na osi liczbowej jest 11 liczb całkowitych Jeżeli na osi liczbowej zaznaczono wszystkie liczby całkowite większe od 8 i mniejsze od 4, to wśród nich są trzy pary liczb przeciwnych 12 Suma liczb 4 i 3 jest równa: A 1 B 7 C 7 D 1 13 Pomniejsz liczbę o 3 14 W niedzielę temperatura wynosiła 15 C, a w poniedziałek była o 3 C niższa Jaka temperatura była w poniedziałek? Zapisz odpowiednie działanie 15 Oceń prawdziwość poniższych zdań Wstaw znak X w odpowiednią kratkę Wynik dodawania jest liczbą ujemną Wynik odejmowania 17 ( 21) jest liczbą ujemną 16 Oblicz: a) ( 34) + 25 = b) 28 + ( 11) = c) ( 18) + ( 62) = d) = e) ( 34) 25 = f) ( 14) ( 41) = 17 Oblicz: a) ( 3) = b) = 18 Uzupełnij: a) 22 + = 76 b) + 43 = 51 c) 67 = 94 d) 52 = Podkreśl wyrażenia o tym samym wyniku (59 ( 59)) (( 59) ( 59)) 59 (( 59) + 59) 20 Uzupełnij zdania odpowiednimi liczbami z ramki a) Suma liczb 64 i 25 jest równa b) Gdy od liczby 64 odejmiemy 25, to otrzymamy
3 gr A str 3/3 21 Wartość wyrażenia 4 + ( 2) ( 5) jest równa: A 14 B 6 C 30 D Oblicz kwadrat liczby 8 23 Iloczyn liczby dodatniej i liczby ujemnej jest liczbą: A dodatnią C 0 B ujemną D Nie można tego określić bez znajomości tych liczb 24 Oblicz a) ( 8) 5 = b) 56 :( 7) = c) ( 4) ( 6) = d) ( 36) :( 9) = 25 Oceń prawdziwość zdań Wstaw znak X w odpowiednią kratkę Wartość wyrażenia ( 1) ( 2) ( 3) jest liczbą ujemną Wartość wyrażenia ( 1) ( 2) 0 jest liczbą dodatnią 26 Wpisz odpowiednie liczby: a) : 5 = 17 b) ( 3) = 51 c) 11 = 11 d) ( 96) : = 6 27 Oblicz: a) 40 :( 4) ( 5) = b) ( 6) 0 81 :( 9) = c) ( 17) 5 = 28 Oblicz średnią arytmetyczną temperatur powietrza zmierzonych w siedmiu kolejnych dniach grudnia wtorek środa czwartek piątek sobota niedziela poniedziałek 1 C 4 C 5,5 C 6 C 1,5 C 0 C 2 C
4 Klasa 6 Liczby dodatnie i liczby ujemne gr B str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 3, 2, 0, 5, 2, 1, 6, 3, 4 Ile z nich znajduje się po lewej stronie liczby 1? A 6 B 5 C 4 D 3 2 Wypisz wszystkie liczby całkowite ujemne, które są większe od 11 3 Wstaw znak < lub > : a) b) 5 13 c) 6 0 d) Podkreśl wszystkie liczby większe od 1,5 1, , Liczbą przeciwną do jest: A B C 2 5 D Zaznacz na poniższej osi liczbowej liczby: 0, 5, 20, 35, Uporządkuj liczby: 4,6, 9,8, 8,4, 2,5, 10,1, 3,5 od najmniejszej do największej 8 Uporządkuj liczby w kolejności od największej do najmniejszej Czy poniższe równania i nierówności są prawdziwe? Wstaw znak X w odpowiednią kratkę 7 < 0 TAK NIE 4 = 4 TAK NIE 6 > 6 TAK NIE 2 > 1 TAK NIE 10 Dokończ zdania Wybierz właściwe odpowiedzi spośród A lub B oraz C lub D Na lewo od liczby 6 na osi liczbowej znajdziemy liczbę A 5 B 7 Liczbą większą od 40 jest liczba C 40, 01 D 39, 99
5 gr B str 2/3 11 Oceń prawdziwość zdań Wstaw znak X w odpowiednią kratkę Liczbą przeciwną do liczby 281 jest liczba 281 Jest dokładnie 6 liczb całkowitych większych od 3 i mniejszych od 5 Między liczbą 4 i liczbą do niej przeciwną na osi liczbowej jest 8 liczb całkowitych Jeżeli na osi liczbowej zaznaczono wszystkie liczby całkowite większe od 10 i mniejsze od 3, to wśród nich są dwie pary liczb przeciwnych 12 Suma liczb 5 i 3 jest równa: A 2 B 2 C 8 D 8 13 Powiększ liczbę o 2 14 W piątek temperatura wynosiła 11 C, a w sobotę była o 3 C niższa Jaka temperatura była w sobotę? Zapisz odpowiednie działanie 15 Oceń prawdziwość poniższych zdań Wstaw znak X w odpowiednią kratkę Wynik dodawania jest liczbą ujemną Wynik odejmowania 16 ( 14) jest liczbą ujemną 16 Oblicz: a) 27 + ( 42) = b) ( 35) + 47 = c) ( 42) + ( 18) = d) = e) ( 39) 12 = f) ( 23) ( 41) = 17 Oblicz: a) ( 4) = b) = 18 Uzupełnij: a) 24 + = 75 b) + 33 = 52 c) 64 = 91 d) 45 = Podkreśl wyrażenia o tym samym wyniku (68 ( 68)) (( 68) ( 68)) 68 (( 68) + 68) 20 Uzupełnij zdania odpowiednimi liczbami z ramki a) Suma liczb 43 i 29 jest równa b) Gdy od liczby 43 odejmiemy 29, to otrzymamy
6 gr B str 3/3 21 Wartość wyrażenia 5 + ( 2) ( 6) jest równa: A 7 B 42 C 17 D Oblicz kwadrat liczby 7 23 Iloraz liczby ujemnej przez liczbę ujemną jest liczbą: A ujemną C Nie można tego określić bez znajomości tych liczb B 0 D dodatnią 24 Oblicz a) ( 6) 5 = b) 49 :( 7) = c) ( 3) ( 8) = d) ( 36) :( 6) = 25 Oceń prawdziwość zdań Wstaw znak X w odpowiednią kratkę Wartość wyrażenia ( 2) ( 4) 6 jest liczbą ujemną Wartość wyrażenia ( 3) ( 2) 0 jest liczbą dodatnią 26 Wpisz odpowiednie liczby: a) : 5 = 15 b) ( 3) = 45 c) 8 = 8 d) ( 64) : = 4 27 Oblicz: a) 32 :( 8) ( 2) = b) ( 4) 0 42 :( 6) = c) 6 ( 16) + ( 14) 5 = 28 Oblicz średnią arytmetyczną temperatur powietrza zmierzonych w siedmiu kolejnych dniach grudnia wtorek środa czwartek piątek sobota niedziela poniedziałek 1,5 C 0 C 2,5 C 3 C 1 C 4 C 5 C
Klasa 6. Liczby dodatnie i liczby ujemne
Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie
Bardziej szczegółowoLiczby całkowite. 1. Liczbą przeciwną do 4 jest liczba: A. 1 4 B. 4 C. 4 D Odczytaj, jakie liczby zaznaczono na osi liczbowej.
Liczby całkowite gr. A str. 1/4... imię i nazwisko...... klasa data 1. Liczbą przeciwną do 4 jest liczba: A. 1 4 B. 4 C. 4 D. 1 4 2. Odczytaj, jakie liczby zaznaczono na osi liczbowej. a =........ b =........
Bardziej szczegółowoSkrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Liczby wymierne dodatnie i niedodatnie
Bardziej szczegółowoKlasa 5. Liczby i działania
Klasa 5. Liczby i działania gr. A str. 1/3... imię i nazwisko...... klasa data 1. Ilu cyfr potrzeba do zapisania liczby siedem miliardów trzysta tysięcy osiemnaście? Ile wśród nich jest zer? Ile zer będzie
Bardziej szczegółowoPONIEDZIAŁEK 16.02.2015 WTOREK 17.02.2015
PONIEDZIAŁEK 16.02.2015 WTOREK 17.02.2015 ŚRODA 18.02.2015 CZWARTEK 19.02.2015 14.00-16.00 AQUAPARK: ZABAWY KOSMICZNE Z DZIEĆMI Z MUZYKĄ PIĄTEK 20.02.2015 SOBOTA 21.02.2015 NIEDZIELA 22.02.2015 PONIEDZIAŁEK
Bardziej szczegółowoP 1. Uzupełnij tabelę. P 2. Uzupełnij tabelę. I. 2 i 2 II. 3 i 1 3. III. 1,2 i 5 6. IV. 1,25 i V. 5 i 1 5
Liczby dodatnie i ujemne 41 3 Liczby dodatnie i ujemne 1 Liczby dodatnie i ujemne P 1. Uzupełnij tabelę. Liczba 2 2,5 2 1 3 14 3 Liczba odwrotna 5 17 P 2. Uzupełnij tabelę. Liczba 3 1,5 2 1 5 13 2 Liczba
Bardziej szczegółowoW zapisie pewnej liczby w systemie rzymskim dwa znaki zastąpiono. D CC LVI Uzasadnij, że liczba ta jest mniejsza od 850.
Zadanie. Czy prawdą jest, że liczba LXV jest mniejsza od liczby XCVIII? Wybierz odpowiedź (tak) lub (nie) i jej uzasadnienie spośród zdań A- A. liczba LXV jest mniejsza od 70, a liczba XCVIII jest większa
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Poniższa tabela przedstawia temperaturę odczytywana
Bardziej szczegółowoSkrypt 31. Powtórzenie do matury Liczby rzeczywiste
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 31 Powtórzenie do matury
Bardziej szczegółowoBoisko piłkarskie: stycznia
Boisko piłkarskie: 11 17 stycznia 11.01 poniedziałek 12.01 wtorek 13.01 środa 14.01 czwartek 15.01 piątek 16.01 sobota 17.01 niedziela Organizator: rugby Boisko wielofunkcyjne: 11 17 stycznia 11.01 poniedziałek
Bardziej szczegółowoObwody i pola figur -klasa 4
Obwody i pola figur -klasa 4 str. 1/6...... imię i nazwisko lp. w dzienniku...... klasa data 1. Przyjmij za jednostkę. Zapisz, jakie pole ma narysowana figura. Pole =.......................... 2. Jakie
Bardziej szczegółowoSkrypt 23. Przygotowanie do egzaminu Pierwiastki
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Przygotowanie do egzaminu Pierwiastki 1.
Bardziej szczegółowo1.8. PRZEDZIAŁY LICZBOWE
.8. PRZEDZIAŁY LICZBOWE Przedziały liczbowe Nazwa zbioru Oznaczenie Warunek, które spełniają liczby naleŝące do zbioru Ilustracja graficzna Przedział otwarty ( b) a, a < x < b Przedział domknięty a, b
Bardziej szczegółowoPotęgi str. 1/6. 1. Oblicz. d) Potęgę 3 6 można zapisać jako: A. 36 B C D. 3 6
Potęgi str. 1/6 1. Oblicz. a) 8 2 8 b) ( 2)7 2 c) 9 ( 9) 2 d) 34 27 2. Potęgę 3 6 można zapisać jako: A. 36 B. 3 3 3 3 3 3 C. 6 6 6 D. 3 6 3. Po obliczeniu wartości 3 2 3 otrzymamy liczbę: A. 3 8 B. 9
Bardziej szczegółowoV Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych ETAP REJONOWY Rok szkolny 01/016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 1
Bardziej szczegółowoWYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Bardziej szczegółowo1. Czy poniższa para liczb spełnia równanie 6x + 4y = 23? Wstaw znak X w odpowiednią kratkę. x = 4,5, y = 1 TAK NIE
1. Czy poniższa para liczb spełnia równanie 6x + 4y = 23? Wstaw znak X w odpowiednią kratkę. x = 0,5, y = 5 TAK NIE x = 3, y = 1 TAK NIE x = 7, y = 5 TAK NIE x = 4,5, y = 1 TAK NIE 2. Sprawdź, czy para
Bardziej szczegółowoFigury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej,
Figury geometryczne str. 1/7...... imię i nazwisko lp. w dzienniku...... klasa data 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, przechodzącą
Bardziej szczegółowoKlasa 5. Liczby i działania
Klasa 5. Liczby i działania gr. A str. 1/3... imię i nazwisko...... klasa data 1. Wynik dzielenia liczby 12 012 przez 12 jest równy: A. 1000 B. 1001 C. 101 D. 11 2. Liczba 500 razy większa od iloczynu
Bardziej szczegółowoPOTĘGI I PIERWIASTKI
POTĘGI I PIERWIASTKI I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Połowa liczby 100 A. 50 B. 1 100 C. 10 D. 99 Zadanie Wskaż jedną poprawną odpowiedź. Po skróceniu liczba : A. B. C. D.
Bardziej szczegółowoKlasa 6. Pola wielokątów
Klasa 6. Pola wielokątów gr. A str. 1/4... imię i nazwisko...... klasa data 1. Jedna przekątna rombu ma 6 cm, a druga jest od niej o 3 cm krótsza. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A
Bardziej szczegółowof (x)=mx 2 +(2m 2)x+m+1 ma co najmniej jedno
Zadanie 1 x 2 2mx+4m 3=0 ma dwa różne pierwiastki? Odp: m ( ; 1) (3 ; ) Zadanie 2 mx 2 +(2m 2) x+m+1=0 ma dwa różne pierwiastki? Odp: m ( ;0) (0; 1 3 ) Zadanie 3 ma jeden pierwiastek? Odp: m = -2, m =
Bardziej szczegółowoCiekawe zadania o... liczbach całkowitych poziom 3
1/9 Małgorzata Rucińska-Wrzesińska Ciekawe zadania o... liczbach całkowitych poziom 3 Zadanie 1 Zapisz pięć liczb całkowitych co najmniej trzycyfrowych oraz liczby do nich przeciwne. Następnie uszereguj
Bardziej szczegółowoSPRAWDZIAN NR 1. B. Wartość wyrażenia jest większa od wartości wyrażenia
SRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUA A 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest fałszywe. Wartość wyrażenia jest mniejsza od wartości
Bardziej szczegółowo7 zaokr aglamy do liczby 3,6. Bład względny tego przybliżenia jest równy A) 0,8% B) 0,008% C) 8% D) 100
ZADANIE 1 (1 PKT) Dane sa zbiory A = ( 6 7, 6) i B = N liczb naturalnych dodatnich. Wówczas iloczyn zbiorów A B jest równy A) {1, 2,, 4, 5} B) (, 5 C) {1, 2,, 4, 5, 6} D) (, 6) ZADANIE 2 (1 PKT) Jeśli
Bardziej szczegółowoSOBOTA 28 maja 2011 GRUPA 5 PU GRUPA 6 PU GRUPA 7 PU GRUPA 8 PU 9.00-10.30. przerwa "kawowa" 11.00-12.30 12.45-14.15. przerwa "obiadowa" 15.00-16.
SOBOTA 28 maja 2011 NIEDZIELA 29 maja 2011 B.2.4 Technika wystąpień publicznych B.2.4 Technika wystąpień publicznych B.2.4 Technika wystąpień publicznych B.2.4 Technika wystąpień publicznych B.2.4 Technika
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2014/15
Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40
Bardziej szczegółowo7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
Bardziej szczegółowoZestaw M1 / 1. imię i nazwisko ucznia. nr w dzienniku. DUMa. Czas rozwiązywania zadań 45 minut. Zestaw M1
Zestaw M1 / 1 imię i nazwisko ucznia klasa UMa iagnoza umiejętnosci matematycznych uczniów szkół podstawowych zas rozwiązywania zadań 45 minut. Zestaw M1 nr w dzienniku Instrukcja dla ucznia Sprawdź, czy
Bardziej szczegółowoPowtórka - liczby naturalne i ułamki
Powtórka - liczby naturalne i ułamki MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oblicz w pamięci. Dokończ poniższe wyrażenia wybierz odpowiedzi spośród A i B oraz C i D. 43 + 25 = A. 68 B. 95
Bardziej szczegółowoBoisko piłkarskie: 5 11 maja
Boisko piłkarskie: 5 11 maja 05.05 poniedziałek 06.05 wtorek 07.05 środa 08.05 czwartek 09.05 piątek 10.05 sobota 11.05 niedziela Chłopcy - wiek szkoły Dorośli mężczyźni Boisko wielofunkcyjne: 5 11 maja
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.
Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Bardziej szczegółowoCzesław i Łukasz Kuncewicz. matematyka. sprawdziany kompetencji. dla klasy 5 zreformowanej szkoły podstawowej
matematyka sprawdziany kompetencji dla klasy zreformowanej szkoły podstawowej Łódź 2001 Korekta Grażyna Pysznicka-Kozik Projekt okładki Jacek Wilk Skład Krzysztof Jodłowski Copyright by Piątek Trzynastego,
Bardziej szczegółowoKlasa 6. Liczby naturalne i ułamki
Klasa 6. Liczby naturalne i ułamki gr. A str. /5... imię i nazwisko...... klasa data. Odczytaj liczbę zaznaczoną na osi liczbowej. A. a = B. a = 5 C. a = 0, D. a = 4 2. Oblicz: a) 20 + 0,6 c) 2,73 5 b)
Bardziej szczegółowoCiekawe zadania o... liczbach całkowitych poziom 2
1/6 Małgorzata Rucińska-Wrzesińska Ciekawe zadania o... liczbach całkowitych poziom 2 Zadanie 1 Zapisz w postaci liczb ujemnych: a. temperaturę powietrza zanotowaną pewnego zimowego poranka i wynoszącą
Bardziej szczegółowoPrzygotowanie do SPRAWDZIANU w szóstej klasie ZESTAWY ZADAŃ
Przygotowanie do SPRAWDZIANU w szóstej klasie ZESTAWY ZADAŃ Metoda 1 Najbardziej uniwersalna metoda polega na rozwiązaniu zadania tak, jakby było zadaniem otwartym (czyli bez podanych odpowiedzi do wyboru),
Bardziej szczegółowoLiliana Komorowska Gimnazjum Publiczne w Taczanowie Drugim. Porównywanie liczb wymiernych Scenariusz lekcji dla klasy I gimnazjum
Liliana Komorowska Gimnazjum Publiczne w Taczanowie Drugim Porównywanie liczb wymiernych Scenariusz lekcji dla klasy I gimnazjum Cele operacyjne Uczeń : 1. wskazuje spośródzbioruliczbwartości najmniejsze
Bardziej szczegółowo4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Bardziej szczegółowoZwróć uwagę. Czytaj uważnie treści zadań i polecenia. W razie potrzeby przeczytaj je kilka razy.
Zwróć uwagę Poniżej znajdziesz kilka wskazówek, którą mogą ci ułatwić napisanie sprawdzianu szóstoklasisty. Najważniejsza z nich to: Czytaj uważnie treści zadań i polecenia. W razie potrzeby przeczytaj
Bardziej szczegółowoWYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz
Bardziej szczegółowoTest sprawdzający wiedzę z matematyki z klasy siódmej listopad Czas: 100 min
Imię i nazwisko... Test sprawdzający wiedzę z matematyki z klasy siódmej listopad Czas: 100 min 1. W pewnej szkole podstawowej dziewczęta stanowią 60% wszystkich uczniów. Ilu chłopców chodzi do tej szkoły,
Bardziej szczegółowoPLAN FERII ZIMOWYCH 20.01.2014r. 31.01.2014r. Zajęcia odbywają się w godzinach 09:00-13:00
PLAN FERII ZIMOWYCH 20.01.2014r. 31.01.2014r. Zajęcia odbywają się w godzinach 09:00-13:00 20.01.2014 r. poniedziałek 09:00-13:00 Imię i nazwisko n- la prowadzącego sala Rodzaj zajęć 21.01.2014r. wtorek
Bardziej szczegółowoKlasa 4. Działania pisemne
Klasa 4. Działania pisemne...... imię i nazwisko lp. w dzienniku str. 1/2 grupa A...... klasa data 1. Oblicz: a) b) c) 2 5 2 + 3 2 4 2 8 7 + 3 2 7 2 6 3 8 + 3 7 2 2. Wykonaj obliczenia sposobem pisemnym:
Bardziej szczegółowoSPRAWDZIAN NR 1 GRUPA IMIĘ I NAZWISKO: KLASA: Wszelkie prawa zastrzeżone 1 ANNA KLAUZA
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzupełnij zdania. Wpisz w każdą lukę odpowiednią liczbę. a) Dziedziną funkcji jest zbiór x takich, że x. b) Zbiorem wartości funkcji są wszystkie
Bardziej szczegółowoFizyka 59. J. polski 30. Historia. Chemia 57. Matematyka 47. G.wychowawcza 48. Matematyka. Chemia Biologia Wos Fizyka
Inf1 inf gr1 gr 2 j.ang gr 1 gr 1 j.ang gr 2 wf wf Poniedziałek ang. gr1 ang. gr2 Ogólny plan lekcji dla klas Gimnazjum nr 17 w Łodzi, ul. Traktorowa 35 Wtorek ang gr1 ang gr2 inf gr 2 ang. gr1 ang. gr2
Bardziej szczegółowoSZKOLNA LIGA ZADANIOWA
KLASA 4 - ZESTAW ZADANIE Zmieszano dwa rodzaje cukierków czekoladowych: kg po 6zł i kg po 7zł. Jaka powinna być cena mieszanki? Za książkę i zeszyty zapłacono zł, a za taką samą książkę i 5 takich zeszytów
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2014/15
Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z
Bardziej szczegółowoZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM.
ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. Publikacja zawiera przykłady krótkich sprawdzianów wiadomości z zakresu zbiorów liczbowych oraz praw i działań w tych zbiorach
Bardziej szczegółowoBAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
Bardziej szczegółowoI) Reszta z dzielenia
Michał Kremzer tekst zawiera 9 stron na moim komputerze Tajemnice liczb I) Reszta z dzielenia 1) Liczby naturalne dodatnie a, b, c dają tę samą resztę przy dzieleniu przez 3. Czy liczba A) a + b + c B)
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8 Scenariusze na temat objętości Pominięcie definicji poglądowej objętości kolosalny błąd (w podsumowaniu
Bardziej szczegółowoOdcinki, proste, kąty, okręgi i skala
Odcinki, proste, kąty, okręgi i skala str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Na którym rysunku przedstawiono odcinek? 2. Połącz figurę z jej nazwą. odcinek łamana prosta półprosta
Bardziej szczegółowoWIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery
Bardziej szczegółowoKURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA Wyrażenia algebraiczne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Wyrażenie 3 a 8 a +
Bardziej szczegółowoJednostki długości i jednostki masy
26 Jednostki długości i jednostki masy 1. Wpisz odpowiednie liczby: 2. W zdaniach zamieszczonych poniżej różne odległości i długości obiektów wyróżniono i oznaczono kolejnymi literami alfabetu. Te same
Bardziej szczegółowoMATEMATYKA. Pierwszy próbny sprawdzian w szóstej klasie szkoły podstawowej. Karty pracy
MATEMATYKA Pierwszy próbny sprawdzian w szóstej klasie szkoły podstawowej Karty pracy Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 Test Zadania wyrównujące Numer zadania Karty
Bardziej szczegółowoTreści nauczania wymagania szczegółowe
Treści nauczania wymagania szczegółowe 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); 2) dodaje, odejmuje, mnoży i dzieli
Bardziej szczegółowoLista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz.
Lista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz. Na początek wypiszmy elementy obu zbiorów: A jest zbiorem wszystkich liczb całkowitych, które podniesione
Bardziej szczegółowoWojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 20/205 KOD UCZNIA Etap: Data: Czas pracy: szkolny 7 listopada 20 r. 90 minut Informacje
Bardziej szczegółowoZestaw 1 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb)!!!
Zestaw 1 Zadeklarować niezawężony typ tablicowy T przechowujący wartości całkowite dodatnie. Napisać: Funkcję IlePodzielnych zwracającą wartość całkowitą będącą liczbą elementów tablicy typu T podanej
Bardziej szczegółowoTygodniówka 1-potęgowanie
Tygodniówka 1-potęgowanie ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzupełnij zapisy w notacji wykładniczej podanych liczb. 60 000 000 = 6 10 000 000 = 6 10 24 800 000 = 2,48 10 000 000 = 2,48 10
Bardziej szczegółowoBloki Wyborcze - Telewizja Wrocław
Bloki Wyborcze - Telewizja Wrocław Data Dzień Godziny Rodzaj bloku 0-09-4 Sobota 8.45-8.5 Wybory do Senatu RP Razem: 7 min. 4 sekund 0-09-4 Sobota 7.5-7.40 Wybory do Senatu RP 0-09-4 Sobota 9.5-9.0 Wybory
Bardziej szczegółowoKlasówka gr. A str. 1/3
Klasówka gr. A str. 1/3 1. Boki trójkąta ABC mają długości 9 cm, 7cm, 8 cm. Boki trójkąta podobnego A B C w skali 1 2 mają długości: A. 18 cm, 14 cm, 16 cm B. 4 1 2 cm, 3 1 2 cm, 4 cm C. 4 1 2 cm, 7 cm,
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.
Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych
Bardziej szczegółowoTydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie...
Spis treści Liczby naturalne i działania Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Geometria Tydzień IV
Bardziej szczegółowoLICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV
LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)
Bardziej szczegółowo1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
Bardziej szczegółowoXV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
Bardziej szczegółowoPODYPLOMOWE STUDIUM DLA NAUCZYCIELI W ZAKRESIE ICT, JĘZYKÓW OBCYCH ORAZ DRUGIEGO PRZEDMIOTU - kierunek MATEMATYKA. Plan zajęć
PODYPLOMOWE STUDIUM DLA NAUCZYCIELI W ZAKRESIE ICT, JĘZYKÓW OBCYCH ORAZ DRUGIEGO PRZEDMIOTU - kierunek MATEMATYKA Plan zajęć Wszystkie zajęcia odbywają się na Wydziale Matematyki i Informatyki UŁ ul. Banacha
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8 Scenariusze na temat objętości Niestety scenariusze są słabe, średnia: 1,21 p./3p. Wiele osób zapomniało,
Bardziej szczegółowoPONIEDZIAŁEK WTOREK ŚRODA CZWARTEK 1.X. PIĄTEK 2.X. 9-10 9-10 15-16 15-16 16-17 16-17 17-18 17-18 19-20 19-20
PONIEDZIAŁEK WTOREK ŚRODA CZWARTEK 1.X. PIĄTEK 2.X. SPOTKANIE Z OPIEKUNEM ROKU 10.00-11.00 5 RATOWNICTWA 5 11.15-13.30 13.45-15.15 5 9.00-11.00 11.15-13.45 PONIEDZIAŁEK 5. X. WTOREK 6.X. ŚRODA 7.X. CZWARTEK
Bardziej szczegółowoPŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2012
PŁOCKA MIĘDZYSZKOLNA LIGA PZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 202 KATA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 SUMA PUNKTÓW Poprawna
Bardziej szczegółowoPrzykładowe zadania - I półrocze, klasa 5, poziom podstawowy
MARIUSZ WRÓBLEWSKI Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy. W każdej z zapisanych poniżej liczb podkreśl cyfrę jedności. 5 908 5 987 7 900 09 5. Oblicz, ile razy kąt prosty jest mniejszy
Bardziej szczegółowowrzesień październik listopad s s s
KLASA 2 część Imię... Nazwisko... Klasa 2... wrzesień październik listopad s. 2 21 s. 22 43 s. 44 64 1. Połącz w trójki, zgodnie ze wzorem: bursztyny, muszelki i kamyki. Niebieską pętlą otocz nazwę wakacyjnych
Bardziej szczegółowoZestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.
ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów
Bardziej szczegółowoZadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Bardziej szczegółowoKONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Bardziej szczegółowoWYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 206/207 MATEMATYKA Informacje dla ucznia. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod ustalony
Bardziej szczegółowoSkrypt 3. Potęgi. Opracowanie: GIM3. 1. Potęga o wykładniku naturalnym (cz.1) 2. Potęga o wykładniku naturalnym (cz.2)
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 3 Potęgi 1. Potęga o wykładniku naturalnym
Bardziej szczegółowoe) 4,3 0,2 f) 0,7 0,08 Za zakupione owoce pani Ania zapłaciła 5,10 zł. prawda fałsz
Zestaw zadań str. 1/...... imię i nazwisko lp. w dzienniku...... klasa data 1. Największą liczbą jest wynik działania: A. 2,4 +,2 B. 9,7 4,2 C. 400 : 1000 D. 1,9 2. Oblicz w pamięci: a) 218 + 82 c) 07
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13
35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),
Bardziej szczegółowoLOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:
LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.
Bardziej szczegółowoZAPRASZAMY DO VI ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 24 MAJA 2013 R. ŻYCZYMY POWODZENIA!!
ZAPRASZAMY DO VI ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 24 MAJA 2013 R. ŻYCZYMY POWODZENIA!! LIGA ZADANIOWA KLASA IV Uzupełnij tabelę: Bok kwadratu Pole kwadratu
Bardziej szczegółowoZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile
Bardziej szczegółowoKlasa 5. Ułamki dziesiętne
Klasa 5. Ułamki dziesiętne gr. A str. 1/2... imię i nazwisko...... klasa data 1. Wstaw znak . a) 1 2....... 0,4 b) 1 5....... 0,2 c) 3 4....... 0,6 d) 3 2....... 1,5 2. W miejsce kropek wpisz
Bardziej szczegółowoMatematyka test dla uczniów klas drugich
Matematyka test dla uczniów klas drugich gimnazjów w roku szkolnym 2011/20 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko kl... Zadanie 1. Liczba 5 1, 75 jest równa liczbie 6 7 1 A. 2
Bardziej szczegółowoMIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 2014
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 SUMA PUNKTÓW Max
Bardziej szczegółowoPzetestuj działanie pętli while i do...while na poniższym przykładzie:
Pzetestuj działanie pętli while i do...while na poniższym przykładzie: Zadania pętla while i do...while: 1. Napisz program, który wczytuje od użytkownika liczbę całkowitą, dopóki podana liczba jest mniejsza
Bardziej szczegółowo1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Bardziej szczegółowoCentralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
Bardziej szczegółowoLISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24 x=6 ODP: Podstawą (bazą), w której spełniona jest ta zależność
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2015/16
Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 21 KWIETNIA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Która równość jest fałszywa? Wybierz odpowiedź spośród
Bardziej szczegółowoSzkoła Podstawowa w... Nauczyciel... ZADANIA KONKURSOWE DLA UCZNIÓW KLASY I POWODZENIA!!! Czas trwania konkursu: 45 minut A) B) C)
Imię i nazwisko.... / 2 Klasa... Szkoła Podstawowa w... Nauczyciel... ZADANIA KONKURSOWE DLA UCZNIÓW KLASY I POWODZENIA!!! Czas trwania konkursu: 45 minut 1. Monika narysowała szlaczek Który znak jest
Bardziej szczegółowoKONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ MATEMATYKA
WPISUJE UCZEŃ KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw zadań zawiera 10 stron (zadania 1 23). Ewentualny brak
Bardziej szczegółowo1_5V1x-okl_2013_cover 6 maja :51:06
1_5V1x-okl_2013_cover 6 maja 2013 12:51:06 WŁASNOŚCI LICZB NATURALNYCH 29 1 3 2 4 Wielokrotności 1. Podkreśl kolejne wielokrotności liczby zapisanej w kółku. 2. Spośród liczb od 0 do 250 wypisz wszystkie
Bardziej szczegółowo