Obliczanie indukcyjności cewek

Podobne dokumenty
Pole magnetyczne magnesu w kształcie kuli

Efekt naskórkowy (skin effect)

cz. 2. dr inż. Zbigniew Szklarski

Równania dla potencjałów zależnych od czasu

Zastosowanie zespolonego wektora Poyntinga do wyznaczania impedancji

Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych

Promieniowanie dipolowe

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Pole elektromagnetyczne

Wykład 14: Indukcja cz.2.

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zwój nad przewodzącą płytą

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

Całka podwójna po prostokącie

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

Rozdział 4. Pole magnetyczne przewodników z prądem

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Moment pędu fali elektromagnetycznej

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wyprowadzenie prawa Gaussa z prawa Coulomba

FIZYKA 2. Janusz Andrzejewski

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

Prądy wirowe (ang. eddy currents)

Zagadnienia brzegowe dla równań eliptycznych

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Elektrostatyka, cz. 1

Podstawy fizyki sezon 2 6. Indukcja magnetyczna

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Rachunek całkowy - całka oznaczona

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Podstawy fizyki sezon 2 5. Pole magnetyczne II

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Wielomiany Legendre a

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

opracował Maciej Grzesiak Całki krzywoliniowe

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA

Teoria Pola Elektromagnetycznego

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

Równanie przewodnictwa cieplnego (I)

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Mechanika. Wykład 2. Paweł Staszel

Magnetyzm cz.ii. Indukcja elektromagnetyczna Równania Maxwella Obwody RL,RC

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Lista 6. Kamil Matuszewski 13 kwietnia D n =

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Analiza matematyczna 2 zadania z odpowiedziami

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Zagadnienie dwóch ciał

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

Lista zadań nr 2 z Matematyki II

POLE MAGNETYCZNE W PRÓŻNI

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

ANALIZA MATEMATYCZNA

Teoria pola elektromagnetycznego

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Funkcje dwóch zmiennych podstawowe pojęcia

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

MAGNETYZM. PRĄD PRZEMIENNY

Rachunek całkowy funkcji wielu zmiennych

i = [ 0] j = [ 1] k = [ 0]

Potencjał pola elektrycznego

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Badanie rozkładu pola magnetycznego przewodników z prądem

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

ANALIZA MATEMATYCZNA 2.2B (2017/18)

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

Transkrypt:

napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I 2, wynosi W = 1 2 L 1 I 2 2 + 1 2 L 2 I 2 2 + M 12 I 1 I 2 (1) gdzie L 1 i L 2 są wpółczynnikami samoindukcji cewek, a M 12 jest współczynnikiem ich indukcyjności wzajemnej. Jeśli uzwojenia cewek są nawinięte dostatecznie gęsto, to możemy uznać, że po powierzchni cewek płynie prąd o gęstości powierzchniowej j = ni, gdzie n jest gęstością uzwojenia o wymiarze liczba zwojów na metr. Energię zgromadzoną w polu magnetycznym cewki najłatwiej liczyć stosując wzór całkowy dla potencjału wektorowego W = 1 j 2 A ds (2) S gdzie S jest powierzchnią cewki, j gęstością powierzchniową prądu płynącego w uzwojeniu cewki, a A potencjałem wektorowym wytwarzanym przez ten prąd. 1) Energia związana z samoindukcją Potencjał wektorowy cewki obliczamy stosując ogólne rozwiązanie równania Poissona A = µ 0 j w postaci całki: A( r ) = µ 0 j( r ) 4π r r ds (3) S gdzie S jest powierzchnią cewki, wektor r wskazuje na punkt obserwacji, w którym obliczamy potencjał wektorowy, a wektor r wskazuje na źródło pola czyli element prądu j ds. Wstawiając powyższe wyrażenie na potencjał wektorowy do wzoru (2) otrzymujemy wyrażenie na energię pola magnetycznego cewki w postaci podwójnej całki powierzchniowej: W = µ 0 j( r) j( r ) ds ds = 1 8π r r 2 LI2 (4) S S gdzie S i S oznaczają tą samą powierzchnię cewki, a wektory r i r przy całkowaniu obiegają niezależnie powierzchnię cewki. 1

2) Energia związana z indukcją wzajemną Energię związaną z indukcją wzajemną obliczamy całkując potencjał wektorowy A 1 wytwarzany przez cewkę nr 1 po powierzchni cewki nr 2 i na odwrót: W 12 = 1 A1 j 2 ds 2 + 1 A2 j 1 ds 1 (5) 2 2 S 2 S 1 Potencjał wektorowy wytwarzany przez cewkę nr 1 na powierzchni cewki nr 2 dany jest wzorem (3): A 1 ( r 2 ) = µ 0 j 1 ( r 1 ) 4π r 2 r 1 ds 1 (6) S 1 gdzie wektor r 2 wskazuje na punkt na powierzchni cewki nr 2 (punkt obserwacji), a wektor r 1 wskazuje na punkt na powierzchni cewki nr 1 (źródło pola). Potencjał wektorowy wytwarzany przez cewkę nr 2 na powierzchni cewki nr 1 dany jest wzorem analogicznym wzorem: A 2 ( r 1 ) = µ 0 j 2 ( r 2 ) 4π r 1 r 2 ds 2 (7) S 2 Powyższe wzory różnią się od siebie tylko zamianą indeksów 1 na 2. Oba składniki we wzorze na energię W 12 są więc sobie równe. Energię związaną z indukcyjnością wzajemną dwóch cewek obliczamy więc za pomocą następującej podwójnej całki powierzchniowej: W 12 = µ 0 j 1 j 2 4π r 1 r 2 ds 1 ds 2 = M 12 I 1 I 2 (8) S 2 Współczynnik samoindukcji solenoidu S 1 Cewkę walcową o promieniu R i nieskończonej długości nazywamy solenoidem. Niech n = N/l, będzie gęstością uzwojenia takiej cewki, gdzie N jest liczbą zwojów na długości l. Całkowa postać prawa Ampera zastosowana do zamkniętego konturu o długości l przecinającego solenoid wynosi: C B = B l = µ 0 I n l (9) Indukcja pola magnetycznego B wewnątrz solenoidu jest stała, skierowana wzdłuż 2

osi solenoindu 1 i ma wartość B = µ 0 I n. Energia pola magnetycznego zgromadzonego w odcinku solenoidu o długości l wynosi W = B2 2µ 0 V = µ 0 2 I2 n 2 πr 2 l = 1 2 LI2 (10) gdzie V jest objętością walca o długości l i promieniu podstawy R. Stąd współczynnik samoindukcji L odcinka solenoidu o długości l wynosi: L = µ 0 n 2 πr 2 l = µ 0 N 2 πr2 (11) l Można go stosować jako przybliżony wzór dla cewki walcowej o liczbie zwojów N, promieniu R i skończonej długości l. Współczynnik samoindukcji cewki walcowej Współczynnik samoindukcji dla cewki w kształcie walca o promieniu R, długości l i liczbie zwojów N obliczamy za pomocą wzoru całkowego (4) W = 1 2 S j A ds = µ 0 8π S S j( r) j( r ) r r ds ds = 1 2 LI2 (12) Przyjmując oś z układu cylindrycznego wzdłuż osi cewki możemy napisać r = [R cos φ, R sin φ, z], r = [R cos φ, R sin φ, z ] (13) gdzie 0 φ, φ 2π oraz 0 z, z l. Prąd w uzwojeniu płynie dookoła walca, kierunek wektora gęstości powierzchniowej prądu cewki j wyrażamy więc przez wersor e φ układu cylindrycznego: j( r) = n I [ sin φ, cos φ, 0], j( r ) = n I [ sin φ, cos φ, 0] (14) gdzie n = N/l jest gęstością uzwojenia. Obliczając iloczyny skalarne w równaniu (12) możemy napisać wyrażenie na energię pola magnetycznego cewki w postaci całki poczwórnej: W = µ 0 8π n2 I 2 l l z=0 z =0 φ=0 φ =0 cos(φ φ ) dz dz dφ dφ 2R 2 [1 cos(φ φ )] + (z z ) 2 (15) 1 Stosując prawo Ampera i prawo Gaussa w układzie cylindrycznym i powołując się na symetrię cylindryczną takiego solenoidu można pokazać, że jedyną nieznikającą składową indukcji jest składowa B z wzdłuż osi solenoidu. 3

Wprowadzając bezwymiarowe zmienne całkowania ξ = z/l, ξ = z/l oraz bezwymiarowy współczynnik η = R/l, możemy wyrażenie na indukcyjność cewki L zapisać jako L = 2W I 2 = L S 4π 2 ξ=0 ξ =0 φ=0 φ =0 cos(φ φ ) dξ dξ dφ dφ 2η 2 [1 cos(φ φ )] + (ξ ξ ) 2 (16) gdzie L S jest wartością indukcyjności (11) odcinka solenoidu o tych samych parametrach co rozpatrywana cewka walcowa. Przystąpimy teraz do obliczania bezwymiarowej całki poczwórnej w powyższym wzorze. Wprowadzając zmienną całkowania: u = φ φ, du = dφ, podwójną całke po kątach z wyrażenia zależnego od cos(φ φ ) można zapisać jako φ+2π φ=0 u= φ f(cos u) dφ du = 4π u=0 Stąd równanie (16) redukuje się do całki potrójnej f(cos u) du (17) L = L s π π u=0 ξ=0 ξ =0 cos u du dξ dξ 2η 2 (1 cos u) + (ξ ξ ) 2 (18) Do całki podwójnej po zmiennych ξ i ξ można zastosować podstawienie: v = ξ ξ, dv = dξ. Całkę podwójną z wyrażenia zależnego od v 2 można zapisać jako ξ+1 ξ=0 v= ξ f(v 2 ) dv dξ = 2 1 v v=0 ξ=0 f(v 2 ) dv dξ = 2 v=0 (1 v)f(v 2 ) dv (19) gdzie zamieniliśmy kolejność całkowania po zmiennych ξ i v dla obszaru przedstawionego na rysunku. 4

Wzór (18) redukuje się więc do całki podwójnej L = 2L s π v=0 u=0 Oznaczając u = 2ϕ oraz ζ = 2R/l możemy napisać L = 4L s π v=0 ϕ=0 (1 v) cos u du dv 2η 2 (1 cos u) + v 2 (20) (1 v) cos 2ϕ du dϕ ζ 2 sin 2 ϕ + v 2 (21) Całkę po v możemy wykonać korzystając z następującej elementarnej całki 0 1 v a2 + v 2 dv = a a 2 + 1 + ln(1 + a 2 + 1) ln a (22) gdzie a = ζ sin ϕ. Wzór (21) przyjmuje postać: L = 4L S π ϕ=0 + ln(1 + cos 2ϕ dϕ ( ζ sin ϕ ζ 2 sin 2 ϕ + 1+ ) ζ 2 sin 2 ϕ + 1) ln ζ ln sin ϕ (23) Indukcyjność L można więc zapisać jako sumę czterech całek pojedynczych gdzie L = 4L S π (I 1 I 2 + I 3 I 4 ) (24) I 1 = ϕ=0 ζ sin ϕ cos 2ϕ dϕ = ζ 3 (25) I 3 = I 2 = ϕ=0 ϕ=0 cos 2ϕ ζ 2 sin 2 ϕ + 1 dϕ = 2 ζ (K E) 3ζk 3k E (26) cos 2ϕ ln(1 + ζ 2 sin 2 ϕ + 1) dϕ = π 4 + 1 (K E) (27) ζk I 4 = ϕ=0 cos 2ϕ (ln ζ + ln sin ϕ) dϕ = π 4 (28) 5

gdzie K(k) = jest zupełną całką eliptyczną pierwszego rodzaju, E(k) = 0 /2 0 1 dθ (29) 1 k2 sin 2 θ 1 k 2 sin 2 θ dθ (30) jest zupełną całką eliptyczną drugiego rodzaju, natomiast liczba k 2 = ζ2 1 + ζ 2 (31) jest modułem całki eliptycznej. Indukcyjność cewki walcowej wynosi więc L = 4L S π Co można ostatecznie zapisać jako gdzie czynnik [ 1 ζ (K E) + 3ζk 3k E ζ ] 3 (32) L = L S f(ζ) (33) f(ζ) = 4 [ 1 3π ζk (K E) + ζ ] k E ζ jest bezwymiarową poprawką zależną od stosunku ζ = d/l średnicy cewki do jej długości. Poprawka ta opisuje efekty brzegowe wynikające z obcięcia nieskończonego solenoidu do długości l. Dla dostatecznie długiej i cienkiej cewki, dla której ζ 1, poprawkę można obliczać za pomocą rozwinięcia równania (34) w szereg względem ζ: f(ζ) 1 4ζ 3π + ζ2 8 + O(ζ4 ) (35) Wartość ζ = 0 odpowiada nieskończenie długiej cewce, dla której L = L S. * * * W podręcznikach z elektrotechniki można znaleźć przybliżony wzór Wheelera na indukcyjność cewki o liczbie zwojów N, oraz promieniu R i długości l wyrażonych w calach: (34) 6

L W [µh] = R2 N 2 9R + 10l (36) Jeśli R i L wyrazimy w metrach to L W = 39,37 µh R 2 N 2 9R + 10l Obliczony przez nas wzór (33) można zapisać jako (37) L = µ 0 N 2 πr2 f(2r/l) (38) l Przenikalność magnetyczna próżni wynosi 4π 10 7 H/m. Stąd L = 3,948 µh R2 N 2 f(2r/l) (39) l Stosunek wyznaczonej przez nas indukcyjności cewki walcowej do obliczonej ze wzoru Wheelera jest więc z dobrym przybliżeniem równy L L W = 0,1 f(2r/l) (9R/l + 10) = f(ζ) (0,45 ζ + 1) (40) Jak widać z poniższego rysunku oba wzory zgadzają się w szerokim zakresie d/l. Co znaczy, że poprawkę (34) można w dobrym przybliżeniu obliczać jako f(ζ) 1 0, 45 ζ + 1 (41) 7

Indukcyjność płaskiej cewki Zamiast nawijać cewkę na powierzchni walcowej, można przewód zwinąć na powierzchni płakiej w postaci spirali. Taką cewkę daje się na przykład wykonać przez wytrawienie odpowiedniej ścieżki na płytce drukowanej. Można także przeplatać zwykły przewód przez radialnie nacięty wzornik w kształcie koła. Jeśli założymy, że kolejne zwoje cewki są nawinięte dostatecznie blisko siebie, to prąd płynący przez cewkę możemy opisywać gęstością powierzchniową prądu j = ni, gdzie n jest gęstością uzwojenia. Energię zgromadzoną w polu magnetycznym takiej cewki obliczamy stosując wzór całkowy (4). W = µ 0 j( r) j( r ) ds ds (42) 8π r r S S Załóżmy, że uzwojenie cewki zawiera się w płaskim pierścieniu o promieniach a < b. Na płaszczyźnie zawierającej cewkę zastosujmy biegunowy układ współrzędnych. Wektory wodzące r i r obiegające niezależnie powierzchnię cewki mają wówczas postać: r = r[cos φ, sin φ] r = r [cos φ, sin φ ] (43) gdzie a r, r b oraz 0 φ, φ 2π. Kierunek wektora gęstości powierzchniowej prądu jest zgodny z kierunkiem wersora e φ układu biegunowego: j( r) = In [ sin φ, cos φ] j( r ) = In [ sin φ, cos φ ] (44) Obliczając iloczyny skalarne w równaniu (42) otrzymujemy wyrażenie na energię pola magnetycznego w postaci całki poczwórnej: W = LI2 2 = µ 0 8π I2 n 2 b b r=a r =a φ=0 φ =0 cos(φ φ ) rdr r dr dφ dφ r 2 + r 2 2rr cos(φ φ ) (45) 8

Wprowadzając bezwymiarowe zmienne całkowania: ξ = r/b, ξ = r /b, kąt u = φ φ oraz bezwymiarowy parametr η = a/b < 1 możemy napisać wyrażenie na indukcyjność cewki spiralnej w postaci całki potrójnej L = µ 0 n 2 b 3 ξ=η ξ =η θ=0 cos u du ξξ dξ dξ ξ2 + ξ 2 2ξξ cos u gdzie zredukowaliśmy dwie całki po φ i φ do jednej całki po u, korzystając z tożsamości (17). Współczynnik stojący przed całką można wyrazić przez liczbę zwojów cewki N n 2 b 3 = N 2 b 3 (b a) 2 = N 2 b (1 η 2 ) Całkę podwójną względem ξ i ξ po powierzchni kwadratu η ξ 1 i η ξ 1 można rozłożyć na dwie całki dzieląc kwadrat jego przekątną ξ = ξ : Dla ξ < ξ, oznaczając x = ξ /ξ < 1, dξ = ξ dx (46) (47) L = µ 0N 2 b (1 η) 2 (I 1 + I 2 ) (48) I 1 = ξ u=0 ξ=η ξ =η ξξ dξ dξ cos u du ξ2 + ξ 2 2ξξ cos u = u=0 ξ=η x=η/ξ ξ 2 dξ xdx cos u du 1 + x2 2x cos u (49) Dla ξ < ξ, oznaczając x = ξ/ξ < 1, dξ = ξ dx I 2 = ξ u=0 ξ =η ξ=η ξξ dξ dξ cos u du ξ2 + ξ 2 2ξξ cos u = u=0 ξ =η x=η/ξ ξ 2 dξ xdx cos u du 1 + x2 2x cos u (50) Jak widać I 1 = I 2, stąd L = µ 0N 2 b (1 η) 2 2I 1(η) (51) W całce potrójnej I 1 można zamienić kolejność całkowania zmiennych ξ i x, w dziedzinie całkowania przedstawionej na rysunku. 9

i wykonać całkowanie po ξ. I 1 = π u=0 x=η ξ=η/x ξ 2 dξ xdx cos u du 1 + x2 2x cos u = 1 3 π u=0 x=η ( ) x η3 x 2 cos u du dx 1 + x2 2x cos u (52) Całki po x i po u można wykonać w programie Mathematica. Pierwsza z nich prowadzi do dość skomplikowanej całki elementarnej, a druga do zupełnych całek eliptycznych K i E pierwszego i drugiego rodzaju: I 1 (η) = 1 + η [ (1 η) 2 K(k) (1 + η 2 ) E(k) + 2(1 η + η 2 ) ] (53) 3 Moduł k całek eliptycznych jest równy k 2 = 4η (1 + η) = 4ab 2 (a + b) = ab (54) 2 r 2 gdzie r = (a + b)/2 jest średnim promieniem cewki. Dla η 1 obowiązuje rozwinięcie w szereg I 1 (η) 2 3 πη2 2 * * * (55) W literaturze z elektrotechniki można znaleźć następujący przybliżony wzór na indukcyjność cewki spiralnej: L S [µh] = r2 N 2 (56) 8r + 11w gdzie N jest liczbą zwojów cewki, r = (a + b)/2 jest średnim promieniem cewki, a w = (b a)/n jest grubością przewodnika. Wielkości r i w należy wyrazić w calach. Jeśli r i w wyrazimy w metrach to 10

r 2 N 2 L S = 39,37 µh 8r + 11w Wprowadzając parametr η = a/b < 1 i zakładając dużą liczbę zwojów N 1, możemy napisać (57) L S 2,5 µh bn 2 (1 + η) (58) Obliczony przez nas wzór (51) dla cewki spiralnej wynosi: L = 0,5133 µh bn 2 Jak widać z rysunku zgodność obu wzorów jest dość słaba. I 1 (η) (1 η) 2 (59) 11