Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
|
|
- Jolanta Adamczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Indukcyjność Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019
2 Indukcyjność Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Powszechnie stosowanym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej jest transformator. W urządzeniu tym dwie cewki są nawinięte na tym samym rdzeniu (często jedna na drugiej). Jedna z tych cewek jest zasilana prądem przemiennym wytwarzającym w niej zmienne pole magnetyczne, które z kolei wywołuje SEM indukcji w drugiej cewce. Ponieważ obie cewki obejmują te same linie pola B to zmiana strumienia magnetycznego jest w nich jednakowa. Zgodnie z prawem Faradaya U 1 = dϕ N B 1 (1) oraz U 2 = dϕ N B 2 (2) gdzie N 1 jest liczba zwojów w cewce pierwotnej, a N 2 liczbą zwojów w cewce wtórnej. Stosunek napięć w obu cewkach wynosi zatem U 2 N = 2 U 1 N 1 (3) Widać, że regulując ilość zwojów w cewkach możemy zamieniać małe napięcia na duże i odwrotnie. Ta wygodna metoda zmiany napięć jest jednym z powodów, dla którego powszechnie stosujemy prąd przemienny. Ma to duże znaczenie przy przesyłaniu energii. Generatory wytwarzają na ogół prąd o niskim napięciu. Chcąc zminimalizować straty mocy w liniach przesyłowych, zamieniamy to niskie napięcie na wysokie, a przed odbiornikiem transformujemy je z powrotem na niskie.
3 ZADANIE Zadanie 1: Straty mocy Treść zadania: Żeby przekonać się o celowości tego działania, oblicz straty mocy przy przesyłaniu prądu z jednego bloku elektrowni o mocy 20 MW linią przesyłową o oporze 1Ω. Obliczenia wykonaj dla napięcia 100 kv (typowe dla dalekich linii przesyłowych) oraz dla napięcia 15 kv (typowe napięcie lokalnych linii przesyłowych). Porównaj uzyskane wartości. Jaki procent mocy wytworzonej stanowią straty? Wskazówka: Zauważ, że moc elektrowni jest stała P elektr. = UI więc gdy zwiększamy napięcie to maleje natężenie prądu, a straty są właśnie związane z ciepłem jakie wydziela się podczas przepływu prądu przez opornik P = I 2 R. P 1 = P 2 = Rozwiązanie: Dane: P elektr. = 20 MW, R = 1Ω, U 1 = 100 kv, U 2 = 15 kv. Straty energii są związane z ciepłem jakie wydziela się podczas przepływu prądu przez opornik (linię przesyłową) P = I 2 R (4) Ponieważ moc elektrowni P elektr. = UI (5) jest stała, więc łącząc powyższe równania otrzymujemy P 2 P = ( elektr. ) R U Podstawiając dane otrzymujemy P 1 = 40 kw (dla U 1 = 100 kv) co stanowi 0.2% mocy elektrowni oraz P 2 = 1.78 kw (dla U 2 = 15 kv) co stanowi 8.9% mocy elektrowni. Indukcyjność własna W przypadku transformatora zmiany prądu w jednym obwodzie indukują SEM w drugim obwodzie. Ale o zjawisku indukcji możemy mówić również w przypadku pojedynczego obwodu. Wynika to stąd, że prąd płynący w obwodzie wytwarza własny strumień magnetyczny, który przenika przez ten obwód. Wobec tego PRAWO Prawo 1: Indukcja SEM przez zmienne natężenie prądu płynącego w obwodzie Gdy natężenie prądu przepływającego przez obwód zmienia się, to zmienia się też, wytworzony przez ten prąd, strumień pola magnetycznego przenikający obwód, więc zgodnie z prawem indukcji Faradaya indukuje się w obwodzie SEM.
4 Tę siłę elektromotoryczną nazywamy siłą elektromotoryczną samoindukcji, a samo zjawisko zjawiskiem indukcji własnej. Jeżeli obwód (cewka) zawiera N zwojów to ε = N dϕ B (6) Całkowitym strumień Nϕ B zawarty w obwodzie jest proporcjonalny do natężenie prądu płynącego przez obwód Nϕ B = LI (7) Stałą proporcjonalności L L = N ϕ B I (8) nazywamy indukcyjnością (współczynnikiem indukcji własnej lub współczynnikiem samoindukcji). Zróżniczkowanie równania ( 8 ) prowadzi do wyrażenia N dϕ B = L di (9) Łącząc równania ( 6 ) i ( 9 ), otrzymujemy wyrażenie na siłę elektromotoryczną samoindukcji ε = L di (10) DEFINICJA Definicja 1: Jednostka indukcyjności Jednostką indukcyjności L jest henr (H); 1 H = 1 Vs/A.
5 PRZYKŁAD Przykład 1: Indukcyjność cewki Jako przykład obliczmy indukcyjność cewki o długości l, przekroju poprzecznym S i N zwojach, przez którą płynie prąd o natężeniu I. Strumień magnetyczny przez każdy zwój cewki wynosi ϕ = BS. Natomiast pole magnetyczne B wewnątrz cewki wytwarzane przez płynący przez nią prąd, wynosi zgodnie ze wzorem Zastosowanie prawa Ampere'a - cewka-( 5 ) N B = μ 0 ni = μ 0 I l (11) Zatem, strumień pola magnetycznego jest równy ϕ = μ 0 NS l I (12) Indukcyjność L obliczamy, podstawiając to wyrażenie do wzoru ( 8 ) L = μ 0 S N 2 l (13) Zauważmy, że indukcyjność L podobnie jak pojemność C zależy tylko od geometrii układu. Podobnie jak w przypadku pojemności, możemy zwiększyć indukcyjność wprowadzając do cewki rdzeń z materiału o dużej względnej przenikalności magnetycznej μ r. Takim materiałem jest, np. żelazo. ZADANIE Zadanie 2: Obliczanie indukcyjności cewki Treść zadania: Jako przykład oblicz indukcyjność cewki o długości l = 1cm i średnicy d = 1 cm mającej 10 zwojów. Takie cewki są stosowane w obwodach wejściowych radioodbiorników. L = Rozwiązanie: Dane: l = 1 cm, d = 1 cm, N = 10, μ 0 = 4 π 10 7 Tm/A. Indukcyjność cewki obliczamy ze wzoru ( 13 ) N S μ 2 N 2 π( d 2 ) 2 0 μ l 0 l L = = (14) Podstawiając dane, otrzymujemy L = 10 6 H = 1μH. Publikacja udostępniona jest na licencji Creative Commons Uznanie autorstwa - Na tych samych warunkach 3.0 Polska. Pewne prawa zastrzeżone na rzecz autorów i Akademii Górniczo-Hutniczej. Zezwala się na dowolne wykorzystanie treści publikacji pod warunkiem wskazania autorów i Akademii Górniczo-Hutniczej jako autorów oraz podania informacji o licencji tak długo, jak tylko na utwory zależne będzie udzielana taka sama licencja. Pełny tekst licencji dostępny na stronie
6 Data generacji dokumentu: :38:59 Oryginalny dokument dostępny pod adresem: link=8b9cd f23d379eb36d4bc6179 Autor: Zbigniew Kąkol, Kamil Kutorasiński
Prądy wirowe (ang. eddy currents)
Prądy wirowe (ang. eddy currents) Prądy można indukować elektromagnetycznie nie tylko w przewodnikach liniowych, ale również w materiałach przewodzących o dowolnym kształcie i powierzchni, jeżeli tylko
Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)
Wykład 14: Indukcja cz.2.
Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 5 Janusz Andrzejewski Janusz Andrzejewski 2 Janusz Andrzejewski 3 Pole wytworzone przepływem prądu Wektor d indukcji magnetycznej pola wywołanego przepływem prądu wynosi: r r r µ 0 Ids
Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego
Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski
Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala
INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA
INDUKJA EEKTOMAGNETYZNA; PAWO FAADAYA. uch ramki w polu magnetycznym: siła magnetyczna wytwarza SEM. uch magnesu względem ramki : powstanie wirowego pola elektrycznego 3. Prawo Faradaya 4. eguła entza
X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną
Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego
Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można
Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki
INDUKCJA ELEKTROMAGNETYCZNA
Wstęp INDKCJA ELEKTROMAGNETYCZNA Zajęcia wyrównawcze, Częstochowa, 009/00 Ewa Jakubczyk Michalel Faraday (79-867) odkrył w 83roku zjawisko indukcji elektromagnetycznej. Oto pierwsza prądnica -generator
Podstawy fizyki sezon 2 6. Indukcja magnetyczna
Podstawy fizyki sezon 2 6. Indukcja magnetyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Prawo Biota-Savarta. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo Biota-Savarta Autorzy: Zbigniew Kąkol Piotr Morawski 2018 Prawo Biota-Savarta Autorzy: Zbigniew Kąkol, Piotr Morawski Istnieje równanie, zwane prawem Biota-Savarta, które pozwala obliczyć pole B
= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego
POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego Pole magnetyczne magnesu trwałego Pole magnetyczne Ziemi Jeśli przez przewód płynie prąd to wokół przewodu jest pole magnetyczne.
Ferromagnetyki, paramagnetyki, diamagnetyki.
Ferromagnetyki, paramagnetyki, diamagnetyki https://www.youtube.com/watch?v=u36qppveh2c Materiały magnetyczne Do tej pory rozważaliśmy przewody z prądem umieszczone w powietrzu lub w próżni. Jednak w praktycznych
Magnetyzm cz.ii. Indukcja elektromagnetyczna Równania Maxwella Obwody RL,RC
Magnetyzm cz.ii Indukcja elektromagnetyczna Równania Mawella Obwody RL,RC 1 Indukcja elektromagnetyczna Prawo indukcji Faraday a Co się stanie gdy przewodnik elektryczny umieścimy w zmiennym polu magnetycznym?
Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
MAGNETYZM. PRĄD PRZEMIENNY
Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU
OBWODY MAGNETYCZNE SPRZĘśONE
Obwody magnetyczne sprzęŝone... 1/3 OBWODY MAGNETYCZNE SPRZĘśONE Strumień magnetyczny: Φ = d B S (1) S Strumień skojarzony z cewką: Ψ = w Φ () Indukcyjność własna: L Ψ = (3) i Jeśli w przekroju poprzecznym
Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.
Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do
Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI
37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe
Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11
NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II Nr zadania PUNKTOWANE ELEMENTY ODPOWIEDZI.1 Za czynność Podanie nazwy przemiany (AB przemiana izochoryczna) Podanie nazwy przemiany (BC
Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą
Indukcja własna i wzajemna. Prądy wirowe
Indukcja własna i wzajemna. Prądy wirowe Indukcja własna (samoindukcja) Warunkiem wzbudzenia SEM indukcji w obwodzie jest przenikanie przez ten obwód zmiennego strumienia magnetycznego, przy czym sposób
Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu
Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód
WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Fizyka Kod przedmiotu: ISO73, INO73 Ćwiczenie Nr 7 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.
Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz
Wykłady z Fizyki. Elektromagnetyzm
Wykłady z Fizyki 08 Zbigniew Osiak Elektromagnetyzm OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
1. Połącz w pary: 3. Aluminiowy pierścień oddala się od nieruchomego magnesu w stronę wskazaną na rysunku przez strzałkę. Imię i nazwisko... Klasa...
PRĄD PRZEMIENNY Grupa A Imię i nazwisko... Klasa... 1. Połącz w pary: A. Transformator B. Zjawisko indukcji elektromagnetycznej C. Generator w elektrowni D. Dynamo I. wykorzystuje się w wielu urządzeniach,
MGR Prądy zmienne.
MGR 7 7. Prądy zmienne. Powstawanie prądu sinusoidalnego zmiennego. Wielkości charakteryzujące przebiegi sinusoidalne. Analiza obwodów zawierających elementy R, L, C. Prawa Kirchhoffa w obwodach prądu
Dynamika układów elektrycznych. dr hab. inż. Krzysztof Patan
Dynamika układów elektrycznych dr hab. inż. Krzysztof Patan Wprowadzenie Modele elektryczne opisują zjawiska zachodzące podczas przemieszczania się ładunków elektrycznych pomiędzy punktami obwodu o różnych
29 PRĄD PRZEMIENNY. CZĘŚĆ 2
Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =
Podstawy fizyki sezon 2 5. Pole magnetyczne II
Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Indukcja magnetyczna
Rozdział 8. Fale elektromagnetyczne
Rozdział 8. Fale elektromagnetyczne 208 Spis treści Widmo fal elektromagnetycznych Równanie falowe Rozchodzenie się fal elektromagnetycznych Wektor Poyntinga Podsumowanie z indukcji EM i fal EM Zadania
Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona
Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 4 lutego 4 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych
Elementy indukcyjne. Konstrukcja i właściwości
Elementy indukcyjne Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Elementy indukcyjne Induktor
II. Elementy systemów energoelektronicznych
II. Elementy systemów energoelektronicznych II.1. Wstęp. Główne grupy elementów w układach impulsowego przetwarzania mocy: elementy bierne bezstratne (kondensatory, cewki, transformatory) elementy przełącznikowe
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński
Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa
Podstawy fizyki sezon 2 5. Indukcja Faradaya
Podstawy fizyki sezon 2 5. Indukcja Faradaya Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prawo Gaussa dla
Ć W I C Z E N I E N R E-8
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECHNOOG ATERAŁÓW POTECHNKA CZĘSTOCHOWSKA PRACOWNA EEKTRYCZNOŚC AGNETYZU Ć W C Z E N E N R E-8 NDUKCJA WZAJENA Ćwiczenie E-8: ndukcja wzajemna. Zagadnienia do przestudiowania.
Obliczanie długości łuku krzywych. Autorzy: Witold Majdak
Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona
Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 9 marca 5 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych
LABORATORIUM PODSTAWY ELEKTROTECHNIKI
LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk
pobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka
6. Prąd elektryczny zadania z arkusza I 6.7 6.1 6.8 6.9 6.2 6.3 6.10 6.4 6.5 6.11 Na zmieszczonym poniżej wykresie przedstawiono charakterystykę prądowo-napięciową żarówki. 600 500 400 I, ma 300 200 6.6
Iloczyn wektorowy. Autorzy: Michał Góra
Iloczyn wektorowy Autorzy: Michał Góra 019 Iloczyn wektorowy Autor: Michał Góra DEFINICJA Definicja 1: Iloczyn wektorowy Iloczynem wektorowym wektorów v = ( v x, v y, v z ) R 3 oraz w = ( w x, w y, w z
Pracownia fizyczna i elektroniczna. Wykład marca Krzysztof Korona
Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 8 marca 0 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa,. Prawo Ohma ().4 Przykłady prostych
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej
Elektromagnetyzm. pole magnetyczne prądu elektrycznego
Elektromagnetyzm pole magnetyczne prądu elektrycznego Doświadczenie Oersteda (1820) 1.Jeśli przez przewodnik płynie prąd, to wokół tego przewodnika powstaje pole magnetyczne. 2.Obecność oraz kierunek linii
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015
EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,
Obwody sprzężone magnetycznie.
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTT MASZYN I RZĄDZEŃ ENERGETYCZNYCH LABORATORIM ELEKTRYCZNE Obwody sprzężone magnetycznie. (E 5) Opracował: Dr inż. Włodzimierz OGLEWICZ
Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.
Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie
Lekcja 59. Histereza magnetyczna
Lekcja 59. Histereza magnetyczna Histereza - opóźnienie w reakcji na czynnik zewnętrzny. Zjawisko odkrył i nazwał James Alfred Ewing w roku 1890. Najbardziej znane przypadki histerezy występują w materiałach
Badanie transformatora
Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego
Zakres pól magnetycznych: Źródło pola B B maks. [ T ] Pracujący mózg 10-13 Ziemia 4 10-5 Elektromagnes 2 Cewka nadprzewodząca. Cewka impulsowa 70
Wykład 7. Pole magnetyczne Siła magnetyczna W pobliżu przewodników z prądem elektrycznym i magnesów działają siły magnetyczne -magnes trwały, elektromagnes, silnik elektryczny, prądnica, monitor komputerowy...
Ćw. 27. Wyznaczenie elementów L C metoda rezonansu
7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R
Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja
O różnych urządzeniach elektrycznych
O różnych urządzeniach elektrycznych Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Nie tylko prądnica Choć prądnice
Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej
Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej W układach elektronicznych występują: Rezystory Rezystor potocznie nazywany opornikiem jest jednym z najczęściej spotykanych
Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów
Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi
Fizyka 2 Wróbel Wojciech
Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia
Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa
Pochodna funkcji a do wykresu funkcji Autorzy: Tomasz Zabawa 2018 Pochodna funkcji a do wykresu funkcji Autor: Tomasz Zabawa Pojęcie stycznej do wykresu funkcji f w danym punkcie wykresu P( x 0, f( x 0
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2
Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny
prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
13 K A T E D R A F I ZYKI S T O S O W AN E J
3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony
WYKŁAD 2 INDUKOWANIE SIŁY ELEKTROMOTORYCZNEJ
WYKŁAD DUKOWA SŁY KTOMOTOYCZJ.. Źródłowy i odbiornikowy system oznaczeń. ozpatrzmy elementarny obwód elektryczny prądu stałego na przykładzie ładowania akumulatora samochodowego przedstawiony na rys...
Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l
Prawa Maxwella Pierwsze prawo Maxwella Wyobraźmy sobie sytuację przedstawioną na rysunku. Przewodnik kołowy i magnes zbliżają się do siebie z prędkością v. Sytuację tę można opisać z punktu widzenia dwóch
Indukcja elektromagnetyczna
ruge, elgium, May 2005 W-14 (Jaroszewicz) 19 slajdów Indukcja elektromagnetyczna Prawo indukcji Faraday a Indukcja wzajemna i własna Indukowane pole magnetyczna prawo Amper a-maxwella Dywergencja prądu
Ciąg monotoniczny. Autorzy: Katarzyna Korbel
Ciąg monotoniczny Autorzy: Katarzyna Korbel 07 Ciąg monotoniczny Autor: Katarzyna Korbel Ciągi, tak jak funkcje, mogą mieć różne własności, których znajomość może przyczynić się do dalszej analizy ich
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,
Wykład 14. Część IV. Elektryczność i magnetyzm
Część IV. Elektryczność i magnetyzm Wykład 14. 14.1. Eksperyment Oersteda 14.2. Indukcja elektromagnetyczna Prawo Faraday a indukcyjność 14.3. Równania Maxwella 1 Część IV. Elektryczność i magnetyzm. 14.1
Zakład Fizyki, Uniwersytet Rolniczy ĆWICZENIE 36 ZAWADA OBWODÓW RLC. Kraków, 2004/2015/2016
Zakład Fizyki, Uniwersytet Rolniczy Do użytku wewnętrznego ĆWICZENIE 36 ZAWADA OBWODÓW RLC Kraków, 2004/2015/2016 Marek Kasprowicz na podstawie instrukcji Józefa Zapłotnego i Piotra Janasa ZAKRES WYMAGANYCH
Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3
Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.
Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze
LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego
Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.
Zwój nad przewodzącą płytą
Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której
Indukcja elektromagnetyczna Faradaya
Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska
Prąd przemienny - wprowadzenie
Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą
2 K A T E D R A F I ZYKI S T O S O W AN E J
2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność
Indukcja elektromagnetyczna
Rozdział 6 Indukcja elektromagnetyczna 6.1 Zjawisko indukcji elektromagnetycznej W rozdziale tym rozpatrzymy niektóre zagadnienia, związane ze zmiennymi w czasie polami elektrycznymi i magnetycznymi oraz
24 Indukcja elektromagnetyczna
MODŁ V Moduł V ndukcja elektromagnetyczna 4 ndukcja elektromagnetyczna 4. Prawo indukcji Faradaya Zjawisko indukcji elektromagnetycznej polega na powstawaniu siły elektromotorycznej SEM w obwodzie podczas
Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem
Pole magnetyczne Własność przestrzeni polegającą na tym, że na umieszczoną w niej igiełkę magnetyczną działają siły, nazywamy polem magnetycznym. Pole takie wytwarza ruda magnetytu, magnes stały (czyli