Zadania z fizyki. Wydział PPT

Podobne dokumenty
Zadania z fizyki. Wydział Elektroniki

Bryła sztywna Zadanie domowe

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.

Dynamika ruchu obrotowego

PF11- Dynamika bryły sztywnej.

3. Zadanie nr 21 z rozdziału 7. książki HRW

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

Opis ruchu obrotowego

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności.

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Ws-ka: Proszę zastosować zasadę zachowania momentu pędu (ale nie pędu) do zderzenia kulki z prętem.

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Fizyka 1- Mechanika. Wykład 9 1.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!

będzie momentem Twierdzenie Steinera

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

Lista zadań nr 5 Ruch po okręgu (1h)

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie.

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Dynamika ruchu obrotowego 1

DYNAMIKA ZADANIA. Zadanie DYN1

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h)

I. DYNAMIKA PUNKTU MATERIALNEGO

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

Podstawy fizyki wykład 4

Egzamin z fizyki Informatyka Stosowana

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE

A = (A X, A Y, A Z ) A X i + A Y j + A Z k A X e x + A Y e y + A Z e z wektory jednostkowe: i e x j e y k e z.

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)

Ćwiczenie: "Dynamika"

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor

Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

Zasady dynamiki Newtona

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA.

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2

VII.1 Pojęcia podstawowe.

Tarcie poślizgowe

Podstawy fizyki wykład 4

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności

pobrano z serwisu Fizyka Dla Każdego zadania fizyka, wzory fizyka, matura fizyka

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

II. Redukcja układów sił. A. Układy płaskie. II.A.1. Wyznaczyć siłę równoważną (wypadkową) podanemu układowi sił zdefiniowanychw trzy różne sposoby.

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

FIZYKA Kolokwium nr 2 (e-test)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Spis treści. Wstęp Część I STATYKA

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

Ruch obrotowy. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

KONTROLNY ZESTAW ZADAŃ Z DYNAMIKI

Fizyka 11. Janusz Andrzejewski

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.

5 m. 3 m. Zad. 4 Pod jakim kątem α do poziomu należy rzucić ciało, aby wysokość jego wzniesienia równała się 0.5 zasięgu rzutu?

POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE

Fizyka I. Kolokwium

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

Transkrypt:

Zadania z fizyki Wydział PPT 9 Moment pędu; bryła sztywna Uwaga: Zadania oznaczone przez (c) należy w pierwszej kolejności rozwiązać na ćwiczeniach. Zadania (lub ich części) opatrzone gwiazdką są (zdaniem wykładowcy) nieco ambitniejsze, ale również obowiązkowe. Zad. 1. Znajdź iloczyny wektorowe a b, a c, b c i d d dla wektorów z rysunku obok. Zad. 2. Niech u = u x î + u y ĵ + u z ˆk i v = vx î + v y ĵ + v z ˆk Korzystając z liniowości (rozdzielności względem dodawania wektorów) iloczynu wektorowego pokaż, że u v = (u y v z u z v y )î + (u zv x u x v z )ĵ + (u xv y u y v x )ˆk. Zad. 3. Dane są wektory a = 3î + 4ĵ + 5ˆk i b = 1î + 1ˆk. Znajdź iloczyn wektorowy a b Zad. 4(c). Położenie kątowe koła o średnicy 0,36 m zmienia się według wzoru θ = (2,0 s 3 )t 3. (a) Znajdź drogę, jaką przebył punkt na obwodzie koła w przedziale czasu od t 1 = 2,0 s do t 2 = 5,0 s. (b) Znajdź średnią prędkość kątową w tym przedziale czasu i przedstaw ją w s 1 i w obrotach na minutę. (c) Znajdź chwilowe prędkości kątowe w chwilach t 1 i t 2. (d) Znajdź średnie przyspieszenie kątowe w przedziale czasu od t 2 do t 2. (e) Znajdź chwilowe przyspieszenie kątowe w chwilach t 1 i t 2. Zad. 5. Dysk blue-ray zmniejsza obroty od prędkości kątowej 27,5 s 1 ze stałym przyspieszeniem kątowym 10,0 s 2. Niech współrzędna kątowa w t = 0 wynosi 0. (a) Jaka jest prędkość kątowa dysku w t = 0,300 s? (b) Jaka jest wtedy współrzędna kątowa dysku? Zad. 6. Siła F = 30î + 40ĵ N przyłożona jest w punkcie, którego położenie opisane jest wektorem r = 8î + 6ĵ m. Oblicz: (a) moment tej siły względem początku układu; (b) ramię siły; (c) wartość składowej siły prostopadłej do r. 1

Zad. 7. Znaleźć wypadkowy moment siły działający na kwadrat w sytuacji na rysunku względem środka kwadratu. Wartości sił wynoszą F 1 = 18,0 N, F 2 = 26,0 N, F 3 = 14,0 N. Siły działają w płaszczyźnie rysunku. Źródło grafiki: Young, Freedman, University Physics. Zad. 8(c). W pewnych warunkach gwiazda może zapaść się do gwiazdy neutronowej niezwykle gęstego obiektu złożonego głównie z neutronów. Gęstość gwiazdy neutronowej jest około 10 14 razy większa niż gęstość zwykłych ciał stałych. Przypuśćmy, że gwiazdy (zarówno przed, jak i po transformacji) można reprezentować jako sztywne, jednorodne sfery. Początkowo gwiazda miała promień 7,0 10 5 km (zbliżony do promienia Słońca), a promień powstałej gwiazdy neutronowej wynosi 16 km. Jeśli początkowo gwiazda wykonywała jeden obrót w czasie 30 dni, to jaka będzie prędkość kątowa powstałej gwiazdy neutronowej? Zad. 9. W eksperymencie z obrotowym stołkiem i hantlami (wykład) przyjmijmy, że każda z hantli ma masę 5,0 kg, momenty bezwładności profesora (bez hantli) z rozłożonymi i ze złożonymi ramionami wynoszą, odpowiednio, 3,0 kg m 2 i 2,2 kg m 2, a hantle znajdują się początkowo 1,0 m od osi obrotu, a potem 0,20 m od osi. (a) Jaka jest prędkość kątowa profesora ze złożonymi ramionami, jeśli początkowo wykonywał on jeden obrót na sekundę? (b) Jaką pracę wykonał profesor przemieszczając hantle? Zad. 10*. Mała kulka toczy się bez tarcia po wewnętrznej powierzchni stożka obróconego wierzchołkiem w dół. W chwili początkowej kulka znajduje się na wysokości h 0 nad wierzchołkiem i ma prędkość v 0 skierowaną poziomo. Znajdź wartość v 0, jeśli wiadomo, że kulka wzniosła się na maksymalną wyskość h, po czym zaczęła opadać. Znaleźć wartość prędkości w najwyższym punkcie. Zad. 11(c). Znaleźć moment bezwładności hantli względem osi przechodzącej przez jej geometryczny środek i prostopadłej do osi hantli. Przyjąć, że hantla złożona jest z uchwytu w kształcie pręta o masie m i długości l, który można uznać za bardzo cienki, oraz z dwóch kul masie M i promieniu R. Moment bezwładności kuli o masie M i promieniu R względem osi przechodzącej przez jej środek wynosi I = (2/5)MR 2. Zad. 12. Znajdź moment bezwładności układu złożonego z czterech punktów materialnych umieszczonych w wierzchołkach kwadratu o boku a względem (a) osi prostopadłej do płaszczyzny kwadratu i przechodzącej przez jego środek; (b) osi prostopadłej do płaszczyzny kwadratu i przechodzącej przez jeden z jego wierzchołków; (c) osi zawierającej jeden z boków kwadratu. Zad. 13(c). Znajdź moment bezwładności pręta o długości l i masie m względem osi do niego prostopadłej i przechodzącej przez jego środek korzystając jedynie z twierdzenia Steinera o osiach równoległych oraz z faktu, że moment bezwładności musi mieć postać I = βml 2, gdzie β jest współczynnikiem liczbowym (dlaczego?). Wskazówka: Moment bezwładności pręta względem osi przechodzącej przez środek równy jest łącznemu momentowi bezwładności dwóch połówek pręta względem osi przechodzącej przez ich końce. 2

Zad. 14*. Znajdź moment bezwładności dysku o masie m i promieniu r względem średnicy dysku. Wskazówka: Podziel dysk na pręty sparametryzowane kątem θ jak na rysunku. Pokaż, że moment bezwładności takiego pręta wynosi di = 2 3π mr2 sin 4 θdθ. Wysumuj (scałkuj) momenty bezwładności poszczególnych prętów, korzystając z faktu, że π sin 4 θdθ = 3π 8. 0 Zad. 15(c). Masa m 2 wisi na sznurku owiniętym wokół pełnego walca o promieniu r i o masie m 1. Walec jest zawieszony w ten sposób, że może się obracać bez tarcia wokół swojej osi (patrz rysunek). Sznurek nie ślizga się po walcu. Jakie jest przyspieszenie masy m 2? Zad. 16. Opisać ruch (znaleźć przyspieszenie) ciężarków o masach m 1 i m 2 zawieszonych na bloczku o momencie bezwładności I i promieniu R (rysunek). Przyjąć m 1 > m 2. Nić nie ślizga się po bloczku, a bloczek obraca się bez tarcia. Znaleźć prędkość ciężarków i prędkość kątową bloczka po przemieszczeniu ciężarków o l (układ początkowo jest w spoczynku): (a) z równań ruchu; (b) z zasady zachowania energii. Zad. 17(c). Opisać ruch kuli po równi pochyłej (rysunek; µ współczynnik tarcia). Rozważyć przypadek słabego tarcia (ruch z poślizgiem) i silnego tarcia (ruch bez poślizgu). W drugim przypadku preprowadzić analizę dwukrotnie: jako obrót wokół osi ruchomej przechodzącej przez środek masy i jako obrót wokół osi chwilowej. Sporządzić bilans energii w tym ruchu i sprawdzić, że w przypadku braku poślizgu energia mechaniczna jest zachowana (tarcie nie wykonuje żadnej pracy). Jaką pracę wykonuje siła tarcia w przypadku ruchu z poślizgiem? Zad. 18(c). Kula toczy się bez poślizgu pod górę po równi pochyłej nachylonej pod kątem β do poziomu. (a) Rozrysuj siły działające na kulę. Wyjaśnij, dlaczego siła tarcia musi być skierowana w górę równi. (b) Jakie jest przyspieszenie środka masy kuli? (c) Jaki musi być współczynnik tarcia statycznego, by zapobiec poślizgowi? Zad. 19. Jednorodny walec o masie m i promieniu r, rozkręcono w powietrzu do prędkości kątowej ω 0, a następnie postawiono na poziomym podłożu o współczynniku tarcia kinetycznego µ. Moment bezwładności walca względem jego osi wynosi I = (1/2)mr 2. Tarcie toczne pomijamy. (a) Jak 3

długo walec będzie się ślizgał po podłożu? (b) Jaką pracę wykona siła tarcia kinetycznego podczas całego ruchu walca? Zad. 20. Na gładkiej poziomej płaszczyźnie leży deska o masie m 1, na której umieszczono jednorodną kulę o masie m 2. Do deski przyłożono poziomą siłę F. Z jakim przyspieszeniem będą się poruszać deska i środek kuli, jeśli nie ma między nimi poślizgu? Zad. 21*. Na płaszczyźnie poziomej leży szpulka nici o masie m i momencie bezwładności I = βmr 2, gdzie β jest stałą, a R zewnętrznym promieniem szpulki (rysunek). Promień warstwy nawiniętych nici wynosi r, a współczynnik tarcia między szpulką a podłożem równy jest µ (przyjmujemy jednakowe tarcie statyczne i kinetyczne). Do odwiniętego końca nici przyłożono siłę F, tworzącą kąt θ z poziomem. Tarcie toczne można pominąć. Znaleźć: (a) Wartość i kierunek przyspieszenia osi szpulki, gdy toczy się ona bez poślizgu; (b) Zakres wartości siły F, przy których nie występuje poślizg; (c) Pracę siły F od początku ruchu do chwili t w przypadku toczenia bez poślizgu. Zad. 22. Jednorodna kulka o promieniu r stacza się bez poślizgu z wierzchołka powierzchni sferycznej o promieniu R. Znaleźć prędkość kątową kulki w chwili, gdy oderwie się ona od powierzchni sferycznej. W chwili początkowej prędkość kulki jest zaniedbywalna. Zad. 23. W pewnym mechanizmie znajduje się koło zębate o momencie bezwładności względem osi I A, obracające się z prędkością kątową ω A. W pewnej chwili zostaje do niego dociśnięta tarcza sprzęgła o momencie bezwładności względem osi I B, obracająca się z prędkością kątową ω B. Po krótkim okresie poślizgu oba elementy obracają się razem. Siła dociskająca tarczę do koła zębatego działa dokładnie wzdłuż osi, a wpływ oporów ruchu w czasie trwania opisywanego procesu można pominąć. Znaleźć: (a) końcową prędkość kątową, z jaką obraca się układ; (b) Zmianę energii kinetycznej układu. Zad. 24. Nieuważny ptak o masie 0,500 kg, lecąc poziomo z prędkością 2,2 m/s, uderza w pionowy słupek, zamocowany u dołu na zawiasie. Słupek jest jednorodny, ma długość 0,750 m i masę 1,50 kg, a ptak uderza w niego 25,0 cm poniżej górnego końca. Po zderzeniu, ogłuszony ptak spada pionowo do podstawy słupka (ale wkrótce dochodzi do siebie i szczęśliwie leci dalej). Znaleźć prędkość kątową słupka (a) tuż po uderzeniu ptaka; (b) w momencie uderzenia o ziemię. Zad. 25*. Środek uderzenia to punkt bryły sztywnej, posiadającej ustaloną oś obrotu, o takiej własności, że prostopadłe uderzenie w ten punkt nie generuje sił reakcji w osi obrotu. Oznacza to, że gdyby ta sama bryła spoczywała swobodnie i została uderzona w środku uderzenia, to punkty leżące na osi obrotu miałyby zerową prędkość. Znajdźmy środek uderzenia kija bejsbolowego 1 : 1 Oczywiście wszędzie poza USA większe znaczenie ma to pojęcie w projektowaniu młotków, siekier i innych tego typu narzędzi: ergonomia wymaga, by uderzenie w główkę młotka lub w środek ostrza siekiery nie powodowało bicia w uchwycie. 4

Kij bejsbolowy ma masę 0,800 kg i moment bezwładności względem środka masy 0,0530 kg m 2. Jego geometria przedstawiona jest na rysunku ( cm środek masy). Znaleźć odległość x od uchwytu kija, odpowiadającą środkowi uderzenia. W tym celu rozważyć prostopadłe uderzenie piłki, które przekazuje kijowi pewien popęd siły J w bardzo krótkim czasie, w którym kij praktycznie się nie obraca. Powiązać ten popęd siły z przekazem momentu pędu. Czy położenie środka uderzenia zależy od wartości popędu J? Źródło grafiki: Young, Freedman, University Physics. Zad. 26(c). (Wahadło fizyczne) Znaleźć okres drgań wahadła w postaci bryły sztywnej o momencie bezwładności względem środka masy I 0, zaczepionej w odległości l od środka masy. Zad. 27*. (Podwieszenie trójniciowe) W układzie na rysunku górny dysk jest nieruchomy, a dolny ma masę m 0 i moment bezwładności I 0. Promienie okręgów, na obwodzie których zaczepione są nici wynoszą a dla górnego dysku i b dla dolnego. Odległość pomiędzy dyskami w stanie spoczynku wynosi l. (a) Znajdź okres drgań ukłądu po lekkim skręceniu dolnego dysku. (b) Na dolnym dysku położono pewną bryłę o znanej masie m. Zmierzony okres drgań układu pod takim obciążeniem wynosi T. Znajdź moment bezwładności tej bryły. Źródło grafiki: Sivukhin, Mechanika. 5