II. Redukcja układów sił. A. Układy płaskie. II.A.1. Wyznaczyć siłę równoważną (wypadkową) podanemu układowi sił zdefiniowanychw trzy różne sposoby.

Wielkość: px
Rozpocząć pokaz od strony:

Download "II. Redukcja układów sił. A. Układy płaskie. II.A.1. Wyznaczyć siłę równoważną (wypadkową) podanemu układowi sił zdefiniowanychw trzy różne sposoby."

Transkrypt

1 II. Redukcja układów sił A. Układy płaskie II.A.1. Wyznaczyć siłę równoważną (wypadkową) podanemu układowi sił zdefiniowanychw trzy różne sposoby. II.A.2. Słup AB podtrzymywany jest w pozycji pionowej przez dwie liny, jak na rysunku. Napięcie liny AC wynosi = 2 kn. Jakie powinno być napięcie liny AD P d, aby siła wypadkowa sił Pc i P d miała kierunek osi słupa. Jakie powinny być napięcia Pc i P d, a by moduł tej wypadkowej wynosił P b = 2 kn. Wektory działające na punkty A, B, C i D wyrazić geometrycznie, analitycznie i algebraicznie. P c II.A.3. Wyznaczyć siłę wypadkowa dwóch sił równoległych F 1 F 2 odległych a ( II.A.4. Wyznaczyć układ równoważny R, Mo równoważny podanemu, płaskiemu danemu układowi sił F 1...F5 i momentu siły sił M. F1 = 200N,F2 = 80N,F3 = 250N,F4 a = 0. 25m,b = 0. 2m = 120N

2 B. Układy przestrzenne II.B.1. Wyznaczyć moment Mo siły F działającej na szczyt pokazanego słupa AB pokazanego na rysunku względem stopy A słupa. II.B.2. Wyznaczyć siłę równoważną (wypadkową) podanemu układowi sił II.B.2. Wyznaczyć moment siły równoważną (wypadkową) podanemu układowi momentów siły

3 III. Uwalnianie więzów III.A.1. W niżej podanych układach uzupełnić szkic ciała swobodnego ( ) o składowe sił reakcji odpowiednie do właściwości usuniętych więzów. Note: gravity forces are not shown; their presence is marked by gravity center C

4 III.A.1. W niżej podanych układach zdefiniować siły reakcji i oznaczyć je na szkicach ciała swobodnego ( )

5 IV. Statyka układów płaskich bez tarcia A. Układy sił zbieżnych IV.A.1. Walec o promieniu R i ciężarze G opiera się o próg jak na rysunku. Wyznaczyć wartość siły P koniecznej do uniesienia walca. IV.A.2. Walec o promieniu R i ciężarze G spoczywa pomiędzy ściana i krawędzią odległą od ściany o d < 2R. Określić siły reakcji ściany i krawędzi. IV.A.3. Kula promieniu R i ciężarze G opiera się o ścianę i zawieszona jest na linie o długości l. Określić siłę reakcji ściany i napięcie liny. B. Statyka belek IV.B.1. Belka o ciężarze 5 kn, zawieszona jak na rysunku, jest obciążona ciężarem Q = 10 kn. Wyznaczyć napięcie liny. IV.B.2. Belka o długości l i ciężarze G jest zawieszona na linie pomiędzy dwoma gładkimi ścianami odległymi od siebie o a por. rysunek. Wyznaczyć napięcie liny oraz reakcje ścian.

6 C. Układy płaskie dowolne IV.C.1. Dla wyciągnięcia gwoździa potrzebna jest siła F. Jaką siłę P należy przyłożyć do pokazanej na rysunku dźwigni, aby wyrwać gwóźdź. IV.C.2. Jaka wartość P jest potrzebna do uzyskania równowagi pokazanego układu. Wyznaczyć reakcje we wszystkich więzach mechanizmu. m = 100 kg., α = 25 o, a = 0.2 m, b = 0.4 m D. Układy przestrzenne IV.D.1. Sztywna rama OABC (por. rysunek) jest utrzymywana na poziomej podstawie w przegubie kulistym O, pierścieniowej prowadnicy (punkt C) i linę BD. Wyznaczyć reakcje we wszystkich więzach układu dla zadanej wartości obciążenia siłą F IV.D.2. Pręt AB o ciężarze 5 kn opiera się przegubowo na podłożu. Punkt B spoczywa w narożniku dwóch pionowych, gładkich ścian. Wyznaczyć reakcje u obydwu krańców pręta.

7 IV.D.3. Wyznaczyć siłę F przyłożoną do punktu D korby unoszącej ciężar G. Reakcję osiową zapewnia łożysko A. V. Statyka układów płaskich z tarciem V.A.1. Dla jakich wartości spoczynkowego współczynnika tarcia ślizgowego i ramienia oporów toczenia walec położony na równi pochyłej będzie się ślizgać, a dla jakich toczyć?. Dane: ciężar walca G, promień walca R oraz kąt nachylenia równi α. V.A.2. Wyznaczyć nachylenie równi z zadania V.A.1, przy którym walec rozpocznie przemieszczać się. Dane: ciężar walca G, promień walca R, współczynnik tarcia ślizgowego oraz ramię oporów toczenia V.A.3. Pokazać, w którą stronę będą się przemieszczać dwa połączone ze sobą bloki. Dane: ciężary G 1, G 2 oraz współczynniki tarcia ślizgowego µ 1, µ 2. Przedyskutować problem, jak wartość współczynnika tarcia µ wpływa na kierunek ruchu? 1 V.A.4. Na jakiej wysokości i z jaką siłą P należy pchać pokazany na rysunku jednorodny, prostopadłościenny blok, aby go przesunąć? Dane: szerokość podstawy 2b, ciężar bloku G oraz współczynnik tarcia spoczynkowego µ.

8 V.A.5. Na jaką wysokość H może wejść malarz, aby drabina nie ześliznęła się? Dane: długość drabiny oraz współczynnik tarcia u podłoża. V.A.6. Obliczyć średnicę d walca, aby ciągnięty siłą P (jaką) toczył się?. Dane: ciężar walca G, oraz współczynnik tarcia spoczynkowego µ, ramię oporów tarcia f. V.A.7. Obliczyć moment siły M potrzebnej do obrócenia walca ułożonego w narożniku utworzonym przez 2 prostopadłe ściany. Dane: kąt α, ciężar walca G oraz współczynnik tarcia spoczynkowego. µ.. V.A.8. Jaka wartość współczynnika tarcia spoczynkowego µ l = µ u = µ jest konieczna dla utrzymania piramidy pokazanej na rysunku. Dane: promień R oraz ciężar G walców. V.A.9. Do jakiego kąta α można odchylić słup, aby nie utracił przyczepności u podłoża? Jaka siła F jest potrzebna do utrzymania słupa w tym granicznym położeniu?.

9 V.A.10. Jakiej siły potrzeba do przetoczenia płyty pokazanej na rysunku? Dane: ciężar płyty G, promień rolek R, współczynniki tarcia spoczynkowego µ 1 oraz ramiona oporów toczenia f. V.A.11. Lity półwalec o ciężarze G i promieniu R jet ciągnięty w górę siłą F, jak na rysunku, do położenia, w którym może zostać zerwane tarcie u podłoża. Wyznaczyć to graniczne położenie poprzez wartość kąta α m. Podczas podnoszenia półwalca siła F pozostaje prostopadła do jego górnej, płaskiej.

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Uwaga: Linie wpływu w trzech prętach.

Uwaga: Linie wpływu w trzech prętach. Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ 3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie

Bardziej szczegółowo

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h)

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Środek ciężkości Zaad.6.1 Wyznacz środek masy układu pięciu mas o odpowiednich współrzędnych: m 1 (2,2), m 2 (2,5), m 3 (-4,2), m 4 (-3,-2),

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,

Bardziej szczegółowo

Bryła sztywna Zadanie domowe

Bryła sztywna Zadanie domowe Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła

Bardziej szczegółowo

DYNAMIKA ZADANIA. Zadanie DYN1

DYNAMIKA ZADANIA. Zadanie DYN1 DYNAMIKA ZADANIA Zadanie DYN1 Na ciało działa siła (przy czym i to stałe). W chwili początkowej ciało miało prędkość i znajdowało się w punkcie. Wyznacz położenie i prędkość ciała w funkcji czasu., Zadanie

Bardziej szczegółowo

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Mechanika ogólna statyka

Mechanika ogólna statyka Mechanika ogóna statyka kierunek Budownictwo, sem. II materiały pomocnicze do ćwiczeń opracowanie: dr inż. iotr Dębski, dr inż. Irena Wagner TREŚĆ WYKŁADU ojęcia podstawowe, działy mechaniki. ojęcie punktu

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem

Bardziej szczegółowo

Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor

Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor (na podstawie J.Giergiel, L.Głuch, A.Łopata: Zbiór zadań z mechaniki.wydawnictwo AGH, Kraków 2011r.) Temat

Bardziej szczegółowo

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3 ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;

Bardziej szczegółowo

Politechnika Poznańska Wydział Inżynierii Zarządzania. Wprowadzenie do techniki tarcie ćwiczenia

Politechnika Poznańska Wydział Inżynierii Zarządzania. Wprowadzenie do techniki tarcie ćwiczenia Politechnika Poznańska Wydział Inżynierii Zarządzania Wprowadzenie do techniki tarcie ćwiczenia Model Charlesa Coulomb a (1785) Charles Coulomb (1736 1806) pierwszy pełny matematyczny opis, (tzw. elastyczne

Bardziej szczegółowo

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ ZAGADNIENIA DO ĆWICZEŃ 1. Warunki równowagi ciał. 2. Praktyczne wykorzystanie warunków równowagi w tzw. maszynach prostych.

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Egzamin z fizyki Informatyka Stosowana

Egzamin z fizyki Informatyka Stosowana Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0 Zadania z dynamiki Maciej J. Mrowiński 11 marca 2010 Zadanie DYN1 Na ciało działa siła F (t) = f 0 cosωt (przy czym f 0 i ω to stałe). W chwili początkowej ciało miało prędkość v(0) = 0 i znajdowało się

Bardziej szczegółowo

wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu

wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu Schemat statyczny zawiera informacje, takie jak: geometria i połoŝenie tarcz (ciał sztywnych), połączenia tarcz z fundamentem i ze sobą, rodzaj, połoŝenie i wartość obciąŝeń czynnych. wszystkie elementy

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Z-LOG-1005I Mechanika techniczna Mechanics for Engineers

Z-LOG-1005I Mechanika techniczna Mechanics for Engineers KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-1005I Mechanika techniczna Mechanics for Engineers A. USYTUOWANIE

Bardziej szczegółowo

Dynamika ruchu obrotowego

Dynamika ruchu obrotowego Dynamika ruchu obrotowego 1. Mając dane r = îx + ĵy + ˆkz i = î x + ĵ y + ˆk z znaleźć moment siły τ = r. Pokazać, że jeżeli r i leżą w danej płaszczyźnie, to τ nie ma składowych w tej płaszczyźnie. 2.

Bardziej szczegółowo

4.1. Modelowanie matematyczne

4.1. Modelowanie matematyczne 4.1. Modelowanie matematyczne Model matematyczny Model matematyczny opisuje daną konstrukcję budowlaną za pomocą zmiennych. Wartości zmiennych będą należały to zbioru liczb rzeczywistych i będą one reprezentować

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych. Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Mechanika teoretyczna Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania

Bardziej szczegółowo

Projekt ciężkiego muru oporowego

Projekt ciężkiego muru oporowego Projekt ciężkiego muru oporowego Nazwa wydziału: Górnictwa i Geoinżynierii Nazwa katedry: Geomechaniki, Budownictwa i Geotechniki Zaprojektować ciężki pionowy mur oporowy oraz sprawdzić jego stateczność

Bardziej szczegółowo

Mechanika. Wykład Nr 1 Statyka

Mechanika. Wykład Nr 1 Statyka 1 Mechanika Wykład Nr 1 Statyka literatura, pojęcia podstawowe, wielkości fizyczne, działania na wektorach, rodzaje obciążeń, więzy i reakcje, aksjomaty statyki, środkowy układ sił redukcja i warunek równowagi,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga.

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Mechanika i Wytrzymałość Materiałów Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Przedmiot Mechanika (ogólna, techniczna, teoretyczna): Dział fizyki

Bardziej szczegółowo

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek konieczny geometrycznej

Bardziej szczegółowo

MASZYNY PROSTE - WIELOKRĄŻKI

MASZYNY PROSTE - WIELOKRĄŻKI 7.. Cel ćwiczenia Ćwiczenie 7 MASZYNY ROSTE - WIELOKRĄŻKI Celem ćwiczenia jest teoretyczne i doświadczalne wyznaczenie sił w linach wielokrążka znajdującego się w położeniu równowagi i określenie sprawności

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Jaki musi być kąt b, aby siła S potrzebna do wywołania poślizgu była minimalna G S

Jaki musi być kąt b, aby siła S potrzebna do wywołania poślizgu była minimalna G S Jaki musi być kąt b, aby siła potrzebna do wywołania poślizgu była minimalna G N b T PRAWA COULOMBA I MORENA: 1. iła tarcia jest niezależna od wielkości stykających się powierzchni i zależy tylko (jedynie)

Bardziej szczegółowo

Zadania z fizyki. Wydział PPT

Zadania z fizyki. Wydział PPT Zadania z fizyki Wydział PPT 9 Moment pędu; bryła sztywna Uwaga: Zadania oznaczone przez (c) należy w pierwszej kolejności rozwiązać na ćwiczeniach. Zadania (lub ich części) opatrzone gwiazdką są (zdaniem

Bardziej szczegółowo

Analiza wpływu tarcia na reakcje w parach kinematycznych i sprawność i mechanizmów.

Analiza wpływu tarcia na reakcje w parach kinematycznych i sprawność i mechanizmów. Automatyka i Robotyka. Podstawy modelowania i syntezy mechanizmów arcie w parach kinematycznych mechanizmów 1 ARCIE W PARACH KINEMAYCZNYCH MECHANIZMÓW Analiza wpływu tarcia na reakcje w parach kinematycznych

Bardziej szczegółowo

Kolokwium z mechaniki gruntów

Kolokwium z mechaniki gruntów Zestaw 1 Zadanie 1. (6 pkt.) Narysować wykres i obliczyć wypadkowe parcia czynnego wywieranego na idealnie gładką i sztywną ściankę. 30 kpa γ=17,5 kn/m 3 Zadanie 2. (6 pkt.) Obliczyć ile wynosi obciążenie

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Zadanie 1 Zadanie 2 tylko Zadanie 3

Zadanie 1 Zadanie 2 tylko Zadanie 3 Zadanie 1 Obliczyć naprężenia oraz przemieszczenie pionowe pręta o polu przekroju A=8 cm 2. Siła działająca na pręt przenosi obciążenia w postaci siły skupionej o wartości P=200 kn. Długość pręta wynosi

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Budowlane wartości graniczne Markiza pozioma, typ H3 i H4 Wewnętrzna osłona przeciwsłoneczna

Budowlane wartości graniczne Markiza pozioma, typ H3 i H4 Wewnętrzna osłona przeciwsłoneczna Budowlane wartości graniczne Konstrukcyjne wartości graniczne H3 i H4 Rodzaj Marszczenie materiału 1-częściowy 2-częściowy Max wysięg [mm] 10000 14000 Max szerokość markizy [mm] 4000 4000 Min. szerokość

Bardziej szczegółowo

WIERZBICKI JĘDRZEJ. 4 (ns)

WIERZBICKI JĘDRZEJ. 4 (ns) WIERZBICKI JĘDRZEJ 4 (ns) CZĘŚĆ 1a BELKA 1. Zadanie Przeprowadzić analizę kinematyczną oraz wyznaczyć reakcje w więzach belki, danej schematem przedstawionym na rys. 1. Wymiary oraz obciążenia przyjąć

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 21

INSTRUKCJA DO ĆWICZENIA NR 21 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Analiza płaskiego dowolnego układu sił Dr hab. inż. Krzysztof

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Dynamika ruchu obrotowego 1

Dynamika ruchu obrotowego 1 Dynamika ruchu obrotowego 1 1. Obliczyć moment bezwładności jednorodnego pręta o masie M i długości L względem osi prostopadłej do niego i przechodzącej przez: (a) koniec pręta, (b) środek pręta. 2. Obliczyć

Bardziej szczegółowo

Mechanika ogólna I Engineering Mechanics

Mechanika ogólna I Engineering Mechanics Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1 Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Redukcja płaskiego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci

Redukcja płaskiego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci Redukcja płaskiego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci Twierdzenie o redukcji: Każdy układ wektorów równoważny jest układowi złożonemu ze sumy o początku w dowolnym punkcie

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

Analiza fundamentu na mikropalach

Analiza fundamentu na mikropalach Przewodnik Inżyniera Nr 36 Aktualizacja: 09/2017 Analiza fundamentu na mikropalach Program: Plik powiązany: Grupa pali Demo_manual_en_36.gsp Celem niniejszego przewodnika jest przedstawienie wykorzystania

Bardziej szczegółowo

1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH

1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH 1 1.1. Płaskie układy tarcz sztywnych naliza kinematyczna służy nam do określenia czy dany układ spełnia wszystkie warunki aby być konstrukcją budowlaną. Podstawowym pojęciem stosowanym w analizie kinematycznej

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

Errata Zbioru zadań Zrozumieć fizykę cz. 1, pierwszego wydania

Errata Zbioru zadań Zrozumieć fizykę cz. 1, pierwszego wydania 1 Errata Zbioru zadań Zrozumieć fizykę cz. 1, pierwszego wydania (mimo usunięcia zadań w odpowiedziach zachowano numerację z pierwszego wydania) s. 32 10 wiersz od góry x 2 = d x 2 = d + v 2t 1 16 wiersz

Bardziej szczegółowo

Ćwiczenie: "Kinematyka"

Ćwiczenie: Kinematyka Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu

Bardziej szczegółowo

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma

Bardziej szczegółowo

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

FIZYKA Kolokwium nr 2 (e-test)

FIZYKA Kolokwium nr 2 (e-test) FIZYKA Kolokwium nr 2 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Cegłę o masie 2kg położono na chropowatej desce. Następnie jeden z końców

Bardziej szczegółowo

PRZED KONKURSEM CZĘŚĆ 13

PRZED KONKURSEM CZĘŚĆ 13 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 13 Zadanie 1 Przez cewkę przepuszczono prąd elektryczny, podłączając ją do źródła prądu, a nad nią zawieszono magnes sztabkowy na dół biegunem N. Naciąg tej nici A. Zwiększy

Bardziej szczegółowo

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3 Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego: RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 3011940 (96) Data i numer zgłoszenia patentu europejskiego: 08.10.2015 15460094.4 (13) (51) T3 Int.Cl. A61G 5/10 (2006.01)

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II

Bardziej szczegółowo

Z1/1. ANALIZA BELEK ZADANIE 1

Z1/1. ANALIZA BELEK ZADANIE 1 05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej

Bardziej szczegółowo

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

Podstawy mechaniki 2018_2019. Równowaga bryły sztywnej

Podstawy mechaniki 2018_2019. Równowaga bryły sztywnej Podstawy mechaniki 2018_2019 Równowaga bryły sztywnej Równowaga bryły sztywnej Ogólne warunki równowagi Przypadek płaskiego (dwuwymiarowego) układu sił Obiekty w równowadze Podpory i ich modele O czym

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała, Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz

Bardziej szczegółowo

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu układu punktów materialnych Układem punktów materialnych nazwiemy zbiór punktów w sensie

Bardziej szczegółowo

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, 2015 Spis treści Od Wydawcy do drugiego wydania polskiego Przedmowa Podziękowania xi xiii xxi 1. Pomiar 1 1.1.

Bardziej szczegółowo

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności.

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Przygotowane częściowo na podstawie materiałów z roku akademickiego 2007/8. Literatura (wspólna dla wszystkich

Bardziej szczegółowo

PL B1. ANEW INSTITUTE SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Kraków, PL BUP 22/14. ANATOLIY NAUMENKO, Kraków, PL

PL B1. ANEW INSTITUTE SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Kraków, PL BUP 22/14. ANATOLIY NAUMENKO, Kraków, PL PL 222405 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222405 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 403693 (22) Data zgłoszenia: 26.04.2013 (51) Int.Cl.

Bardziej szczegółowo

RZECZPOSPOLITA (12) OPIS PATENTOWY (19) PL (11)

RZECZPOSPOLITA (12) OPIS PATENTOWY (19) PL (11) RZECZPOSPOLITA (12) OPIS PATENTOWY (19) PL (11) 184161 POLSKA (13) B1 (21) Numer zgłoszenia: 322435 (5 1) IntCl7 B60N 2/12 Urząd Patentowy (22) Data zgłoszenia: 03.10.1997 B60N 2/24 Rzeczypospolitej Polskiej

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo