Grupy i cia la, liczby zespolone



Podobne dokumenty
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 1 Podstawowe struktury algebraiczne

Wyk lad 3 Wielomiany i u lamki proste

Rozdział 2. Liczby zespolone

Liczby zespolone. x + 2 = 0.

Algebra abstrakcyjna

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Wyk lad 11 1 Wektory i wartości w lasne

(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 14 Cia la i ich w lasności

Wielomiany podstawowe wiadomości

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Podstawowe struktury algebraiczne

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

Przestrzenie wektorowe, liniowa niezależność Javier de Lucas

Zadania o liczbach zespolonych

Wykłady z matematyki Liczby zespolone

Rozdział 2. Liczby zespolone

Geometria i Algebra Liniowa (dla I-go roku informatyki WMIM UW) Leszek Plaskota Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

Grupy, pierścienie i ciała

1 Elementy logiki i teorii mnogości

Normy wektorów i macierzy

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Cia la i wielomiany Javier de Lucas

Wyk lad 7 Baza i wymiar przestrzeni liniowej


Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Dr Maciej Grzesiak, Instytut Matematyki

(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d),

1. Liczby zespolone i

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

dr inż. Ryszard Rębowski 1 WPROWADZENIE

Wielomiany. dr Tadeusz Werbiński. Teoria

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Podstawowe struktury algebraiczne

Przekształcenia całkowe. Wykład 1

Matematyka liczby zespolone. Wykład 1

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

FUNKCJE LICZBOWE. x 1

PODSTAWOWE W LASNOŚCI W ZBIORZE LICZB RZECZYWISTYCH

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia

Wyk lad 2 Podgrupa grupy

Matematyka dyskretna

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

1. Wykład NWD, NWW i algorytm Euklidesa.

Kolorowa płaszczyzna zespolona

Liczby zespolone Definicja liczb zespolonych Liczbami zespolonymi nazywamy liczby postaci a + bi, gdzie i oznacza jednostke urojona, przyjmujemy,

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Matematyka dyskretna

Wielomiany podstawowe wiadomości

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Dziedziny Euklidesowe

Zajmijmy się najpierw pierwszym równaniem. Zapiszmy je w postaci trygonometrycznej, podstawiając z = r(cos ϕ + i sin ϕ).

Pierwiastki arytmetyczne n a

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Lista nr 1 - Liczby zespolone

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc

DZYSZKOLNE ZAWODY MATEMATYCZNE. Eliminacje rejonowe. Czas trwania zawodów: 150 minut

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

1. Wielomiany Podstawowe definicje i twierdzenia

13. Cia la. Rozszerzenia cia l.

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.

Liczby zespolone. Liczbami zespolonymi nazywamy liczby postaci a + bi, gdzie i oznacza jednostke urojona

Wielomiany. XX LO (wrzesień 2016) Matematyka elementarna Temat #2 1 / 1

Zadania egzaminacyjne

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Wersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1.

Funkcje dwóch zmiennych

Ekonomia matematyczna i dynamiczna optymalizacja

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

WIELOMIANY I FUNKCJE WYMIERNE

c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume

Równania wielomianowe

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Zadania z algebry liniowej - sem. I Struktury algebraiczne

g liczb rzeczywistych (a n ) spe lnia warunek

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

ALGEBRA z GEOMETRIA, ANALITYCZNA,

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

Przykładowe zadania z teorii liczb

Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

020 Liczby rzeczywiste

Przestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych

Przestrzenie wektorowe

Matematyka A kolokwium, 27 maja 2015, godz. 18:15 20:10

Praca domowa - seria 2

System liczbowy binarny.

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady

Transkrypt:

Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n : m Z, n N } - liczby wymierne, R = W - liczby rzeczywiste, C = { (a, b) : a, b R } - liczby zespolone. Dwuargumentowym dzia laniem wewn etrznym w zbiorze X nazywamy dowolna funkcj e z iloczynu kartezjańskiego X X w X. Wynik takiego dzia lania na parze (x, y) b edziemy oznaczać przez x y. 1.1 Podstawowe struktury algebraiczne Zaczniemy od przedstawienia abstrakcyjnych definicji grupy i cia la. 1.1.1 Grupa Definicja 1.1 Zbiór (niepusty) G wraz z wewn etrznym dzia laniem dwuargumentowym jest grupa jeśli spe lnione sa nast epuj ace warunki (aksjomaty grupy): 3

4 ROZDZIA L 1. GRUPY I CIA LA, LICZBY ZESPOLONE (i) a, b, c G (a b) c = a (b c) ( l aczność dzia lania) (ii) e G a G a e = a = e a (istnienie elementu neutralnego) (iii) a G a G a a = e = a a (istnienie elementów przeciwnych/odwrotnych) Jeśli ponadto (iv) a, b G a b = b a to grup e nazywamy przemienna (lub abelowa). Grup e b edziemy oznaczać przez {G, }. Zauważmy, że już z aksjomatów grupy wynika, iż element neutralny jest wyznaczony jednoznacznie. Rzeczywiście, za lóżmy, że istnieja dwa elementy neutralne, e 1 i e 2. Wtedy, z warunku (ii) wynika, że e 1 = e 1 e 2 = e 2. Podobnie, istnieje tylko jeden element odwrotny dla każdego a G. Jeśli bowiem istnia lyby dwa odwrotne, a 1 i a 2, to mielibyśmy a 1 = e a 1 = (a 2 a) a 1 = a 2 (a a 1 ) = a 2 e = a 2, przy czym skorzystaliśmy kolejno z w lasności (ii), (iii), (i) i ponownie (iii) i (ii). Latwo też pokazać, że w grupie {G, } równania a x = b oraz y c = d dla a, b, c, d G maja jednoznaczne rozwiazania. W uzasadnieniu, ograniczymy si e tylko do pierwszego równania. Latwo sprawdzić, że x = a b jest rozwiazaniem. Z drugiej strony, jeśli x jest rozwiazaniem to a (a x) = a b, czyli x = a b. Przyk ladami grup sa: {Z, +}, gdzie elementem neutralnym jest e = 0, a elementem przeciwnym do a do a jest a. {W \ {0}, }, gdzie e = 1 a a = a 1 jest odwrotnościa a.

1.1. PODSTAWOWE STRUKTURY ALGEBRAICZNE 5 Grupa obrotów p laszczyzny wokó l poczatku uk ladu wspó lrz ednych, gdzie elementem neutralnym jest obrót o kat zerowy, a elementem odwrotnym do obrotu o kat α jest obrót o kat α. Zwróćmy uwag e na istotność wyj ecia zera w drugim przyk ladzie. Ponieważ 0 nie ma elementu odwrotnego, {W, } nie jest grupa. Nie sa też grupami np. {N, } (nie ma elementów odwrotnych) oraz {R, } (nie ma l aczności oraz elementu neutralnego). 1.1.2 Cia lo Definicja 1.2 Cia lem (a ściślej, cia lem przemiennym) nazywamy (co najmniej dwuelementowy) zbiór K z dwoma dwuargumentowymi dzia laniami wewn etrznymi, dodawaniem + i mnożeniem, spe lniaj ace nast epuj ace warunki (aksjomaty cia la): (i) {K, +} jest grupa przemienna (w której element neutralny oznaczamy przez 0, a element przeciwny do a przez a), (ii) {K \ {0}, } jest grupa przemienna (w której element neutralny oznaczamy przez 1, a odwrotny do a przez a 1 ), (iii) a, b, c K a (b + c) = a b + a c (mnożenie jest rozdzielne wzgl edem dodawania). 1 Bezpośrednio z definicji cia la można pokazać nast epuj ace ogólne w lasności (uzasadnienie pozostawiamy jako proste ćwiczenie): 1. 0 1, 2. a K 0 a = 0 = a 0, 3. a K ( 1) a = a, 4. jeśli a b = 0 to a = 0 lub b = 0, 5. jeśli a 0 i b 0 to (a b) 1 = b 1 a 1, 1 Przyjmujemy konwencje, że w wyrażeniach w których wyst epuj a i dodawania i mnożenia najpierw wykonujemy mnożenia.

6 ROZDZIA L 1. GRUPY I CIA LA, LICZBY ZESPOLONE dla dowolnych a, b K. W ciele możemy formalnie zdefiniować odejmowanie i dzielenie, mianowicie a b := a + ( b) a, b K, a/b := a b 1 a K, b K \ {0}. Przyk ladem cia la sa liczby rzeczywiste R z naturalnymi dzia laniami dodawania i mnożenia. Cia lem jest też zbiór liczb z tymi samymi dzia laniami. { a + b 2 : a, b W } R 1.2 Cia lo liczb zespolonych Ważnym przyk ladem cia la jest cia lo liczb zespolonych, któremu poświ ecimy ta cz eść wyk ladu. 1.2.1 Definicja Definicja 1.3 Cia lo liczb zespolonych to zbiór par uporzadkowanych C := R R = { (a, b) : a, b R } z dzia laniami dodawania i mnożenia zdefiniowanymi jako: dla dowolnych a, b, c, d R. 2 (a, b) + (c, d) = (a + c, b + d), (a, b) (c, d) = (a c b d, a d + b c), Formalne sprawdzenie, że C ze zdefiniowanymi dzia laniami jest cia lem pozostawiamy czytelnikowi. Tu zauważymy tylko, że elementem neutralnym 2 Zauważmy, że znaki dodawania i mnożenia wystepuj a tu w dwóch znaczeniach, jako dzia lania na liczbach rzeczywistych oraz jako dzia lania na liczbach zespolonych. Z kontekstu zawsze wiadomo w jakim znaczeniu te dzia lania sa użyte.

1.2. CIA LO LICZB ZESPOLONYCH 7 dodawania jest (0, 0), a mnożenia (1, 0). Elementem przeciwnym do (a, b) jest (a, b) = ( a, b), a odwrotnym do (a, b) (0, 0) jest ( ) a (a, b) 1 b = a 2 + b 2,. a 2 + b 2 Zdefiniujemy mnożenie liczby zespolonej przez rzeczywista w nast epuj acy (naturalny) sposób. Niech z = (a, b) C i c R. Wtedy Przyjmujac ta konwencj e, mamy c (a, b) = (a, b) c = (c a, c b). (a, b) = a (1, 0) + b (0, 1). W końcu, utożsamiajac liczb e zespolona (a, 0) z liczba rzeczywista a, oraz wprowadzajac dodatkowo oznaczenie otrzymujemy ı := (0, 1) (a, b) = a + ı b. (1.1) a = Rz nazywa si e cz eści a rzeczywista, a b = Iz cz eści a urojona liczby zespolonej. Sama liczb e zespolona ı nazywamy jednostka urojona. Zauważmy, że ı 2 = ( 1, 0) = 1. 1.2.2 Postać trygonometryczna Postać (1.1) jest najbardziej rozpowszechniona. Cz esto wygodnie jest użyć również postaci trygonometrycznej, która jest konsekwencja interpretacji liczby zespolonej (a, b) jako punktu na p laszczyźnie (tzw. p laszczyźnie zespolonej) o wspó lrz ednych a i b. Dok ladniej, przyjmujac z := a 2 + b 2 oraz kat φ tak, że sin φ = b z, cos φ = a z,

8 ROZDZIA L 1. GRUPY I CIA LA, LICZBY ZESPOLONE otrzymujemy z = z (cosφ + ı sin φ). (1.2) Jest to w laśnie postać trygonometryczna. Liczb e rzeczywista z nazywamy modu lem liczby zespolonej z, a φ jej argumentem, φ = argz. Jeśli z 0 i za lożymy, że φ [0, 2π) to postać trygonometryczna jest wyznaczona jednoznacznie. Piszemy wtedy φ = Argz. 1.2.3 Wzór de Moivre a Niech z = z (cosφ + ı sin φ), w = w (cosψ + ı sin ψ) b ed a dwoma liczbami zespolonymi. Wtedy w z = w z ((cosφcosψ sin φ sinψ) + ı(sin φ cosψ + sin ψ cosφ)) a stad = w z (cos(φ + ψ) + ı sin(φ + ψ)), w z = w z oraz arg(w z) = argw + argz. W laśnie w tych równościach przejawia si e wygoda postaci trygonometrycznej. W szczególności mamy bowiem z 2 = z 2 (cos 2φ + ı sin 2φ) i post epuj ac dalej indukcyjnie otrzymujemy wzór de Moivre a. Mianowicie, dla dowolnej liczby zespolonej z w postaci trygonometrycznej (1.2) mamy z n = z n (cos(nφ) + ı sin(nφ)), n = 0, 1, 2,... (1.3) Latwo zauważyć, że wzór (1.3) jest prawdziwy również dla n = 1, a stad dla wszystkich ca lkowitych n. Przyjmujac za z 1/n szczególne rozwiazanie równania w n = z, mianowicie z 1/n = z 1/n (cos(φ/n) + ı sin(φ/n)), gdzie φ = Argz, uogólniamy (1.3) dla wszystkich wyk ladników wymiernych. Stosujac dalej argument z przejściem granicznym (każda liczba rzeczywista jest granica ciagu liczb wymiernych) otrzymujemy w końcu nast epuj acy uogólniony wzór de Moivre a: a R z a = z a (cos(aφ) + ı sin(aφ)). Prostym wnioskiem z ostatniego wzoru jest równanie z = z ω φ,

1.2. CIA LO LICZB ZESPOLONYCH 9 gdzie ω = cos 1 + ı sin 1 = 0, 540302... + ı 0, 84147... C. Jest to uogólnienie na przypadek liczb zespolonych wzoru x = x sgn(x) znanego z przypadku liczb rzeczywistych. 1.2.4 Pierwiastki z jedynki Rozpatrzmy rozwiazania równania z n = 1 dla dowolnej naturalej n. W dziedzinie rzeczywistej pierwiastkiem jest 1 jeśli n jest nieparzyste, albo 1 i ( 1) jeśli n jest parzyste. W dziedzinie zespolonej mamy zawsze n pierwiastków. Rzeczywiście, ponieważ 1 = cos(2kπ) + ı sin(2kπ), ze wzoru de Moivre a dostajemy, że wszyskie pierwiastki wyrażaja si e wzorami ( ) ( ) 2kπ 2kπ z k := cos + ı sin, k = 0, 1, 2,..., n 1. n n Zauważmy, że z j leża na okr egu jednostkowym p laszczyzny zespolonej. Zbiór G = {z k : k = 0, 1,..., n 1} ze zwyk lym mnożeniem liczb zespolonych tworzy grup e z elementem neutralnym z 0 = 1. 1.2.5 Sprz eżenie Liczb e sprz eżon a do z = a + ıb definiujemy jako z := a ıb. Zauważmy, że z = z oraz z z = z 2. Mamy też z + z 2 = Rz i z z 2ı = Iz. I jeszcze jedna ważna w lasność sprz eżenia. Jeśli {+,,, /} to w z = w z. Stosujac indukcj e, można ten wzór uogólnić w nast epuj acy sposób. Jeśli f(u 1, u 2,...,u s ) jest wyrażeniem arytmetycznym, gdzie u j sa sta lymi lub zmiennymi zespolonymi, to f(u 1, u 2,...,u s ) = f(u 1, u 2,...,u s ).

10 ROZDZIA L 1. GRUPY I CIA LA, LICZBY ZESPOLONE 1.3 Wielomiany Definicja 1.4 Wielomianem p nad cia lem K nazywamy funkcj e zmiennej z o wartościach w ciele K dana wzorem p(z) := n a j z j = a 0 + a 1 z + + a n z n, j=0 gdzie a j K, 0 j n, a n 0, sa wspó lczynnikami wielomianu. Liczb e n nazywamy stopniem wielomianu i oznaczamy n = deg p. (Przyjmujemy przy tym, że deg 0 =.) 1.3.1 Algorytm Hornera Każdy wielomian p(z) = n k=0 a kz k stopnia n 1 o wspó lczynnikach zespolonych można podzielić przez dwumian z ξ otrzymujac p(z) = q(z)(z ξ) + η, gdzie deg q = n 1, a η C. Dodatkowo, jeśli p ma wspó lczynniki rzeczywiste i ξ R, to q ma również wspó lczynniki rzeczywiste i η R. Iloraz q oraz reszt e η z dzielenia można otrzymać stosujac algorytm Hornera: { b n := a n ; for k := n 1 downto 0 do b k := a k + ξ b k+1 ; } Wtedy q(z) = n k=1 b kz k 1 oraz reszta η = b 0. 1.3.2 Zasadnicze twierdzenie algebry Dla wielomianów zespolonych prawdziwe jest nast epuj ace ważne twierdzenie. Twierdzenie 1.1 (Zasadnicze Twierdzenie Algebry) Każdy wielomian zespolony p stopnia co najmniej pierwszego ma pierwiastek zespolony, tzn. równanie p(z) = 0 ma rozwiazanie.

1.3. WIELOMIANY 11 Twierdzenie 1.1 mówi, że liczby zespolone C sa cia lem algebraicznie domkni etym. (Przypomnijmy, że liczby rzeczywiste R nie sa algebraicznie domkni ete, bo np. równanie x 2 + 1 = 0 nie ma rozwiazań w R.) Konsekwencja algebraicznej domkni etości C jest faktoryzacja (rozk lad) wielomianu zespolonego na czynniki pierwszego stopnia. Dok ladniej, stosujac n-krotnie zasadnicze twierdzenie algebry oraz fakt, że jeśli ξ jest pierwiastkiem wielomianu p to reszta z dzielenia p przez ( ξ) jest zerowa, otrzymujemy rozk lad p(z) = a n (z z 1 )(z z 2 ) (z z n ), (1.4) gdzie z j, 1 j n, sa pierwiastkami p. Zak ladaj ac, że tylko m pierwiastków jest parami różnych (1 m n), możemy równoważnie napisać, że p(z) = a n (z u 1 ) s 1 (z u 2 ) s2 (z u m ) sm, gdzie u i u j o ile i j, oraz m j=1 s j = n. Przy tym zapisie, s j nazywamy krotnościa pierwiastka u j. Za lóżmy teraz, że wspó lczynniki wielomianu p sa rzeczywiste, a j R, 0 j n. Za lóżmy też, że p(ξ) = 0 i ξ / R. Wtedy ξ ξ i p(ξ) = n a j ξ j = j=0 n a j ξ j = j=0 n a j ξ j = 0 = 0, j=0 tzn. jeśli ξ jest pierwiastkiem to także liczba sprz eżona ξ jest pierwiastkiem; obie wyst epuj a w rozwini eciu (1.4). Ale (z ξ)(z ξ) = z 2 z(ξ + ξ) + ξξ = z 2 2zRξ + ξ 2 jest trójmianem kwadratowym o wspó lczynnikach rzeczywistych. St ad wniosek, że wielomian rzeczywisty daje si e roz lożyć na iloczyn czynników stopnia co najwyżej drugiego.

12 ROZDZIA L 1. GRUPY I CIA LA, LICZBY ZESPOLONE