Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc od dochodu (x, w jp) w gospodarstwach domowych pewnego masta opsuje następująca funkcja: 100x a) Oszacowana funkcja to funkcja Törnqusta dla dóbr podstawowych. b) Średne wydatk na warzywa w rodznach o najwyższych dochodach przekraczają 00 jp. Neprawda, bo ne mogą przekroczyć a=100. c) Elastyczność wydatków na warzywa względem dochodów w gospodarstwach domowych tego masta jest stała równa 0,. d) Jest to jedna z funkcj opsujących wydatk w zależnośc od dochodów, zwana funkcją Törnqusta, skonstruowaną dla dóbr zaspokajających potrzeby wyższego rzędu. Ne, dla dóbr podstawowych. e) Przyrost wydatków na warzywa zwązany ze wzrostem o jednostkę dochodu gospodarstw zarabających 1000 jp wynos około 1/45 jp. 1 100x 100x1 1 100 *1001 1001 000 100*1000 1000 000 Przyrost wydatków polczony z defncj y y 1 3 100100 100 3 3001 3001 100100 3001 100000 3000 100 / 3 300300 300100 9003 600400 9003 66,66...????
Metoda wykorzystująca przyblżene: przyrost funkcj spowodowany przyrostem argumentu o jednostkę jest w przyblżenu równy loczynow pochodnej w danym punkce przez wzrost argumentu: dy dy dy dx stąd w przyblżenu: y x dx dx x x1 Geometryczne: nachylene stycznej do krzywej y=y(x) w punkce x jest równe pochodnej funkcj w tym punkce, jeśl argument wzrośne o małą welkość, to możemy jako przyblżene zmany y wząć wzrost wartośc ne na krzywej, tylko na stycznej. 100( x ( x 000) 100x 000) x 1000 00000 / 3000^ 1/ 45
Przykład. Oszacowano następujący model lczby pracownków frmy Duża frma w roku t: yˆ t 10 exp(10 ) t e 10 10/ t Prawda czy fałsz? Odpowedź uzasadnj a) Według modelu, zatrudnene w Dużej frme rosło w marę upływu czasu. b) Jeśl tak model szacujemy metodą najmnejszych kwadratów, wówczas zmenną objaśnającą jest zmenna czasowa t. Ne c) Z roku na rok lczba pracownków w tej frme rosła w sposób lnowy. d) Względny przyrost lczby pracownków w tej frme od roku 1 do jest tak sam, jak dla roku 1 11. Proszę podstawć odpowedne wartośc do wzoru porównać e) Absolutny przyrost lczby pracownków w tej frme od roku 1 do jest tak sam, jak dla roku 1 11. Ne f) Według modelu, w pątym roku pracowało w frme e 5 osób.
Przykład 3. Mesęczne wydatk na warzywa (y, w jednostkach penężnych) w zależnośc od dochodu (x, w jp) w rodznach Spacj opsuje po oszacowanu następująca funkcja: y ( ) 100 x( ) /[ x( ) 000 ] Dochód rodzn w Spacj ne przekracza 000 jp., lecz jest wyższy nż 499 jp. a) Przyrost wydatków na warzywa zwązany ze wzrostem o jednostkę dochodu rodzn zarabających 1000 jp. wynos około 1/45 jp. b) Według oszacowanej funkcj, wydatk na warzywa w rodznach o najwyższych dochodach są o 0% nższe nż w rodznach o najnższych dochodach. c) Estymacja parametrów tej funkcj wymagała zastosowana metody nnej nż MNK. d) Najwyższy dochód w Spacj jest 4-krotne wyższy od najnższego, lecz wydatk na warzywa w rodznach o najwyższym najnższym dochodze różną sę tylko 1,5 krotne. e) Oszacowana funkcja to funkcja Törnqusta dla dóbr luksusowych. Wskazówk: Pochodna lorazu funkcj: Pochodna funkcj złożonej: Na przykład: exp(ax+b)= funkcja zewnętrzna to, wewnętrzna to funkcja lnowa. Dlatego:.
Przykład 4. Dla pewnego państwa oszacowano funkcję opsującą mesęczne wydatk gospodarstw domowych na produkty mleczne (y(), w jednostkach penężnych jp) w zależnośc od dochodu (x(), w jp): y ( ) 50 x( ) /[ x( ) 100] a) Oszacowana funkcja to funkcja Törnqusta dla dóbr podstawowych. b) Parametry tego modelu można było oszacować za pomocą MNK. c) W przypadku szacowana tego modelu za pomocą MNK zmenną objaśnającą była zmenna 1/x(). d) Zgodne z oszacowanym modelem, żadne z gospodarstw domowych ne wydaje na produkty mleczne węcej nż 50 jp mesęczne. e) Zgodne z oszacowanym modelem, popyt na produkty mleczne ne występuje w gospodarstwach domowych o dochodze mnejszym nż 100 jp mesęczne.