Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Podobne dokumenty
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

gęstością prawdopodobieństwa

Fizyka 3.3 WYKŁAD II

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

PODSTAWY MECHANIKI KWANTOWEJ

Stara i nowa teoria kwantowa

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

Rozwiązania zadań z podstaw fizyki kwantowej

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

IX. MECHANIKA (FIZYKA) KWANTOWA

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Dualizm korpuskularno falowy

Równanie Schrödingera

Chemia ogólna - część I: Atomy i cząsteczki

Doświadczenie Younga Thomas Young. Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja

Fizyka 3. Konsultacje: p. 329, Mechatronika

Podstawy fizyki wykład 2

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Wykład Budowa atomu 2

r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa

Światło fala, czy strumień cząstek?

V. RÓWNANIA MECHANIKI KWANTOWEJ

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

h 2 h p Mechanika falowa podstawy pˆ 2

Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie

Wykład FIZYKA II. 12. Mechanika kwantowa. Dr hab. inż. Władysław Artur Woźniak

Równanie Schrödingera

Zasada nieoznaczoności Heisenberga

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II.

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Początek XX wieku. Dualizm korpuskularno - falowy

Fale materii. gdzie h= J s jest stałą Plancka.

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o

PODSTAWY MECHANIKI KWANTOWEJ

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:

Wykład 21: Studnie i bariery cz.1.

Mechanika kwantowa Schrödingera

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

FIZYKA 2. Janusz Andrzejewski

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

FIZYKA-egzamin opracowanie pozostałych pytań

Temat: Przykłady zjawisk kwantowych.

39 DUALIZM KORPUSKULARNO FALOWY.

Wykład Budowa atomu 3

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

Plan Zajęć. Ćwiczenia rachunkowe

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK

III. EFEKT COMPTONA (1923)

Postulaty interpretacyjne mechaniki kwantowej Wykład 6

Wykład 13 Mechanika Kwantowa

Wykład 18: Elementy fizyki współczesnej -2

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Studnie i bariery. Fizyka II, lato

Ćwiczenia z mikroskopii optycznej

Podstawy fizyki kwantowej i budowy materii

Metody rozwiązania równania Schrödingera

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16

Nieskończona jednowymiarowa studnia potencjału

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Kwantowa natura promieniowania

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Atom wodoru i jony wodoropodobne

Pasmowa teoria przewodnictwa. Anna Pietnoczka

falowa natura materii

MiBM sem. III Zakres materiału wykładu z fizyki

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

Problemy fizyki początku XX wieku

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Elementy fizyki relatywistycznej

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 26, Radosław Chrapkiewicz, Filip Ozimek

Rozdział 4 Równanie Schrödingera

Numeryczne rozwiązanie równania Schrodingera

Podstawy mechaniki kwantowej. Jak opisać świat w małej skali?

11 Przybliżenie semiklasyczne

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Ładunek elektryczny jest skwantowany

Własności falowe materii

Światło ma podwójną naturę:

Podstawy fizyki kwantowej

Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Transkrypt:

lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy obiekt fizyczny który posiada pęd p posiada także naturę falową gdzie długość fali wyraża się zależnością: p h h p stała Planck'a pęd Obiekt z pędem może być: np. elektron, jądro atomowe, cały atom, piłka tenisowa, oraz oczywiście foton. Dlaczego zatem rzadko obserwujemy efekty falowe materii wokół nas? Popatrzmy na dwa praykłady: Np. długość fali materii fotonu o energii 1eV ( 1.6 x 10-19 J) : k pc hc hc 6.63 x 10 34 Js 3 x 10 8 m/s 1.6 x10 19 J Długość fali materii elektronu o energii kinetycznej 1eV: k mv p m pm k h m k 1.nm 140 nm

Fale materii de Broglie a czy je widać? Tak ulega dyfrakcji i interferencji światło Dyfrakcja i interferencja elektronów!!! podobnie jak światło, elektrony też mogą ulegać dyfrakcji czyli mają własności falowe!!! siatkę dyfrakcyjną stanowi np. folia aluminiowa (zatem dł. fali dla elektronu jest porównywalna z odległościami między atomami aluminium) im więcej elektronów przechodzi przez siatkę dyfrakcyjną, tym efekt dyfrakcyjny jest bardziej widoczny

Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa Ψ Funkcja falowa ma własności ( x, zależy ona od współrzędnych przestrzennych i czasu jest funkcją zespoloną Tutaj upraszczamy i rozpatrujemy funkcję falową zależną tylko od jednej współrzędnej przestrzennej (ruch w jednym wymiarze) nie ma jednoznacznej interpretacji fizycznej (jest pewnym modelem zachowań falowych opisywanych obiektów) Ale moduł funkcji falowej ma interpretację fizyczną!!! Jeśli w pewnej chwili czasu t przeprowadza się pomiar położenia cząstki, z którą związana jest funkcja falowa Ψ(x,, to prawdopodobieństwo P(x,dx tego, że cząstka znajdzie się pomiędzy współrzędną x a x+dx jest wyrażone kwadratem modułu funkcji falowej P( x, Ψ ( x, dx Ψ ( x, Ψ ( x, dx

Funkcja falowa - interpretacja Ψ ( x, w tym punkcie prawdopodobieństwo przebywania cząstki jest małe! x w tym punkcie jest największe prawdopodobieństwo przebywania cząstki! Wniosek: w mechanice kwantowej cząstka nie ma jednoznacznego położenia!!! Możemy mówić tylko o pewnym prawdopodobieństwie że cząstka przebywa w danym punkcie. Ale musimy przyjąć, że cząstka gdzieś w przestrzeni jest, wiec jeśli obliczając prawdopodobieństwo znalezienia cząstki w całej przestrzeni powinniśmy otrzymać: warunek normalizacji + + (, ) P x t Ψ ( x, Ψ ( x, dx 1

Jak znaleźć funkcję falową? Równanie Schrödinger a dla poruszającej się cząstki Dla cząstki poruszającej się w polu sił o energii potencjalnej V(x, funkcja falowa musi spełniać następujące równanie Schrödinger a i t Ψ m ( x, t ) + V ( x, t ) Ψ ( x, t ) liczba urojona, funkcja falowa, stała Planck'a / π operator Laplace'a, energia pot. cząstki masa To równanie jest postulatem (nie da się go wyprowadzić ściśle z innych praw fizyki) Rozwiązując to równanie dostajemy funkcje falowe, które zawierają daneinformacje dotyczące stanu tej cząstki (np. gdzie może się znajdować, jaki może mieć pęd) W mechanice kwantowej stan cząstki określa się podając funkcję falową, która jest wielkością zespoloną, określoną w dowolnej chwili czasu t i we wszystkich punktach przestrzeni Mechanika kwantowa daje nam narzędzie matematyczne do opisu zjawisk zachodzących w obiektach skali atomowej.

Równanie Schrödinger a dla poruszającej się cząstki Często energia potencjalna cząstki V(x, nie zależy od czasu wtedy równanie S. upraszcza się i nazywa się stacjonarnym r. S. część przestrzenna wtedy funkcję falową można przedstawić: a równanie S. ma postać: r. Schrödinger a niezależne od czasu Ψ ( x, ψ ( x) e m + V i t ψ ( x) ( x) ψ ( x) część zależna od czasu masa cz. energia potencjalna energia cząstki Nie wszystkie rozwiązania r. Schrödinger a są dobre. Narzucamy pewne warunki na funkcje falowe własne (i ich pochodne) i wartości własne (wartości energii). Funkcje falowe i ich pochodne muszą być : 1. skończone ( tzn. 0 dla + i,aby spełniony był warunek normalizacji). jednoznaczne 3. i ciągłe energia cząstki związana jest z częstotliwością funkcji falowej ω ω /

Cząstka poruszająca się w stałym potencjale Załóżmy na początku, że V 0 (cząstka jest swobodna) wtedy x Ae Proponujemy rozwiązanie (funkcje własne) typu ( ) ikx ψ m ( x) ψ ( x) ψ Podstawiając to do równania S. otrzymamy warunek symbol k równy jest : Funkcję falową cząstki można więc zapisać (uwzględniając zależność od czasu) Rozwiązanie to przypomina falę biegnącą w kierunku x k m Ψ x ( ) ikx t x Ae e tak wygląda fala płaska energia cząstki k wektor falowy p pęd cząstki hk/(π) Możliwe jest też, że cząstka poruszać się będzie w ikx t kierunku przeciwnym Ψ ( x) Be e ( ) t Rozwiązaniem może być też kombinacja ikx t ikx Ψ x Ae e + Be e

Cząstka poruszająca się w stałym potencjale Stałe A i B można spróbować wyznaczyć z warunku normalizacji Jaka jest gęstość prawdopodobieństwa? i( kx i( kx * P( x, Ψ ( x, Ψ ( x, dx A e Ae A * A Jak znormalizować tę funkcję? + + * Ψ ( x, Ψ ( x, dx A A dx 1 Wytłumaczenie:??? * A A 0 coś jest nie tak, Cząstka może być wszędzie z jednakowym prawdopodobieństwem Przyjęto nierealistyczną postać funkcji falowej nieskończenie rozciągłą falę Funkcja falowa powinna mieć raczej kształt paczki falowej złożenie wielu fal płaskich o różnych wektorach falowych k Okazuje się że paczka falowa jest też rozwiązaniem r. S.

Paczka falowa? Cząstka poruszająca się w stałym potencjale Jest złożeniem wielu fal o różnych wektorach falowych k (np.w zakresie k k < k < k+ k) Maksimum pakietu porusza się z prędkością cząstki v cz Paczka falowa spełnia warunek, że cząstka powinna być choć w przybliżeniu zlokalizowana, ale jej pęd (który jest związany z wektorem falowym k) nie jest dokładnie określony zawiera się w zakresie p p < p < p+ p) ponieważ :p hk/(π)

Cząstka poruszająca się w stałym potencjale Paczka falowa Fala płaska x położenie cząstki bardziej lokalizowane nie znana dokładna wielkość wektora falowego k (bliżej nieokreślony jest pęd p) położenie cząstki nieokreślone znana dokładna wielkość k więc pęd cząstki znany jest dokładnie p hk /(π) h/(λπ )

Zasada nieoznaczoności Heisenberga W 197 Heisenberg odkrył, że ta niepewność co do określenia pędu i położenia cząstek ma zasadnicze znaczenie w fizyce kwantowej Jeśli pomiar położenia cząstki jest wykonany z dokładnością Δx i jednocześnie można zmierzyć pęd cząstki w kierunku x z dokładnością Δp to iloczyn tych wielkości nie może być mniejszy niż h/4π x p x h 4π Niemożliwe jest jednoczesne dokładne wyznaczenie położenia i pędu cząstki

Zasada nieoznaczoności Heisenberga Piłka o masie 50g porusza się z prędkością 30.0 m/s. Jeśli prędkość mierzona jest z dokładności 0.10% jaka jest minimalna niepewność pomiaru położenia piłki Piłka jest obiektem nie-relatywistycznym. Zatem jej pęd p mv i jego niepewność pomiarowa wynosi Dane: v 30 m/s v 0.10% m 50.0 g ( ) ( δ ) p m v m v v ( ) ( ) 3 50.0 10 kg 1.0 10 30m s 1.5 10 kg m s szukane: x? h 6.63 10 x 4π 4 1.5 10 4 J s ( ) ( 3 p π kg m s) 3.5 10 3 m

Przykład : Cząstka przechodząca przez barierę Rozważamy ruch cząstki w polu o potencjale przedstawionym w postaci bariery (przy czym V 0 > ) (Wg mech. klasycznej np. kulka która pędzi na przeszkodę o dużej wysokości. Kulka nie jest w stanie jej przeskoczyć). Czy tak samo jest w mechanice kwantowej? ZAŁOŻNIA Dla każdego z obszarów konstruujemy równanie m dla obszaru x < 0 i x > a ψ ( x) ψ ( x) dla obszaru 0 < x < a m ( x) ( V ( x) ψ )ψ 0

ZAŁOŻNIA Rozwiązania poszukujemy w postaci funkcji Bariera potencjału fala padająca fala odbita ψ ψ I II III ( x) ik1x Ae + ik1x Be ( x) ik x Ce + ik x De ( x) ik1x Fe + ik1x Ge ψ dla x < 0 dla 0 < x < a dla x >a Trzeba uwzględnić fakt, że w obszarze x > a nie powinno być fali odbitej, zatem G0 Uwaga! Mimo że stwierdziliśmy, że fala płaska niezbyt dobrze opisuje cząstkę ( lepsza jest paczka falowa) to jednak dla uproszczenia nadal próbujemy to rozwiązanie - przecież paczka falowa jest kombinacją pewnej liczby fal płaskich, zatem i dla paczki falowej tok rozumowania będzie bardzo podobny. gdzie k daje się wyznaczyć jako k k 1 m m( V 0 )

Bariera potencjału ZAŁOŻNIA Aby wyznaczyć stałe A,B,C,D należy wykorzystać warunki zszycia funkcji własnych i ich pochodnych ψ ψ I II ( 0) ψ II ( 0) ( a) ψ III ( a) ( 0) dψ ( 0) dψ I dx dψ II dx ii dx ( a) dψ ( a) III dx Te 4 równania dają możliwość wyznaczenia stałych A,B,C,D,F. Parametry A,B,C,F nie są równe 0

Bariera potencjału WNIOSKI Okazuje się że istnieje pewne prawdopodobieństwo przejścia cząstki przez barierę potencjału, pomimo że energia cząstki jest mniejsza od wysokości bariery! Możliwość przechodzenia przez barierę maleje ze wzrostem szerokości bariery. Współczynniki przejścia przez barierę jest proporcjonalny do T e k a e 4 mv 0 h Zależy więc od m masy, różnicy (V-) oraz szerokości bariery a a Jest to efekt czysto kwantowy, sprzeczny z fizyką klasyczną. Funkcja falowa (a więc także jej moduł) nie zanika za barierą (jest słabsza, ale istnieje skończone prawdopodobienstwo znalezienia cząstki poza barierą ) Zjawisko to nosi nazwę przenikania przez barierę lub zjawiska tunelowego

Pytanie? Czym różni się mechanik samochodowy od mechanika kwantowego? Mechanik kwantowy potrafi wjechać samochodem do garażu nie otwierając bramy!

Skaningowy mikroskop tunelowy ostrze Napięcie VDC e- e e prąd tunelowania e -κ a odległość a próbka

Skaningowy mikroskop tunelowy 7 7 Unit 18 nm atom 7 nm

Przykład : Cząstka w studni potencjału Mamy studnię potencjału o nieskończonej głębokości V ( x) 0 dla dla < < 0i Fizycznie odpowiada to sytuacji gdy cząstka zamknięta jest w studni o doskonale odbijających ściankach, np. elektron uwięziony w pewnym obszarze o wielkości a 0 x x x a a a Ponieważ V(x) dla x>a i x<0 to funkcje własne muszą być równe 0 ψ ( x) 0 Wewnątrz studni równanie S. ma postać m ZAŁOŻNIA dla x>a i x<0 ( x) ψ ( x) ψ

Cząstka w studni potencjału Rozwiązania tego równania są opisane funkcją a ψ ( ) ikx ikx x Ae + Be gdzie k m Z warunków brzegowych i ciągłości funkcji wynika zatem 0 A + B czyli A B n π a ( ) ( i k x i k x x A e e ) C s in ( k x ) C s in ( x ) ψ n przybiera postać funkcji stojącej. Możemy dopuścić tylko takie wartości k n a n1,,3... n π Zatem mamy tu bardzo ważny wniosek. n n h 8ma NRGIA JST SKWANTOWANA!

Cząstka w studni potencjału - wnioski NRGIA JST KWANTOWANA! Cząstka może mieć tylko określone energie (jej energia nie może przyjmować dowolnych wartości) Każdej energii odpowiada pewna funkcja falowa nπ a a ψ ( x) C s in( x ) n n k n a n h 8ma nπ n1,,3... Po przeprowadzonej normalizacji: n a nπ a ( x) sin( x ) ψ

n 3 Cząstka w studni potencjału - wnioski Ψ n (x) Ψ n (x) nergia kwantowana n n 1 postać funkcji falowej dla studni potencjału ( x) s i n( x ) ψ n a nπ a gęstość prawdopodobieństwa znalezienie cząstki poziomy energetyczne cząstka ma tylko określone energie n n h π n 8ma ma Znaczenie: np. Jeśli elektron będzie uwięziony w dość małym obszarze to będzie miał tylko dyskretne wartości energii. Tak np. jest w atomie gdzie elektron wiązany jest siłą elektrostatyczną z jądrem atomowym