WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW U podstaw wszystkch auk przyrodczych leży zasada: sprawdzaem wszelkej wedzy jest eksperymet, tz jedyą marą prawdy aukowej jest dośwadczee Fzyka, to auka przede wszystkm emprycza Perwszym krokem do ustalea prawa fzyczego jest obserwacja zjawska Dla ustalea wyjaśea prawdłowośc fzyczej ależy wydzelć z welu poboczych wpływów ajbardzej charakterystycze, powtarzale zwązk przyczyowe, co osąga sę w celowo ustawoym dośwadczeu Dla otrzymaa loścowych wzajemych zależośc trzeba ustalć odpowede welkośc fzycze, które moża merzyć Defcje welkośc fzyczych muszą węc zawerać przeps a ch pomar Wdać stąd szczególą rolę eksperymetu pomarów Laboratorum z fzyk ma a celu zazajomee studetów z podstawowym przyrządam metodam pomarowym oraz praktycze zapozae z ektórym zjawskam prawam przyrody toteż w welu przypadkach dośwadczee będze służyło sprawdzeu zaego już prawa fzyczego Należy sobe zdawać sprawę z faktu, że każde prawo fzycze ustaloe a podstawe pomarów jest wydealzowaą zależoścą pomędzy mejszą lub wększą lczbą welkośc fzyczych, przy pomęcu welu ych czyków wpływających a przebeg dośwadczea Te fakt oraz szereg ych, zwązaych z samym przyrządem pomarowym eksperymetatorem, jest przyczyą, że każdy pomar obarczoy jest błędem (epewoścą) Zatem rzetele opracowae pomarów powo zawerać także oceę ch dokładośc warygodośc, tz, oceę epewośc pomarów Z prób rozwązaa tego problemu powstały różorode bardzo rozbudowae teore błędu, często trude do wzajemego porówaa Dlatego koeczoścą stało sę opracowae jedoltego, opartego a pewym kompromse, systemu ocey zapsu epewośc pomarowych W 995 r, po welu latach pracy, uzgodoo mędzyarodowe ormy dotyczące epewośc w pomarach Mędzyarodowa Orgazacja Normalzacyja (ISO) opublkowała dokumet ( Przewodk, Mędzyarodowa Norma ), który po dokoau przekładu a język polsk przyjęcu odpowedej ustawy zobowązuje Polskę do stosowaa orm ISO w zakrese oblczaa podawaa we wszystkch publkacjach wyków epewośc pomarów zgode z tą Normą [] Nowośc dotyczą przede wszystkm odróżaa epewośc pomaru od błędu w potoczym tego słowa zaczeu, przyjęca uzgodoej termolog powszeche akceptowaej mary epewośc w pomarach, szerszego korzystaa z metod statystyczych oraz sposobu ocey oblczaa epewośc Szersze wprowadzee tych owych zasad oraz krytyczą dyskusję Normy moża zaleźć w publkacjach H Szydłowskego [] oraz A Zęby [3]
8 W skrypce zastosowao ektóre zalecea Mędzyarodowej Normy przy szacowau oblczau, a szczególe ozaczau epewośc w pomarach, zachowując pewe stosowae do tej pory sposoby aalzy oblczaa błędów pomarów [4, 5, 6, 7] BŁĘDY I NIEPEWNOŚCI POMIAROWE Praca w laboratorum fzyczym polega a obserwacj zjawsk fzyczych, wykoywau pomarów ch terpretacj a podstawe pozaych teor praw fzyk Oprócz poprawego wykoaa pomarów, bardzo stota jest aalza końcowych wyków pod względem ch warygodośc dokładośc oraz przedstawee uzyskaych rezultatów w sposób umożlwający ch prawdłową terpretację, to jest jaso, przejrzyśce zgode z ogóle przyjętym zasadam Wskutek edokładośc aszych przyrządów pomarowych oraz edoskoałośc aszych zmysłów każdy, awet ajstaraej przygotoway wykoay pomar daje wyk obarczoy pewą epewoścą, róży od wartośc rzeczywstej Wartość epewośc może meć zasadcze zaczee przy formułowau różych praw fzyk często decyduje o przyjęcu lub odrzuceu jakejś teor Aalza błędów dokoaa przed przystąpeem do pomaru może wykazać jego zupełą ecelowość arzucć koeczość użyca ych przyrządów lub metod pomarowych Rozpatrzee całośc metody jakegoś pomaru oraz właścwa ocea popełoych błędów pozwala ustalć dokładość, z jaką ależy wykoać pomar, oraz a pomar jakej welkośc ależy zwrócć szczególa uwagę Stopeń dokładośc pomaru zależy od używaych przyrządów stosowaej metody pomarowej byłoby stratą czasu starać sę otrzymać wększą dokładość od tej, jaką określają zadae waruk pomarowe Mędzyarodowa Norma jako podstawę przyjmuje ową flozofę traktowaa zjawska błędu Na tej podstawe astępuje uścślee azewctwa, w szczególośc zaczea kluczowych słów błąd epewość Term błąd (pomaru) powe być używay w zaczeu jakoścowym albo ozaczać różcę: błąd pomaru = wartość zmerzoa wartość rzeczywsta = o () Wyk lczbowy wyrażea () e może być wylczoy, gdyż e jest zaa wartość rzeczywsta o Jest to realzacja pojedyczej zmeej losowej e może być wylczoa a pror, podobe jak e moża przewdzeć wyku rzutu kostką Tak zdefoway błąd pomaru e jest zatem przedmotem zateresowaa rachuku epewośc pomaru Sama azwa (błąd) tej wady pomarów sugeruje możlwość jej usuęca Rodzaje błędów pomarowych omówmy a prostym przykładze pomaru przyspeszea zemskego za pomocą wahadła matematyczego (ćw ) Wyobraźmy sobe, że zmerzylśmy klkakrote czas wahęć metalowej kulk przywązaej do końca c o długośc l Początkowe wychylee kulk wyosło 0 Oblczee przyspeszea zemskego przy użycu wzoru a okres wahań wahadła prostego
9 4 g T spowoduje otrzymae wyków systematycze zażoych w stosuku do wartośc rzeczywstej Przyczyą jest zastosowae przyblżoego wzoru a okres wahań wahadła słuszego tylko w przypadku małych wychyleń O tak otrzymaych wykach pomarów powemy, że są oe obarczoe błędem systematyczym Ią przyczyą powstaa tego typu błędów może być p użyce stopera, którego wskazówk z chwlą rozpoczęca pomarów e pokrywają sę z początkem skal lub stoper chodz za wolo albo za szybko, wywołując systematycze zażae lub zawyżae wartośc okresu wahań Przypuśćmy, że w ser pęcu pomarów czasu 50 wahęć, jede z pomarów został zakończoy po 45 wahęcach Pomar te da drastycze różą wartość przyspeszea zemskego Określmy go jako pomar obarczoy błędem grubym, czyl pomyłką Pomyłk powstają róweż wskutek fałszywego odczytaa wskazań przyrządów lub eprawdłowego zapsaa odczytu (p pomyłka w jedostkach) Pomyłk dają sę łatwo zauważyć, poeważ otrzymay wyk róż sę zacze od ych wyków pomarów tej samej welkośc (rys ) l błędy systematycze wartość rzeczywsta pomyłka 0 - wyk pomaru Rys Na rysuku pokazao serę pomarów welkośc X, obarczoej błędam systematyczym pomyłką, przy czym o jest wartoścą rzeczywstą welkośc X Błędy pomarowe, zarówo systematycze, jak grube, mają wspólą cechę Moża je wyelmować poprzez: a) użyce właścwe dzałających przyrządów, b) poprawe przeprowadzee pomarów, c) stosowae poprawek matematyczych do wzorów przyblżoych, d) usuęce z ser pomarów wyku obarczoego błędem grubym lub jego powtórzee, o le mamy taką możlwość W aszej praktyce laboratoryjej zakładamy, że wszystke błędy systematycze zostały rozpozae przez eksperymetatora uwzględoe w trakce pomarów, a wyk tych pomarów są wole od błędów systematyczych Wyelmowae błędów pomarowych jest zabegem koeczym, ale e prowadzącym do uzyskaa wyków jedozacze pokrywającym sę z rzeczywstą wartoścą welkośc merzoej Każdy bowem pomar jest obcążoy epewoścą pomarową Mędzyarodowa Norma wprowadza pojęce epewość pomaru jako ajważejszy a owo określoy term Zgode z Przewodkem : epewość jest zwązaym z rezultatem pomaru parametrem, charakteryzującym rozrzut wyków, który moża w uzasadoy sposób przypsać wartośc merzoej Takm przykładowym parametrem określającym epewość pomaru może być odchylee stadardowe oblczoe dla ser pomarów
0 Wśród epewośc pomarowych wyróżć moża epewośc przypadkowe epewośc systematycze Na ogół jedak któraś z wymeoych epewośc pomarowych domuje Jeżel dokładość przyrządu jest dostatecze duża, wówczas w ser pomarowej otrzymamy pewe rozrzut wyków Śwadczy to o przewadze epewośc przypadkowych ad systematyczym Źródłem występowaa epewośc przypadkowych może być merzoa welkość (mówmy wówczas o epewośc przypadkowej obektu) lub sam eksperymetator wraz z otoczeem przyrządam pomarowym (epewość przypadkowa metody) Np epewość przypadkowa obektu przy pomarze grubośc płytk ołowaej śrubą mkrometryczą będze mała swe źródło w różcach grubośc płytk merzoej w klku różych puktach Nepewość przypadkowa metody wykać może atomast z różc w docskau śruby w kolejych pomarach Na powstae epewośc przypadkowych akłada sę wele ezależych przyczy, co prowadz do tego, że wyk pomarów, w których domują epewośc przypadkowe, układają sę symetrycze wokół wartośc rzeczywstej (rys ) wartość rzeczywsta 0 - wyk pomaru Rys Natomast źródłem epewośc systematyczych są ograczoe możlwośc pomarowe zwązae z klasą (dokładoścą) użytego przyrządu oraz z możlwoścą odczytu jego wskazań przez obserwatora Przewaga epewośc systematyczych ad przypadkowym ujaw sę poprzez otrzymae detyczych bądź ezacze różących sę wyków w określoej ser pomarów Jak już wspomelśmy, całkowte usuęce epewośc e jest możlwe Moża je co ajwyżej zmejszyć poprzez stosowae dokładejszych przyrządów pomarowych oraz zwększee lczby pomarów Pojęce epewośc przypadkowej czy systematyczej jest rówoważe pojęcu błędu przypadkowego (losowego) lub błędu systematyczego, które to azwy są stosowae do tej pory w welu opracowaach dotyczących aalzy pomarów Poadto, stosowe do zaleceń Mędzyarodowej Normy, wprowadza sę astępujące termy o owym zaczeu: epewość stadardowa u(); jest to epewość pomaru odpowadająca odchyleu stadardowemu średej; ocea epewośc typu A; oparta a metodze określea epewośc pomaru drogą aalzy statystyczej ser wyków pomarów; ocea epewośc typu B; oparta a metodze określaa epewośc pomarów drogą ą ż w przypadku metody typu A (p a podstawe klasy przyrządu); złożoa epewość stadardowa u c (y); epewość wyków pomarów pośredch jest oblczaa z prawa przeoszea epewośc pomaru
Rozróżee metod oblczaa typu A B e ma c wspólego z dotychczasowym podzałem a błędy przypadkowe systematycze (Mędzyarodowa Norma e eguje zresztą tego tradycyjego rozróżea), lecz wskazuje a dwe róże drog ocey składków epewośc Obe metody ocey epewośc oparte są a rachuku prawdopodobeństwa, a loścową marą każdego ze składków jest odchylee stadardowe Nepewość stadardową typu A oblcza sę a podstawe rozkładu częstośc pojawaa sę określoego wyku pomaru, a węc operając sę a rozkładze ormalym (Gaussa), atomast epewość stadardową typu B oblcza sę (a raczej szacuje) a podstawe rozkładu prawdopodobeństwa przyjętego przez eksperymetatora (prawdopodobeństwo subektywe) Na ogół będze to rozkład jedostajy (prostokąty) W dalszej częśc opracowaa zostały opsae sposoby postępowaa, gdy w pomarze welkośc X przeważa epewość systematycza (pkt 3), bądź przypadkowa (pkt 4), a także wtedy, gdy epewośc przypadkowa systematycza dają porówywaly wkład do epewośc pomaru welkośc X (pkt 5) 3 NIEPEWNOŚCI SYSTEMATYCZNE (MAKSYMALNE) OCENA TYPU B 3 Nepewośc systematycze pomarów bezpośredch Jak wspomao wcześej (pkt ), epewośc systematycze domują wtedy, gdy w ser pomarów welkośc X e występuje lub prawe e występuje rozrzut statystyczy wyków pomarów, czyl Na welkość epewośc systematyczej składają sę dwa przyczyk, jede pochodzący od użytego w pomarach przyrządu (dzałka elemetara, klasa przyrządu, dokładość odczytu) drug zwązay z wykoywaem czyośc pomarowej przez obserwatora (epewość eksperymetatora) Nepewość systematycza zwązaa z użytym przyrządem zależy od klasy dokładośc tego przyrządu wskazującej a jego odstępstwa od wzorca W dobrych przyrządach pomarowych podzałka skal zgadza sę zwykle z klasą daego przyrządu, która ozacza maksymalą epewość systematyczą woszoą przez sam przyrząd, p dla termometru pokojowego epewość systematycza t = C, ale dla termometru laboratoryjego może być awet lepsza ż 0,5C, marka mlmetrowa to l = mm, a śruba mkrometrycza to l = 0,0 mm Nepewość odczytu a podzałce ustala obserwator, uwzględając róże czyk wpływające a wyk pomaru Tak węc, jeśl wykoujemy pomar apęca woltomerzem klasy 0,5 o zakrese 300 V, to bezwzględa epewość systematycza wprowadzoa przez przyrząd będze wyosła,5 V Jeśl epewość położea wskazówk oceamy a,5 V, to całkowta epewość pomaru będze rówa 4 V; wyk pomaru zapszemy wtedy jako (39 4) V lub 39(4) V W ocee epewośc odczytu stote zaczee odgrywa róweż szerokość samej wskazówk oraz jej zachowae podczas pomaru (drżee, wahaa wokół ustaloego położea tp) Te sposób ocey epewośc systematyczej jest stosoway w przypadku przyrządów aalogowych, atomast w przypadku coraz częścej spotykaych w laboratorum przyrządów cyfrowych, epewość pomaru jest podawaa przez produceta w strukcj
obsług merka Staow oa ajczęścej sumę określoego ułamka wartośc zmerzoej ułamka zakresu z c z () c Nepewość maksymala przyrządu jest zatem a ogół wększa od dzałk elemetarej Np dla pewego typu omomerza c = 0,00, a c = 0,00 a zakrese 0 k przy pomarze oporu o wartośc 0 k otrzymujemy wartość R = 0,04 k, co staow rówowartość czterech dzałek elemetarych merka (dz = 0,0 k) W przypadku epewośc systematyczych zawsze zakładamy, że przyczyk pochodzące od przyrządów obserwatora e kompesują sę, ale dodają do sebe z jedakowym zakam Zatem całkowta epewość systematycza pomaru może być wyrażoa w postac sumy = d + k + o + e, (3) gdze deksy określają odpowede przyczyk do epewośc pomaru (d dzałka elemetara, k klasa przyrządu, o odczyt, e eksperymetator) Gdy domuje jede typ epewośc systematyczej, jak a przykład dzałka elemetara d l = mm w pomarze długośc l = 35 mm, wtedy przyczyek l woszoy przez te typ epewośc systematyczej jest jedyą marą maksymalej epewośc systematyczej = l Określoa w te sposób sumarycza epewość (wz (3)) azywa sę maksymalą epewoścą systematyczą Do tak określoej epewośc e moża zastosować rozważań takch jak dla epewośc przypadkowych, których aalza oparta jest a rozkładze Gaussa Musmy ją terpretować jako () _ - + Rys 3 połowę szerokośc przedzału od do +, który a pewo (z prawdopodobeństwem P = ) zawera wartość rzeczywstą Iterpretacja taka e precyzuje rozkładu prawdopodobeństwa wewątrz przedzału, ale zakładamy, że wszystke wartośc wewątrz tego przedzału są rówe prawdopodobe Ozacza to, że dla welkośc X przyjmujemy prostokąty rozkład prawdopodobeństwa przedstawoy a rys 3 Dla prostokątego (jedostajego) rozkładu fukcj (), epewość stadardowa u() zwązaa jest z maksymalą epewoścą systematyczą, oszacowaą metodą typu B, astępującym wzorem: u() (4) 3 Zgode z Mędzyarodową Normą relacja (4) pozwala a włączee epewośc systematyczej pomaru do prawa przeoszea epewośc dla welkośc złożoej Y (pkt 4), a także umożlwa określee epewośc stadardowej u() welkośc X, w której występuje zarówo składowa systematycza, jak przypadkowa (pkt 5)
Przykład Wykoao pomary atężea prądu płyącego przez uzwojee busol styczych (ćw 9) Pomary próbe wykazały ezaczy rozrzut wyków: I I I 3 0,80 A Ozacza to przewagę epewośc systematyczych pomaru ad epewoścam przypadkowym W pomarze użyto amperomerza klasy 0,5 o zakrese A ajmejszej dzałce 0,0A Wahaa wskazówk wg ocey eksperymetatora meścły sę w gracach jedej dzałk Łącze, zgode ze wzorem (3), maksymala epewość systematycza pomaru wyos: l = 0,005A + 0,0A + 0,005A = 0,0A Względa epewość systematycza pomaru: [%] = 3%, a wyk końcowy zgode z Normą zapsujemy w postac: I = (0,80 0,0)A lub I = 0,80()A 3 Nepewośc systematycze pomarów pośredch W wększośc dośwadczeń e merzymy bezpośredo teresującej as welkośc Y Merzymy atomast pewe welkośc perwote X, X, X 3, X oblczamy wartość welkośc Y jako fukcję tych welkośc I tak a przykład, objętość sześcau wyzaczamy merząc długość jego krawędz, przyspeszee zemske g wyzaczamy merząc okres wahań T długość l wahadła, ogskową soczewk możemy wyzaczyć merząc odległość przedmotu obrazu od soczewk Prawo przeoszea epewośc prowadz do astępującego sposobu postępowaa: chcąc wyzaczyć epewość systematyczą welkośc Y, której wartość y = f(,, ), musmy oblczyć zmaę y tej fukcj spowodowaą zmaam jej argumetów o,,, które to welkośc są epewoścam systematyczym merzoych bezpośredo welkośc X, X,X Rozpatrzmy ajperw prosty przypadek, w którym wyzaczaa przez as welkość Y jest fukcją tylko jedej zmeej obarczoej epewoścą pomarową, czyl Stosując rozwęce w szereg Taylora, mamy 3 y y = f( ) (5) df () ( ) d f () y y f () (6) d d Zaedbując w rozwęcu wyrazy, w których występują w wyższej potędze ż perwsza, jako bardzo małe, otrzymujemy Poeważ y = f(), węc możemy zapsać df () y y f () (7) d df () y (8) d
4 Bezwzględa epewość welkośc będącej fukcją jedej zmeej (której wartość merzymy) rówa jest bezwzględej epewośc welkośc merzoej pomożoej przez pochodą fukcj Uogólając te przypadek a fukcję welu zmeych y = f(,, ) postępując w te sam sposób, jak w przypadku fukcj jedej zmeej, otrzymujemy f f f y (9) Wyzaczoa w te sposób wartość y jest bezwzględą maksymalą epewoścą welkośc złożoej Y Nepewość względą y [%] otrzymamy, dzeląc wyrażee (9) przez wartość fukcj y = f(,, ) y y[%)] 00% (0) y Występujące we wzorze (9) symbole azywamy pochodym cząstkowym Oblcza sę je w tak sam sposób jak zwykłe pochode fukcj jedej zmeej przy założeu, że pozostałe zmee są welkoścam stałym Wyrażee określoe wzorem (9) przypoma różczkę zupełą, dlatego często te sposób oblczaa epewośc azywamy metodą różczk zupełej Przykład Ogskową soczewk metodą Bessela (ćw 7) wylczamy ze wzoru (e d ) f, 4e gdze: e odległość ekrau (obrazu) od przedmotu, d odległość mędzy dwoma położeam soczewk, przy których a ekrae otrzymujemy ostry, rzeczywsty obraz przedmotu Jede z pomarów dał astępujące wartośc: e = 85 cm, d = 4 cm Maksymalą epewość systematyczą obu pomarów eksperymetator oszacował a 0,5 cm Zgode ze wzorem (9) oblczamy epewość maksymalą welkośc złożoej Podstawając dae umerycze, otrzymujemy f f f e d, e d e d d f e d 4e e f 0,3 0,5 cm 0,47 0,5 cm 0,79 cm Oblczoa wartość ogskowej soczewk f = 6,06 cm Względy błąd f [%] pomaru ogskowej oblczamy ze wzoru (0), otrzymując wyk: f [ %] = %
5 Wyk końcowy pomaru wraz z epewoścą zapsujemy w postac f = (6,0 0,3) cm lub f = 6,0(3) cm, f [%] = % W przypadkach, gdy fukcja y = f(,, ) ma postać loczyową, wygode jest oblczać różczkę zupełą po uprzedm zlogarytmowau fukcj te sposób oblczaa epewośc pomarowej os azwę metody różczk logarytmczej W metodze tej wykorzystuje sę zaą własość fukcj logarytmczej, której różczka d d(l ), a węc przyrost fukcj rówy jest względemu przyrostow jej argumetu Zaprezetujemy tę metodę a przykładze fukcj złożoej, zapsaej rówaem gdze: A, a, a pewe welkośc stałe Po zlogarytmowau otrzymujemy ly y a a A () la a () l a l Różczkę zupełą tego wyrażea moża zapsać jako dy d d a a (3) y Podstawając w mejsce dy, d, d wartośc bezwzględych systematyczych epewośc pomarowych: y,,, możemy otrzymać wyrażee a maksymalą epewość względą welkośc złożoej Y: y y a a (4) Zauważmy, że metoda różczk logarytmczej daje bezpośredo epewość względą y, a po przemożeu przez wartość fukcj y = f(,, 3 ) otrzymujemy maksymalą epewość bezwzględą y Uogólając powyższe wyrażee a przypadek fukcj zmeych możemy zapsać: y A a, y a (5) y Metoda ta ma tę zaletę, że oprócz zaczego uproszczea oblczeń pozwala a szybką oceę, która z welkośc merzoych bezpośredo wos ajwększy przyczyek do epewośc welkośc końcowej, poeważ oblczoa tą metodą maksymala epewość
6 względa y/y jest sumą epewośc względych / poszczególych welkośc X, X,, X możoych przez współczyk a Przykład 3 Metodę różczk logarytmczej zaprezetujemy a przykładze wyzaczaa rówoważka elektrochemczego medz (k) za pomocą woltametru (ćw 6) Zgode z prawem Faradaya masa medz wydzeloa podczas elektrolzy a elektrodze określoa jest wyrażeem: m = k I t, a stąd wartość rówoważka elektrochemczego możemy wylczyć ze wzoru m k I t W trakce pomarów uzyskao astępujące wartośc wyków ch epewośc: I =,00()A, t = 800() s, m =,9() g Oblczoa wartość rówoważka elektrochemczego medz wyos k = 3,3055 0 7 kg/c Stosując metodę różczk logarytmczej (wz (5)), oblczamy maksymalą epewość względą k m t I, k m t I a po podstaweu wartośc lczbowych k k 0,068 0,00 0,0 0,079 k k k oraz % 00% 3% Jak wdać z powyższych oblczeń, ajwększy wkład w epewość pomaru rówoważka elektrochemczego medz wos pomar masy (%) oraz pomar atężea prądu (%) zkomy zaś pomar czasu (0,%) Stąd wosek praktyczy: bardzo starae ależy wyzaczać masę medz wydzeloej a elektrodze, a merk atężea prądu wymeć a lepszy (o lepszej klase) Natomast maksymala, bezwzględa epewość systematycza w wyzaczau rówoważka elektrochemczego wyos k 7 k k 0,09 0 kg / C k ostateczy wyk zapsujemy w postac k = (3,3 0,09)0 7 kg/c lub 3,3(9)0 7 kg/c; k [%] = 3% Tak wyzaczoa bezwzględa epewość maksymala k określa am przedzał, w którym z prawdopodobeństwem 00% powa zajdować sę wartość rzeczywsta Porówując wyzaczoą w dośwadczeu wartość k z wartoścą tablcową k tab = 3,970 7 kg/c, wdzmy, że meśc sę oa w wyzaczoym przez as przedzale epewośc, a węc możemy stąd woskować o poprawośc zarówo zastosowaej przez as metody pomarowej, jak ocey epewośc Omawae w tym rozdzale metody różczk zupełej logarytmczej oblczaa epewośc pomarów welkośc złożoych stosowae są wówczas, gdy epewośc sys-
7 tematycze pomarów bezpośredch są zacze wększe od epewośc przypadkowych Zakładamy przy tym ajbardzej ekorzystą z puktu wdzea eksperymetatora sytuację, w której epewośc pomarów bezpośredch e kompesują sę awzajem dlatego w te sposób wyzaczamy maksymale, systematycze epewośc pomarowe (bezwzględą - y względą - y ) welkośc złożoej Y 4 NIEPEWNOŚCI PRZYPADKOWE DUŻE W PORÓWNANIU Z SYSTEMATYCZNYMI OCENA TYPU A 4 Nepewośc przypadkowe pomarów bezpośredch Rozkład Gaussa Przewaga epewośc przypadkowych ad systematyczym ujawa sę poprzez otrzymae w ser pomarów pewej welkośc fzyczej, wyków różących sę mędzy sobą Te rozrzut wyków ma pewe określoe cechy, których występowaa e da sę ująć w żade zwązk przyczyowe, ale które podlegają pewym prawdłowoścom statystyczym (zob ćw) W wększośc dośwadczeń stwerdza sę, że rozkład częstośc występowaa epewośc przypadkowych moża opsać fukcją () w postac ( ) ( ) ep (6) Fukcja rozkładu () wyrażoa wzorem (6) opsuje zay w statystyce matematyczej rozkład ormaly, zway rozkładem Gaussa Fukcja ta zależy od dwóch parametrów oraz speła waruek ormalzacyjy ( )d (7) Waruek te wyka z właścwośc fukcj określa, że prawdopodobeństwo zalezea dowolego wyku pomaru w przedzale od do + jest rówe pewośc, czyl Parametry mają prostą terpretację aaltyczą Dla wartośc = fukcja () osąga maksmum Parametr ma atomast tę cechę, że wartośc + określają pukty przegęca krzywej Gaussa A węc wartość możemy traktować jako marę szerokośc rozkładu Natomast statystycza terpretacja parametrów wskazuje, że wartość, przy której fukcja Gaussa przyjmuje maksmum, jest wartoścą oczekwaą rozkładu (w praktyce wartoścą średą z pomarów), a parametr odchyleem stadardowym Z przedstawoych a rys 4 wykresów fukcj Gaussa dla różych wartośc parametru wdać, że ze wzrostem wartośc rozkłady stają sę coraz bardzej spłaszczoe, co moża terpretować jako wzrost lczby pomarów coraz bardzej różących sę od wartośc rzeczywstej o Wydaje sę oczywste, że epewość przypadkowa pojedyczego pomaru powa być określoa za pomocą welkośc będącej marą rozrzutu wyków wokół wartośc rzeczywstej Taką właśe welkoścą jest parametr (rys 4)
8 = 4-3 - - 0 3 Rys 4 Prawdopodobeństwo P() zalezea wyku pomaru w przedzale o określoej szerokośc wylcza sę z całk ozaczoej po fukcj rozkładu Gaussa () P () () d, (8) gdze grace całkowaa określają szerokość przedzału, w którym zajduje sę wyk pomaru Z tak oblczoych całek moża wycągąć astępujące wosk: w przedzale powo zajdować sę poad 68% wyków pomarów, w przedzale 95,4%, a w przedzale 3 poad 99% (rys 5) = -3 - - 0 + +3 + 683% 954% 99% Rys 5
9 Rozkład Gaussa jest rozkładem cągłym, dobrze przyblżającym dośwadczaly rozkład wyków pomarów, w których domują epewośc przypadkowe Stomy teraz przed problemem oszacowaa parametrów tego rozkładu a podstawe skończoej lczby pomarów Wartość rzeczywstą o, którą zterpretowalśmy jako wartość oczekwaą rozkładu, ajlepej przyblży średa arytmetycza Jest to kosekwecja wykającej z rozkładu Gaussa metody ajmejszych kwadratów, tj waruku, aby suma kwadratów odchyleń wyków pomaru od wartośc rzeczywstej była mmala, tz y ( ) ( o ) m (9) Różczkując wyrażee (9) względem, otrzymujemy dy ( o ) 0, d ( ) 0, 0 o (0) Tak węc wartoścą ajbardzej prawdopodobą (wartoścą oczekwaą) welkośc o jest średa arytmetycza z pomarów: () Natomast parametr określający rozrzut wyków wokół wartośc rzeczywstej o przyblżamy welkoścą () oblczoą a podstawe wzoru ( o ) (), () gdze o jest wartoścą rzeczywstą, a wartoścą -tego pomaru Poeważ e zamy jedak wartośc rzeczywstej o, a jedye jej oszacowae przez średą arytmetyczą, posługujemy sę wzorem w postac S() ( ) (3) Tak zdefowaa epewość pomarowa os azwę odchylea stadardowego pojedyczego pomaru Różca mędzy wzoram () (3) polega e tylko a zastąpeu wartośc rzeczywstej o przez średą arytmetyczą, ale róweż a zamae maowka z a Wyka to z faktu, że w lczku, który jest sumą kwadratów odchyleń pomaru od średej arytmetyczej, mamy już tylko ezależych składków
0 Welkość S() określa am epewość przypadkową pojedyczego pomaru jej wartość e zależy od lczby pomarów, a tylko od właścwośc obektu merzoego waruków, w jakch jest wykoyway pomar, poeważ tylko te czyk decydują o szerokośc rozkładu prawdopodobeństwa Dla eksperymetatora wykoującego pomarów daej welkośc ajstotejsza jest ocea, o le z jakm prawdopodobeństwem wyzaczoa wartość średa róż sę od wartośc rzeczywstej 0 Welkoścą pozwalającą a taką oceę jest odchylee stadardowe wartośc średej, które zgode z Mędzyarodową Normą os azwę epewośc stadardowej u() zdefowaej wzorem (ocea typu A) S() u() ( ) (4) ( ) Nepewość stadardowa u(), określoa wzorem (4) jest sumaryczą marą epewośc pochodzących od wszystkch możlwych typów epewośc przypadkowych występujących w pomarach jej wartość maleje ze wzrostem lczby pomarów Wartość u() określa am welkość przedzału wokół wartośc średej, w którym z prawdopodobeństwem 68% moża oczekwać wartośc rzeczywstej Wzęce przedzału rówego u() 3u() powoduje wzrost tego prawdopodobeństwa do odpowedo 95,4% 99,7% A węc podając przedzał epewośc przypadkowej, ależy rówolegle podać wartość prawdopodobeństwa Należy tu zazaczyć, że ym gaussowskm (tz opartym a założeu, że pomary daej welkośc mają rozkład Gaussa) maram epewośc przypadkowej mogą być tzw epewość przecęta epewość prawdopodoba, wyzaczające grace zalezea rzeczywstej wartośc z prawdopodobeństwem odpowedo 57% 50% Np epewość przecętą defujemy wzorem s p, (5) przy czym zależość mędzy epewoścą przecętą a epewoścą stadardową u() daje zwązek u(),5 (6) sp Przykład 4 Wykoao 0 pomarów długośc wałka stalowego przy użycu suwmark, której ajmejsza dzałka wyos 0, mm Uzyskao astępujące wyk: 35,6; 35,8; 35,7; 35,5; 35,6; 35,9; 35,7; 35,8; 35,9; 35,4 (mm) Zgode ze wzorem () wartość średa długośc wyos l = 35,69 mm, atomast epewość stadardowa u(l) zgode ze wzorem (4) ma wartość u(l) = 0,053 mm Wyk końcowy pomaru ależy zapsać w postac: l = 35,69(5) mm, lub l = (35,69 0,05) mm oraz l [%] = 0,% Zauważmy, że wartość epewośc stadardowej u(l) jest porówywala z epewoścą maksymalą l, której wartość jest e mejsza ż 0, mm! (patrz pkt 5)
4 Nepewośc przypadkowe pomarów pośredch W praktyce laboratoryjej ajczęścej wykoujemy pomary pośrede, a welkość fzyczą wyzaczoą w eksperymece oblcza sę, operając sę a określoym prawe fzyczym wykającym z tego prawa wzorze Jeżel welkośc X, X, X 3, X bezpośredo merzoe e są skorelowae, tz każdą welkość merzy sę w ym ezależym dośwadczeu, to dla daej fukcj y = f(,, 3 ), (7) epewość stadardową u c (y) fukcj złożoej oblczamy jako sumę geometryczą różczek cząstkowych: y y uc (y) u() u( ), (8) gdze w rozwęcu w szereg Taylora uwzględa sę tylko wyrazy perwszego rzędu, a u( ), u( ), u( ), są wartoścam epewośc stadardowych welkośc X, X, X, bezpośredo merzoych w pomarze, lczoych z wzoru (4) Natomast wartość końcową welkośc Y oblczamy ze wzoru (7), przyjmując wartośc średe welkośc wyzaczoych bezpośredo w eksperymece: y = f (,, ) (9) Jeżel złożoa welkość fzycza Y wyraża sę wzorem w postac loczyowej welkośc bezpośredo wyzaczaych w eksperymece: a y A, (30) gdze A a stałe, to oblczae wyrażea a epewość stadardową u c (y) welkośc Y, wyrażoej wzorem (30), zacze upraszcza sę, przyjmując postać u c (y) y u (y) y c a u( ),, (3) a u() a u( ) gdze: y średa wartość welkośc Y, wylczoa ze średch wartośc podstawoych do wzoru (30) Wzory (8) (3) defują tzw prawo przeoszea epewośc stadardowych w sytuacj, gdy epewośc stadardowe welkośc bezpośredo merzoych są oblczae metodą typu A
Przykład 5 Wyzaczamy objętość wałka z przykładu 4, którego długość ma wartość: l = 35,69(5) mm Pomary średcy wykoao suwmarką, powtarzając 0-krote uzyskując wyk: d = 4,89() mm oraz d [%] = 0,4% Nepewość stadardową u(d) = 0,0 mm wyzaczoo w sposób aalogczy jak w przykładze 4, tz ze wzoru (4) Objętość wałka wylczoa ze wzoru d l V = 669,93 mm 3, 4 a epewość stadardową welkośc złożoej u c (V) wylczamy z prawa przeoszea epewośc (wz (8)) u (V) c V u(d) d V u(l) l dl u(d) d 4 u(l) 3 5,56 mm Wyk końcowy pomaru zapszemy w postac V = 670(6) mm 3 lub (670 6) mm 3 ; v [%] = 0,9% 5 NIEPEWNOŚCI SYSTEMATYCZNE PORÓWNYWALNE Z PRZYPADKOWYMI W poprzedch dwóch puktach rozpatrzoo oblczae epewośc pomarowych w przypadkach skrajych: gdy epewośc systematycze wszystkch welkośc bezpośredo wyzaczaych w pomarach domują ad epewoścam przypadkowym (ocea typu B pkt 3) oraz w sytuacj odwrotej, gdy epewośc przypadkowe welkośc prostych przeważają ad epewoścam systematyczym (ocea typu A pkt 4) Chocaż są to przypadk skraje, zdarzają sę oe w aszej praktyce laboratoryjej bardzo często Nemej jedak możlwe są sytuacje, w których część welkośc prostych, służących do wyzaczea welkośc złożoej, wykazuje przewagę epewośc systematyczych, a pozostała przypadkowych Spotykamy róweż przypadk, w których epewośc systematycze welkośc bezpośredo wyzaczaej w pomarze są porówywale z epewoścam przypadkowym tej welkośc Powstały problem moża rozwązać dwojako Na podstawe rozkładu epewośc przypadkowych wyzaczyć moża epewość maksymalą (dobrą oceą będze tu potrojoa wartość epewośc stadardowej u()) dodając do tego epewośc systematycze, polczyć maksymalą epewość welkośc złożoej metodą różczk zupełej lub logarytmczej Jest to metoda, która prowadz do zaczego zawyżea epewośc pomarowej Właścwą metodą zalecaą przez Przewodk jest skorzystae z relacj mędzy maksymalą epewoścą systematyczą a epewoścą stadardową u() wz (4) wprowadzee tak oszacowaej epewośc systematyczej do prawa przeoszea epewośc stadardowych wz (8) (3)
3 Tak węc zgode z pkt 3 epewość stadardowa u() wąże sę z maksymalą epewoścą systematyczą (ocea typu B) relacją u() 3 Uwzględając zarówo epewośc systematycze, jak epewośc przypadkowe, epewość stadardową u() ależy lczyć a podstawe wzoru: u() [u()], (3) 3 gdze: u( ) epewość stadardowa określająca epewość przypadkową ser pomarów welkośc X (ocea typu A) Natomast epewość stadardowa u c (y) welkośc złożoej będze określoa dość skomplkowaym, ogólym wyrażeem, wykającym bezpośredo z prawa przeoszea m f ( ) j u c (y) [u( )], (33) j 3 gdze: m lczba epewośc systematyczych, jakm obarczoe są welkośc X bezpośredo dostępe w pomarze, atomast lczba zmeych fukcj y = f(,, ) Przykład 6 W dośwadczeu wyzaczao średcę d cekego drucka metodą ugęca śwatła laserowego Na ekrae w odległośc l od drucka uzyskao obraz dyfrakcyjy, w którym odległośc mędzy środkam mmów dyfrakcyjych wyoszą Średcę drucka wylczamy z wzoru l d, gdze: długość fal śwatła laserowego ( = 63 m) W dośwadczeu l = 0 cm, a epewość systematyczą pomaru odległośc oszacowao a 0,5 cm Odległośc mędzy mmam dyfrakcyjym zmerzoo przymarem mlmetrowym, oceając epewość systematyczą tego pomaru a = 0,5 mm Uzyskao astępujące wyk 0 pomarów odległośc : 0,0; 9,5; 8,5; 9,0; 9,5; 8,0; 9,0; 9,5; 0,0; 9,0; 9,0; 9,5; 9,0; 9,5; 0,0; 9,0; 8,5; 9,5; 9,0 mm Średa odległość = 9, mm, atomast epewość stadardowa wylczoa z wz (4) u() = 0,5 mm Tak węc wkłady obu epewośc są porówywale: u()! Zatem epewość stadardową u() pomaru odległośc ależy oblczyć ze wzoru (3), atomast złożoą epewość u c (d) końcowego wyku oblczamy zatem ze wzoru (33), uwzględając zarówo przyczyek systematyczy jak przypadkowy Odpowede oblczea prowadzą do astępującego wzoru
4 u (d) c d (u l () ) (u()) 3 3 d l l 3 l 3 po podstaweu wartośc lczbowych epewość stadardowa wyku złożoego jest rówa: 6 6 u (d) 9,800 567,800 0,040 5,680 mm c Średa wartość średcy drucka l d = 0,086 mm, a wyk końcowy pomaru zapsujemy w postac: d = (0,083 0,06) mm lub d = 0,083(6) mm oraz d [%] = 30% Jak wyka z wartośc lczbowych wyrażea pod perwastkem, ajwększy wpływ a stosukowo dużą epewość stadardową welkośc złożoej (~30%) ma epewość systematycza wyzaczea odległośc mędzy mmam dyfrakcyjym (drug czło) Należy zatem zmeć metodę pomaru odległośc mędzy mmam dyfrakcyjym (), poprawając zacze jej dokładość 6 3 6 METODA NAJMNIEJSZYCH KWADRATÓW Bardzo często w praktyce laboratoryjej zachodz koeczość grafczego przedstawea wyków pomarów w postac lowej zależośc y = a + b Należy wówczas przez zbór puktów: ( y ), ( y ), ( y ) wraz z ch epewoścam y poprowadzć ajlepej dopasowaą prostą Isteje jedak pewa procedura rachukowa, zwaa metodą ajmejszych kwadratów, prowadząca do oblczea parametrów prostej (a, b) dla zboru par lczb y Nazwa berze sę od podstawowego założea metody takego doboru parametrów a b, aby suma kwadratów różc wartośc eksperymetalych y oblczoych a + b była jak ajmejsza (rys 6) Utwórzmy zatem fukcję parametrów prostej S(a,b) taką, że: y (a b) S (a,b,) = m (34) Rys 6 Kryterum określoe wzorem (34) wyprowadza
5 sę przy założeu, że tak zdefowae odchylea mają rozkład ormaly (Gaussa) Warukem koeczym a stee ekstremum wyrażea (34) jest zerowae sę pochodych cząstkowych względem a b: 0 a S 0 b S, co prowadz do układu dwóch rówań lowych z dwema ewadomym (a b): y b a, y b a (35) Rozwązując powyższy układ rówań, otrzymujemy wzory określające parametry prostej a b: y y b, y y a (36) Zastosowae praw statystyk matematyczej pozwala róweż wyprowadzć odpowede wyrażea a epewośc stadardowe u(a) u(b) parametrów prostej u(a) u(b), b) (a y u(a) (37) Wyrażea (36) (37) wydają sę eco skomplkowae, ale moża uzyskać zacze wygodejszą w oblczeach postać, wykorzystując defcje wartośc średch:, y y y y, y y
6 Wówczas rówaa (36) (37) przyjmą postać y y a b y a, (38) y ay by u(a), () (39) w którym ( ) u(b) u(a), jest kwadratem wartośc średej zmeych ezależych Metoda ajmejszych kwadratów e zapewa samoczyej elmacj puktów pomarowych, zacze odbegających od prostej Dlatego też wykres y = f() umożlwający wzualą oceę daych pomarowych ależy wykoać przed przystąpeem do oblczeń, a ajlepej jeszcze w czase pomarów Moża wówczas albo powtórzyć pomar, który zacze odbega od prostej, albo w ostateczośc tak wyk pomaru wyelmować z oblczeń parametrów prostej Oblczoe w te sposób parametry a b pozwalają jawe zapsać rówae y = a + b wrysować tak wylczoą prostą w układ puktów pomarowych ( y ) przedstawoych a wykrese zależośc y = f() Częstym przypadkem w pomarach laboratoryjych jest epełe rówae lowe (b = 0), które chcemy poddać aalze metodą ajmejszych kwadratów Dla fukcj y = a z kryterum ajmejszych kwadratów y a S (a) = m (40) po oblczeu pochodej, otrzymujemy tylko jedo rówae, z którego możemy oblczyć parametr a: gdze y a a y y 0, y, zgode z defcją są wartoścam średm y y Natomast wyrażee a epewość stadardową parametru a przyjme postać (4)
czyl gdze a y y u (a), 7 y u (a) a, (4) y y, atomast a jest parametrem prostej wylczoej ze wzoru (4) Rówaa y = a + b y = a azywamy rówaam regresj lowej welkośc fzyczej Y względem welkośc X Marą tego, jak sla jest badaa współzależość, jest współczyk korelacj lowej r y y (43) () y (y) Współczyk korelacj zawera sę w przedzale r, przy czym korelacja jest tym slejsza, m wększą wartość osąga r Tablce statystycze podają gracze wartośc r gr (w zależośc od lczby pomarów ), od których wzwyż moża woskować o steu stotej współzależośc pomędzy badaym welkoścam fzyczym Występujące w rówau regresj parametry mają często określoy ses fzyczy metoda ajmejszych kwadratów pozwala a ch ajbardzej warygodą oceę W welu przypadkach, jeżel zależość mędzy y e jest lowa, możemy aszą fukcję sprowadzć do postac lowej poprzez odpowedą zamaę zmeych Do postac lowej łatwo jest sprowadzć fukcje wykładczą typu: z = c e a Po zlogarytmowau otrzymujemy l z = l c + a Po podstaweu y = l z, b = l c, otrzymujemy fukcję lową y = a + b W podoby sposób moża do postac lowej sprowadzć fukcję potęgową: z = ct a, podstawając y = log z, b = log c, = log t, otrzymujemy: W przypadku fukcj typu hperbolczego y = a + b a y b t postać lową otrzymujemy przez podstawee = /t: y = a +b
8 Jako przykład zastosowaa metody ajmejszych kwadratów do zajdowaa rówaa regresj lowej oraz ocey jej parametrów wykorzystamy pomary pochłaaa promeowaa () w zależośc od grubośc warstwy absorbeta (ćw 37) Przykład 7 Zależość lczby zlczeń, która jest proporcjoala do lczby kwatów wysyłaych przez źródło, od grubośc warstwy absorbeta wyraża sę wzorem: N() = N o ep( ), gdze: N 0 lczba zlczeń pochodząca od kwatów, przy braku materału osłabającego (Poeważ promeowau towarzyszy promeowae lub, pomar bez absorbeta daje am lczbę zlczeń wyższą od N 0 ), współczyk osłabea promeowaa [ cm ], grubość absorbeta [cm] W tabel zameszczoo wyk pomarów po uwzględeu promeowaa tła N t = 36 mp/m, atomast a rys 7 przedstawoo zależość N = f() Tabela Grubość absorbeta [cm],,4 3,6 4,8 6,0 7, 8,4 9,6 lczba zlczeń N () [mp/m] 405 350 7 956 680 05 937 853 Rys 7 W celu wyzaczea parametrów N 0 posłużymy sę metodą ajmejszych kwadratów, sprowadzając uprzedo zagadee do postac lowej Po zlogarytmowau stroam wyrażee a N() przyjmuje postać l N = l N 0 Wprowadzając ozaczea: a =, b = l N 0, y = l N, otrzymujemy rówae prostej y = b + a
9 Przed przystąpeem do oblczeń parametrów prostej tworzymy bardzo pożyteczą tabelkę pomocczą: Lp (cm) l N = y y (cm) (cm ) y 8,,4 9,6 8,3069 8,638 6,7487 9,9684 9,55 64,788,44 5,76 9,6 69,006 66,640 45,546 średa = 5,4 y = 7,5083 y = 39,037 = 36,7 y = 56,678 dodatkowo oblczamy ( ) = (5,4 cm) = 9,6 (cm) Wykorzystując ostat wersz tabelk oraz układ rówań (38) (39), oblczamy parametry prostej (a b) oraz ch epewośc u(a) u(b): a = 0,99 cm ; u(a) = 0,008 cm ; b = 8,58; u(b) = 0,05, atomast ze wzoru (43), jako marę współzależośc oblczamy współczyk korelacj, którego wartość wyos r = 0,995 Tak węc szukae rówae prostej ma ostatecze postać: y = 8,59(5) 0,99(8) Współczyk osłabea promeowaa wyzaczoy w tym dośwadczeu jest węc rówy = (0,99 0,008) cm, a jego epewość względa [%] = 4% Natomast początkowa lczba zlczeń N 0 = (5350 70) mp/m epewość względa N [%] = 5% Rezultaty oblczeń metodą ajmejszych kwadratów oraz dae dośwadczale przedstawoo a rysuku 8 Rys 8
30 7 PREZENTACJA WYNIKÓW POMIARÓW Wyzaczoą welkość fzyczą musmy przedstawć z odpowedą precyzją wraz z przedzałem epewośc wykłej z metody pomarowej, użytych przyrządów czy też właścwośc obektu merzoego Sposoby określea epewośc pomarowych zostały omówoe wcześej, w tym mejscu podamy pewe ogóle zasady prezetacj wyków końcowych Wyk pomarów, bezpośred lub będący wykem oblczeń, jeśl wyzaczamy welkość złożoą, podajemy wraz z epewoścą stadardową bezwzględą u() względą Bezwzględa epewość stadardowa u() (ocea typy A) lub epewość maksymala (ocea typu B) określa, o le wyk pomaru może różć sę od rzeczywstej wartośc o Ne zamy rzeczywstej wartośc, ale uważamy, że meśc sę oa z określoym prawdopodobeństwem w przedzale u() o + u(); ocea typu A, o + ; ocea typu B, dlatego wyk końcowy zapsujemy w postac o = u() lub o = Mędzyarodowa Norma uzaje róweż y sposób podaa wyku końcowego, p: o = (u()) lub o = oraz u() Jako przykład zapsu końcowego przytoczmy wyk pomaru przyspeszea grawtacyjego: g = 9,78 m/ s, u(g) = 0,076 m/s, lub g = 9,78(76) m/s, lub g = (9,78 0,076) m/s Prawdopodobeństwo, z jakm rzeczywsta wartość meśc sę w określoym przez as przedzale, jest bardzo stotą formacją, którą ależy podać oprócz wartośc epewośc pomarowej Ocea epewośc typu A oparta jest a rozkładze ormalym (Gaussa), stąd przyjęce szerokośc przedzału epewośc: u(), u() czy 3u() określa wartość tego prawdopodobeństwa odpowedo a: 68,% 95,4% 99,7% Natomast epewość maksymala (ocea typu B) oparta jest a rozkładze prostokątym (jedostajym) stąd prawdopodobeństwo, że wartość rzeczywsta meśc sę w przedzale jest rówe pewośc (00%) Nepewość względą określamy jako stosuek epewośc bezwzględej u() (lub ) do otrzymaego wyku pomaru podajemy zazwyczaj w procetach u() % 00%
3 Stosowae epewośc względej ma stote zaczee dla określea dokładośc pomarów Jeśl merzymy długość ołówka (~0 cm) z dokładoścą do mm, to taka dokładość (epewość względa ~%) wydaje sę wystarczająca rozsąda Natomast pomar długośc boków pokoju (~5 m) z taką samą epewoścą bezwzględą jest już pomarem bardzo dokładym (epewość względa ~0,0%) zupełe epotrzebym, który zresztą trudo byłoby am przeprowadzć Dlatego podae epewośc bezwzględej ewele am mów o rzeczywstej dokładośc pomaru jeśl e zestawmy tej epewośc z wartoścą merzoej welkośc Z tego puktu wdzea welkość epewośc względej daje am pojęce o dokładośc pomarów umożlwa porówae dokładośc różych metod różych welkośc Poadto w przypadku epewośc złożoej (opartej a prawe przeoszea epewośc) pozwala oceć wkład epewośc pomarów bezpośredch do całkowtej epewośc wyku końcowego Końcowe rezultaty ależy podawać we właścwe dobraych jedostkach z odpowedą precyzją O precyzj zapsu daej lczby śwadczy lość zawartych w ej cyfr zaczących Cyfram zaczącym są cyfry od do 9, p lczba 3 ma 3 cyfry zaczące (lub mejsca zaczące) Zero jest cyfrą zaczącą tylko w przypadku, gdy zajduje sę medzy dwoma cyfram e będącym zeram, albo a dowolym mejscu po cyfrze e będącej zerem ale zawartej w lczbe z przeckem Na przykład lczbę 500 możemy zapsać jako 5 0 - przedstawa węc oa jedo mejsce zaczące Jeśl chcemy zazaczyć, że posada oa trzy cyfry zaczące, ależy przedstawć ją w postac 5,00 0 Zer będących mejscam zaczącym e ależy opuszczać W ułamkach dzesętych lość mejsc zaczących odpowada lośc cyfr po ostatm zerze, przed którym e ma cyfr zaczących, p lczba 0,000 ma 3 mejsca zaczące Ułamk dzesęte wygode jest zapsywać w postac lczby ebędącej zerem, możoej przez 0 w odpowedej potędze, p 0,000 =,0 0 3, 00000 =,0 0 6 tp Względą epewość pomaru, wyrażoą w procetach, podajemy z dokładoścą do jedego mejsca zaczącego (p 0,%; 0,8%; 3%; 6%), lub dwóch mejsc zaczących, jeżel [%] > 0% (p 3%, 8%, 0% td) Procetowa wartość epewośc względej ogracza lość mejsc zaczących wyku końcowego pomaru jego epewośc bezwzględej Wyk pomaru welkośc prostej lub złożoej zaokrąglamy zawsze do tego samego mejsca dzesętego, do którego zaokrąglalśmy epewość pomarową, bo tylko wtedy odzwercedla o rzeczywstą dokładość pomarową Obe te welkośc zapsujemy w jedoltej postac, tz jeśl wyk zapsujemy jako lczbę możoą przez 0 do dowolej potęg, to bezwzględa epewość pomarowa mus być róweż lczbą pomożoą przez 0 do tej samej potęg W przecwym przypadku zaps trac swoją przejrzystość Jako przykład lustrujący powyższe uwag posłuży am oblczee rówoważka elektrochemczego (k) jego epewośc maksymalej (k) dla pewych joów metalu Z oblczeń uzyskalśmy astępujące lczby: k =,0963 0 6 kg/c; epewość bezwzględa k = 0,347 0 6 kg/c epewość względa k k 0,03470 00% 00% 4% k % 6,09630 6 kg / C kg / C
3 Wyk końcowy zapsujemy w postac k = (,0 0,04) 0 6 kg/c lub k =,0(4) 0 6 kg/c; [%] = 4% Zauważmy, że zero w wyku końcowym jest lczbą zaczącą Z podaych powyżej zasad wyka, że powśmy dokoywać oblczeń z dokładoścą o co ajmej jedo mejsce zaczące wększą, ż dokładość z jaką podajemy wyk końcowy Uwaga ta przy coraz powszechejszym używau kalkulatorów e jest zbyt stota, pragemy jedak przestrzec przed bezkrytyczym przepsywaem uzyskaych a tej drodze oblczeń przedstawaem ch jako wyków końcowych Na zakończee tych uwag podajemy jeszcze klka ych przykładów poprawego zapsywaa wyków końcowych: m = (9,3 0,) 0 3 kg; [%] = %, I =,7(8) 0 3 A; [%] = 6%, g = 9,78(76) m/s ; [%] = 0,7%, T = (93 )K; [%] = 0,3%, h = 6,59(5) 0 34 J s; [%] = 4% td W trakce pracy w laboratorum fzyczym spotykamy sę często z koeczoścą przedstawea wyków pomarów w postac grafczej, dlatego chcelbyśmy przypomeć pewe ogóle zasady sporządzaa wykresów Wartośc zmeej ezależej odkładamy a os pozomej, a zmeej zależej a os poowej y Obe ose powy być ozaczoe symbolem lub azwą zmeej wraz z azwą lub symbolem jedostk w jakej jest oa wyrażoa Skale obu os powy być tak dobrae, aby krzywa wykresu przebegała możlwe przez całą jego powerzchę Ozacza to, że e muszą oe zaczyać sę od zera tylko od wartośc eco mejszej od ajmejszej zmerzoej wartośc Podzałk skal powy być wyraźe zazaczoe tak dobrae, aby umożlwały łatwe odczytae jakegokolwek puktu a wykrese, z dokładoścą rówą co ajmej dokładośc przeprowadzoych pomarów 3 Pukty dośwadczale powy być przedstawoe w wyraźy sposób kółkam lub krzyżykam tak, aby były wdocze a tle przeprowadzoej krzywej 4 Na wykrese ależy zazaczyć epewośc pomarowe reprezetowae przez poszczególe pukty Jeśl tylko jeda welkość jest obarczoa epewoścą, p zmea zależa Y, to zazaczamy to poową kreską o długośc y, której środek przypada w daym pukce W przypadku, gdy obe zmee obarczoe są epewoścam pomarowym, zazaczamy to w postac krzyżyka o ramoach y, a przecęcu których zajduje sę pukt reprezetujący wyk pomaru 5 Prowadząc krzywą, mającą określć charakter przebegu puktów dośwadczalych, ależy przede wszystkm zwrócć uwagę a welkośc epewośc pomarowych Pukty wytyczające krzywą e muszą a ej leżeć, a powy być raczej rówomere rozmeszczoe powyżej pożej krzywej Należy jedak dbać o to, by krzywa meścła sę w gracach zazaczoych epewośc pomarowych Poprowadzoa krzywa e powa meć ostrych załamań ależy prowadzć ją w sposób możlwe cągły W poblżu zauważoych maksmów lub mmów zagęszczee puktów dośwad-
opór ( ) I(A) 33 czalych powo być wększe Pukty wyraźe odbegające od krzywej wypośrodkowaej zwykle są wykem błędów 0 grubych w zwązku z tym odrzu- camy je Przykładem tego sposobu prowadzea krzywej są wykresy charakterystyk 0 prądowo-apęcowych dla różych elemetów elektroczych (rys 9) 6 Gdy dyspoujemy teorą pozwalającą oblczyć krzywą w sposób ezależy od 0 40 60 U(V) 80 00 położea puktów dośwadczalych, to wykres składa sę z tych puktów wraz z Rys 9 ch epewoścam krzywej teoretyczej (rys 0) Krzywa dośwadczala e jest potrzeba 7 Zamy z teor typ fukcj (p wemy, że jest to zależość lowa), ale e zamy jej parametrów (p parametry a b prostej) Korzystając z regresj lowej (pkt 6), wylczamy parametry a b Na wykres aosmy pukty dośwadczale wraz z epewoścam, a prostą wrysowujemy w układ puktów, zgode z rówaem: y = a + b (rys ) 008 (rad) 0 04 06 08 0 (T-T 0 )/T 0 006 004 5 0 00 0 05 0 0 30 40 50 60 (stop) 0 0 30 40 50 temperatura ( oc) Rys 0 Rys Uwag końcowe Przed przystąpeem do wykoywaa ćwczea laboratoryjego ależy sę odpowedo do tego przygotować Przygotowae polega m a zrozumeu badaego zjawska jego teor oraz zapozau sę z plaem ćwczeń, metodą pomaru oraz zestawem przyrządów Ngdy e ależy przystępować do wykoaa ćwczea, jeżel e jest oo dostatecze jase Nezrozumee celu wykoywaych czyośc e tylko e daje żadych korzyśc pozawczych, lecz prowadzć może do uszkodzea często kosztowego przyrządu, lub do wypadku Przed pomaram ależy też przeprowadzć ogólą dyskusję błędu pomaru
34 welkośc złożoej Otrzymać z ej moża cee wskazówk, przy pomarze jakch welkośc ależy zwracać szczególą uwagę a dokładość pomarów Z przyrządam ależy obchodzć sę bardzo ostroże Ne zaczyać p łączyć obwodów elektryczych od źródła prądu W każdym przypadku bezwzględe ależy stosować sę do wskazówek podaych w strukcj do każdego ćwczea, do regulamu ogólego, mówącego o zachowau sę w sal laboratoryjej oraz do bezpośredch wskazówek prowadzącego ćwczea Właścwe przygotowae do wykoywaa ćwczeń wymaga róweż pogłębea wadomośc o odpowedch zjawskach a podstawe wykazu lteratury umeszczoego a końcu skryptu Wyboru lteratury dokoao operając sę a klku ogóle dostępych (Bbloteka Główa PG) możlwe owych podręczkach z zakresu fzyk ogólej Na zakończee tych wstępych ogólych uwag chcelbyśmy udzelć jeszcze jedej rady Często welkośc wyzaczae w trakce pracy z laboratorum są welkoścam wyzaczoym uprzedo z dużą dokładoścą łatwo dostępym w tablcach fzyczych Dobrze jest asze końcowe wyk skofrotować z zameszczoym tam daym będze to dodatkowym sprawdzaem zarówo poprawośc aszych oblczeń, jak metody pomarowej oraz sposobu określea epewośc pomarowych LITERATURA [] Gude to Epresso of Ucertaty Measuremets, ISO 995, Swtzerlad Tłumaczee: Wyrażae epewośc pomaru Przewodk Warszawa: Główy Urząd Mar 999 [] Szydłowsk H: Postępy fzyk 5, 9 (000) [3] Zęba A: Postępy fzyk 5, 38 (00) [4] Szydłowsk H: Pracowa fzycza Warszawa: PWN 999 [5] Pracowa fzycza Wydzału Fzyk Techk Jądrowej AGH (Red A Zęba) Skrypt r 59 Kraków: Wydawctwo AGH 998 [6] Laboratorum podstaw fzyk Poltechk Warszawskej (Red J Hrabowska, L Tykarsk) Warszawa: Wydawctwo PW 985