KURS PRAWDOPODOBIEŃSTWO



Podobne dokumenty
Podstawy nauk przyrodniczych Matematyka

KURS PRAWDOPODOBIEŃSTWO

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Prawdopodobieństwo

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:

Rachunek prawdopodobieństwa

KURS PRAWDOPODOBIEŃSTWO

dr Jarosław Kotowicz 14 października Zadania z wykładu 1

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

DOŚWIADCZENIA WIELOETAPOWE

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;

Doświadczenie i zdarzenie losowe

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

Zdarzenie losowe (zdarzenie)

Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3.

RACHUNEK PRAWDOPODOBIEŃSTWA

Prawdopodobieństwo zadania na sprawdzian

Zmienna losowa. Rozkład skokowy

Zadania zestaw 1: Zadania zestaw 2

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

dr Jarosław Kotowicz 29 października Zadania z wykładu 1

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT) NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Laboratorium nr 7. Zmienne losowe typu skokowego.

Lista zadania nr 3 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Rzucamy 10 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 10 razy orzeł i B reszka wypadła dokładnie 10 razy są zależne?

ćwiczenia z rachunku prawdopodobieństwa

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite,

12DRAP - parametry rozkładów wielowymiarowych

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Laboratorium nr 1. Kombinatoryka

15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda

07DRAP - Zmienne losowe: dyskretne i ciągłe

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 1.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

Wydział Zarządzania - Rachunek prawdopodobieństwa - Ćwiczenia

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa

Prawdopodobieństwo GEOMETRYCZNE

Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

12. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania

Rachunek prawdopodobieństwa

Podstawy Teorii Prawdopodobieństwa

Rachunek prawdopodobieństwa dla informatyków

ALGEBRA ZDARZEŃ. PRZYKŁAD Ω = {ω 1, ω 2, ω 3, ω 4 } A = {ω 1, ω 2} DEFINICJA Mówimy, Ŝe zdarzenie elementarne w sprzyja zdarzeniu A (A Ω), jeŝeli ω A

Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

Przestrzeń probabilistyczna

Skrypt 30. Prawdopodobieństwo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Zdarzenia losowe Zmienne losowe Prawdopodobieństwo Niezależność

Rachunek Prawdopodobieństwa i Statystyka Matematyczna

Zadania Arkusz 12. Rachunek prawdopodobieństwa

Statystyka matematyczna

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

Zdarzenia losowe i prawdopodobieństwo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne

W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora.

I. Kombinatoryka i prawdopodobieństwo. g) różnowartościowych, h) bez miejsc zerowych, i) z jednym miejscem zerowym, j) z dwoma miejscami zerowymi,

Wersja testu A 18 czerwca 2012 r. x 2 +x dx

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer

rachunek prawdopodobieństwa - zadania

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II

Rachunek prawdopodobieństwa- wykład 2

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

Rozkłady prawdopodobieństwa zmiennych losowych

rachunek prawdopodobieństwa - zadania

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie)

Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki

Transkrypt:

KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1

Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Jakie warunki nie muszą spełniać hipotezy, aby można było zastosować wzór na prawdopodobieństwo całkowite lub Bayesa? a) Muszą być rozłączne b) Ich suma musi być równa całej przestrzeni zdarzeń elementarnych Ω c) Ich prawdopodobieństwa muszą być równe sobie d) Ich prawdopodobieństwa muszą sumować się do 1 Pytanie 2 Kiedy stosujemy wzór na prawdopodobieństwo całkowite? a) Gdy liczymy prawdopodobieństwo zajścia jakiejś hipotezy pod warunkiem zajścia zdarzenia A b) Gdy liczymy prawdopodobieństwo zajścia wszystkich hipotez c) Gdy liczymy prawdopodobieństwo zajścia jakiegoś zdarzenia pod warunkiem zajścia innych zdarzeń ( hipotez ) d) Gdy liczymy prawdopodobieństwo zajścia wszystkich zdarzeń składających się na przestrzeń zdarzeń elementarnych Ω Pytanie 3 Kiedy stosujemy wzór Bayesa? a) Gdy liczymy prawdopodobieństwo zajścia wszystkich zdarzeń składających się na przestrzeń zdarzeń elementarnych Ω b) Gdy liczymy prawdopodobieństwo zajścia jakiejś hipotezy pod warunkiem zajścia zdarzenia A c) Gdy liczymy prawdopodobieństwo zajścia jakiejś hipotezy bez danych warunków d) Gdy liczymy prawdopodobieństwo tego, że hipoteza zaszła po zajściu zdarzenia A w czasie www.etrapez.pl Strona 2

Pytanie 4 Wzór Bayesa możemy wykorzystać również do a) Schematu Bernoulliego b) Odwrócenia kolejności w prawdopodobieństwie warunkowym, tzn. policzenia P B A, zamiast P A B - mając odpowiednie dane c) Schematu Poissona dla dużych n i małych p d) Przekształcenia prawdopodobieństwa warunkowego w niezależne Pytanie 5 Prawdą jest, że a) Każde zadanie na prawdopodobieństwo całkowite należy opisać przy pomocy tzw. drzewka stochastycznego b) Każde zadanie na prawdopodobieństwo całkowite lub wzór Bayesa należy opisać przy pomocy tzw. drzewka stochastycznego c) Każde zadanie na prawdopodobieństwo całkowite, wzór Bayesa lub schemat Barnoulliego należy opisać przy pomocy tzw. drzewka stochastycznego d) Każde zadanie na prawdopodobieństwo całkowite można opisać przy pomocy tzw. drzewka stochastycznego Pytanie 6 Prawdą jest, że a) Wzór Bayesa wykorzystuje się we wzorze na prawdopodobieństwo całkowite b) Wzór na prawdopodobieństwo całkowite wykorzystuje się we wzorze Bayesa c) Wzór Bayesa wykorzystuje się w schemacie Bernoulliego d) Schemat Bernoulliego wykorzystuje się we wzorze na prawdopodobieństwo całkowite Pytanie 7 Jakie warunek musi spełniać koniecznie doświadczenie, aby można było zastosować w nim schemat Bernoulliego? a) Składać się z serii zdarzeń, których prawdopodobieństwa sumują się do jeden b) Składać się z serii identycznych zdarzeń c) Składać się z co najmniej trzech zdarzeń d) Składać się z nie określonej z góry liczby zdarzeń www.etrapez.pl Strona 3

Pytanie 8 Słowo sukces w schemacie Bernoulliego oznacza a) Pozytywny wynik zdarzenia w pojedynczej próbie b) Osiągnięcie określonej z góry liczby wyników doświadczeń w n pojedynczych próbach c) Jakikolwiek określony na początku wynik zdarzenia w pojedynczej próbie d) Zmienną k Pytanie 9 n p k k Czy wzór: 1 p a) Tak b) Nie Pytanie 10 n k jest wzorem na prawdopodobieństwo w schemacie Bernoulliego? Adam i Maciek rzucają 20 razy monetą do gry. Za pierwszym razem rzuca Maciek. Jeśli w poprzednim rzucie na monecie wypadł orzeł, następny rzut wykonuje Maciek, a jeśli reszka, następny rzut wykonuje Adam. Rzuty Adama i Maćka różnią się od siebie Adamowi wychodzą trochę częściej orły, a Maciek rzuca bardziej po równo. Czy do obliczenia prawdopodobieństwa tego, że w tych 20 rzutach wypadnie tyle samo orłów co reszek można użyć schematu Bernoulliego? a) Tak b) Nie www.etrapez.pl Strona 4

Część 2: ZADANIA Zadanie 1 W pewnej grupie studenckiej na Politechnice jest 5 razy więcej chłopaków niż dziewczyn. Prawdopodobieństwo zaliczenia egzaminu przez dziewczynę wynosi 0,6, a prawdopodobieństwo zaliczenia egzaminu przez chłopaka wynosi 0,5. Oblicz prawdopodobieństwo zaliczenia egzaminu przez losowo wybraną osobę z grupy. Zadanie 2 Stosunek liczby maków do innych kwiatów na łące wynosi 4:3. Prawdopodobieństwo tego, że pszczoła zapyli losowo wybrany kwiat na łące wynosi 0,2 jeśli będzie to mak i 0,1 jeśli będzie to inny kwiat. Pszczoła faktycznie zapyliła kwiatek jakie jest prawdopodobieństwo, że był to mak? Zadanie 3 Student opanował 60% materiału (zna odpowiedź na 60% pytań). Jakie jest prawdopodobieństwo, że zdobędzie dokładnie wymagane 50% punktów do zaliczenia na teście składającym się z 10 pytań (za każde 1 punkt)? Zadanie 4 Fabryka produkuje dwa rodzaje komputerów dla zwykłych użytkowników domowych i dla profesjonalistów. Komputery dla profesjonalistów stanowią 5% całej produkcji. Wśród komputerów dla użytkowników domowych 99% jest wyposażonych w system operacyjny Windows, a wśród komputerów dla profesjonalistów 40% jest wyposażonych w system operacyjny inny niż Windows. Fabrykę opuszcza losowo wybrany komputer wyposażony w system operacyjny inny niż Windows. Jakie jest prawdopodobieństwo, że jest on przeznaczony dla zwykłego użytkownika domowego? Zadanie 5 Jeden na pięciu mężczyzn nie lubi piłki nożnej i pięć na siedem kobiet nie lubi piłki nożnej. Z grupy, w której jest tyle samo kobiet, co mężczyzn wylosowano osobę, która nie lubi piłki nożnej. Jakie jest prawdopodobieństwo, że jest to kobieta? Zadanie 6 Do celu może strzelać dwóch strzelców. Prawdopodobieństwo trafienia do celu przez pierwszego strzelca wynosi 0,6; a przez drugiego strzelca wynosi 0,4. O tym, który strzelec strzela decyduje rzut monetą. Jakie jest prawdopodobieństwo trafienia do celu? www.etrapez.pl Strona 5

Zadanie 7 Fabryka produkuje trzy rodzaje towarów, w partiach, w których ilość każdego towaru jest taka sama. Odsetek wadliwych towarów pierwszego rodzaju to 1%, odsetek wadliwych towarów drugiego rodzaju to 2%, a wśród towarów trzeciego rodzaju nie ma towarów wadliwych. W partii złożonej z tych trzech towarów wybrano losowo jedną sztukę do kontroli. Oblicz prawdopodobieństwo, że jest ona wadliwa. Zadanie 8 Prawdopodobieństwo wylosowania wadliwego towaru w kontroli wynosi 0,1. Jakie jest prawdopodobieństwo, że w 5 wylosowanych sztukach jest co najwyżej jedna wadliwa? Zadanie 9 Na osiedlu wszystkie mieszkania należą do jednej z trzech spółdzielni mieszkaniowych: Dąb, Sosna lub Stoczniowiec. 50% mieszkań należy do spółdzielni Dąb, a 20% do spółdzielni Sosna. W spółdzielni Dąb 25% mieszkań wymaga remontu, w spółdzielni Sosna odsetek ten wynosi 15%, a w spółdzielni Stoczniowiec 20%. a) Jakie jest prawdopodobieństwo, że losowo wybrane mieszkanie na osiedlu wymaga remontu? b) Losowo wybrane mieszkanie na tym osiedlu nie wymaga remontu. Z jakiej spółdzielni najprawdopodobniej ono pochodzi? Zadanie 10 40% kibiców siatkówki to mężczyźni. Oblicz prawdopodobieństwo, że w losowo wybranej 6- osobowej grupie kibiców jest co najmniej jeden mężczyzna. Zadanie 11 W urnie I znajduje się 7 kul białych i 4 czarne, w unie II 3 kule białe i 7 czarnych, a w urnie III 2 kule białe i 3 czarne. Z urny I i urny II losujemy po jednej kuli i wrzucamy je do urny III. Potem losujemy kulę z urny III. Jakie jest prawdopodobieństwo wylosowania kuli białej z urny III? Zadanie 12 Przeprowadzono doświadczenie polegające na rzucie 10 razy dwiema kostkami do gry. Oblicz prawdopodobieństwo, że w trzech rzutach suma oczek na kostkach wypadła 7. www.etrapez.pl Strona 6

Zadanie 13 Prawdopodobieństwo trafienia do tarczy co najmniej raz w czterech niezależnych i jednakowych próbach wynosi 0,5904. Oblicz prawdopodobieństwo trafienia do celu w pojedynczej próbie. Zadanie 14 Nadajemy latarką alfabetem Morsa tylko dwa rodzaje sygnałów: kropki i kreski -. Nadajemy komunikat składający się średnio z 74% sygnałów i 26% sygnałów -. Ze względu na bardzo złe warunki atmosferyczne odbiorca naszych sygnałów 1 sygnałów odbiera jako 10 -, a 1 sygnałów odbiera jako. 9 a) Jakie jest prawdopodobieństwo, że losowo wybrany znak z komunikatu zostanie odebrany jako? b) Jakie jest prawdopodobieństwo, że losowo wybrany znak z komunikatu zostanie odebrany jako -? c) Odbiorca odebrał sygnał. Jaką ma szansę, że ten sygnał rzeczywiście nadaliśmy? KONIEC www.etrapez.pl Strona 7