Laboratorium nr 1. Kombinatoryka
|
|
- Stanisław Nawrocki
- 7 lat temu
- Przeglądów:
Transkrypt
1 Laboratorium nr 1. Kombinatoryka 1. Spośród n różnych elementów wybieramy k elementów. Na ile sposobów możemy to uczynić? Wypisać wszystkie możliwe wybory w przypadku gdy n=3 i k=2. Wykonać obliczenia dla n=6 i 8 oraz k=4 i Rozmieszczamy k cząsteczek w n komórkach. Na ile sposobów możemy to uczynić? Wypisać wszystkie możliwe rozmieszczenia w przypadku gdy n=3 i k=2. Wykonać obliczenia dla n=5 i 9 oraz k= 3 i Ile różnych ciągów literowych można utworzyć przestawiając litery w wyrazie a) UCZELNIA b) MATEMATYKA? 4. Ile jest permutacji liczb 1,2,3,...,n, w których a) liczby 1 i 2 nie sąsiadują ze sobą b) liczby 1,2,3 nie tworzą trzech kolejnych wyrazów (niezależnie od porządku)? Wykonać obliczenia dla n=5, 9, Ile jest ciągów 5-elementowych utworzonych z liter A i B, w których litera A pojawia się 3 razy, a litera B pojawia się 2 razy? Rozważyć przypadek ciągów (i+j)-elementowych, gdzie i oznacza ilość liter A, zaś j ilość liter B. Wykonać obliczenia dla i=9, j=8. 6. Ile liczb można utworzyć z cyfr 2,4,6,8,9? Ile liczb różnocyfrowych można utworzyć z tych cyfr? 7. Tablica rejestracyjna zawiera dwie litery alfabetu łacińskiego i cztery cyfry. Ile jest różnych tablic? 8. Na ile sposobów można ustawić na szachownicy dwie wieże o różnych kolorach tak, aby każda z nich mogła wziąć drugą wieżę? 9. Litery alfabetu Morse a są utworzone z ciągów kresek i kropek z dowolnym powtarzaniem się. Ile liter można utworzyć z czterech (pięciu, dziesięciu) lub mniej symboli? 10.Wypisać wszystkie funkcje (wszystkie funkcje różnowartościowe) f: X Y, jeśli a) X = {x 1,x 2 }, Y = {0,1,2}. b) X = {x 1,x 2,x 3 }, Y = {0,1}. Ile jest funkcji (funkcji różnowartościowych) określonych na zbiorze r-elementowym o wartościach w zbiorze s-elementowym?
2 Laboratorium nr 2. Kombinatoryka c.d. 1. Ile różnych wyników można otrzymać przy rzucaniu dwoma (trzema, pięcioma) kostkami, jeśli: a) kostki są rozróżnialne, b) kostki są nierozróżnialne c) rozróżniamy wyniki w zależności od sumy wyrzuconych oczek? 2. Na r różnych posad zgłosiło się s kandydatów. Iloma sposobami można obsadzić te posady? Wykonać obliczenia dla r=5 oraz s=8,9,, Ile nastąpi powitań, gdy spotka się n znajomych ( zakładamy, że każdy wita się z każdym)? Wykonać obliczenia dla n=5,6, Ile przekątnych ma wielokąt wypukły o n bokach? Wykonać obliczenia dla n=8,9,, Ile jest różnych sposobów wypełnienia pojedynczego kuponu przy grze: a) w Dużego Lotka (wybieramy 6 liczb spośród 49) b) w Małego Lotka (wybieramy 5 liczb spośród 35)? 6. W turnieju szachowym bierze udział 6 zawodników. Turniej odbywa się systemem każdy z każdym. Każda gra może się skończyć dla gracza wygraną, przegraną albo remisem. Ile jest różnych możliwych wyników turnieju, jeżeli przez pojęcie wynik turnieju będziemy rozumieli ostateczny zapis w tabeli spotkań? 7. Ile dodatnich dzielników (wszystkich dzielników) posiada liczba ? 8. Dwie studentki zebrały 10 rumianków, 16 stokrotek i 14 konwalii. Na ile sposobów mogą podzielić się kwiatkami? 9. Na ile sposobów można rozdać r pączków s osobom? 10.Ile jest różnych rozwiązań równania x+y+z+t = 30 a) w zbiorze liczb całkowitych nieujemnych b) w zbiorze liczb naturalnych?
3 Laboratorium nr 3. Prawdopodobieństwo klasyczne. 1. Ze zbioru Z = {a,b,c,d} wybieramy dwie litery bez zwrotu. Jakie jest prawdopodobieństwo, że będą to dwie sąsiednie litery alfabetu? 2. Dziesięć książek ustawionych jest losowo na jednej półce. Obliczyć prawdopodobieństwo, że dwie (trzy) określone książki znajdą się obok siebie. 3. Spośród 10 losów 2 wygrywają. Kupiono jednocześnie 5 losów. Jakie jest prawdopodobieństwo, że wśród nich znajduje się a) jeden los wygrywający b) dwa losy wygrywające c) co najmniej jeden los wygrywający? 4. W Dużym Lotku gracz wybiera 6 liczb spośród 49 liczb. Organizatorzy także wybierają 6 liczb. Jakie jest prawdopodobieństwo, że gracz uzyska k trafień? 5. Jest n+m losów, spośród których wygrywa n losów. Kupiono jednocześnie k losów. Obliczyć prawdopodobieństwo, że wśród nich jest dokładnie s losów wygrywających. 6. Rzucono 3 kostki sześcienne. Jakie jest prawdopodobieństwo, że suma oczek wynosi 6 (17)? 7. Rzucono 3 kostki sześcienne. Jakie jest prawdopodobieństwo, że suma oczek wynosi 11 (12)? ( Zadanie kawalera de Méré ) 8. Dla zmniejszenia ogólnej ilości gier podzielono 2n drużyn sportowych na dwie równe podgrupy. Obliczyć prawdopodobieństwo, że dwie najsilniejsze drużyny znajdą się a) w różnych podgrupach b) w tej samej podgrupie? 9. W loterii genueńskiej jest 90 numerów, z których 5 wygrywa. Można postawić pewną kwotę na dowolne 2,3,4 lub 5 numerów. Jakie jest prawdopodobieństwo trafienia na wszystkie postawione numery w każdym ze wspomnianych 5 przypadków? 10. W magazynie znajduje się n par butów. Pobrano losowo 2r butów. Obliczyć prawdopodobieństwo, że wśród pobranych butów nie ma ani jednej pary. 11. Każdą z n pałek rozłamujemy na dwie części różnej długości ( długą i krótką). Tak otrzymane 2n części łączymy losowo w n par. Obliczyć prawdopodobieństwo tego, że a) wszystkie części pałek połączą się tak jak były połączone na początku b) wszystkie długie części pałek połączą się z krótkimi. 12. Sekretarka napisała n listów, które trzeba było wysłać do n osób, włożyła je do kopert i koperty zakleiła. Zaklejone koperty się pomieszały, ale sekretarka mimo to wpisała na każdej kopercie po jednym adresie, po czym wysłała listy. Obliczyć prawdopodobieństwo tego, że a) każdy z n adresatów otrzyma swój list b) dokładnie n-1 adresatów otrzyma swój list c) żaden z adresatów nie otrzyma swojego listu d) dokładnie k adresatów otrzyma swoje listy.
4 Laboratorium nr 4. Prawdopodobieństwo aksjomatyczne. 1. Ile razy trzeba rzucić kostką, aby prawdopodobieństwo wyrzucenia przynajmniej raz jednej szóstki było większe od 0,5 (0,8)? 2. Ile liczb trzeba wziąć z tablicy liczb losowych, żeby można było z prawdopodobieństwem nie mniejszym od 0,9 być pewnym, że przynajmniej jedna z nich jest parzysta? 3. Ile razy należy rzucić dwiema monetami, aby prawdopodobieństwo otrzymania przynajmniej raz dwóch orłów było większe od 0,5? 4. Ile razy trzeba rzucać dwiema kostkami, aby można było z prawdopodobieństwem większym od 0,5 oczekiwać, że przynajmniej jedna suma wyrzuconych oczek będzie równa 12? 5. Ile razy należy przeprowadzić dane doświadczenie, aby można było z prawdopodobieństwem nie mniejszym od r twierdzić, że przynajmniej jeden raz zajdzie zdarzenie, którego prawdopodobieństwo przy dowolnej realizacji doświadczenia równe jest p? 6. Oblicz prawdopodobieństwo tego, że losowo wybrany punkt kwadratu x 1 y 1 jest punktem leżącym wewnątrz okręgu x 2 +y 2 =1. 7. Jakie jest prawdopodobieństwo, że pole prostokąta o losowych wymiarach o obwodzie 20 cm nie przekracza 21 cm? 8. Na okręgu o promieniu r wybrano losowo trzy punkty A, B i C. Jakie jest prawdopodobieństwo, że trójkąt ABC jest ostrokątny? 9. Wewnątrz koła o promieniu r wybrano losowo jeden punkt. Jakie jest prawdopodobieństwo, że wybrany punkt znajduje się w odległości mniejszej niż d od środka koła? 10.Obliczyć prawdopodobieństwo, że losowo wybrana cięciwa w kole o promieniu r będzie dłuższa od boku trójkąta równobocznego wpisanego w to koło? (paradoks Bertranda)
5 Laboratorium nr 5. Niezależność zdarzeń. Prawdopodobieństwo warunkowe. Prawdopodobieństwo całkowite. 1. W urnie są 3 kule białe i 4 kule czarne. Losujemy dwa razy po jednej kuli bez zwrotu. Jakie jest prawdopodobieństwo, że za drugim razem wylosujemy kulę czarną, jeśli za pierwszym razem wylosowaliśmy kulę białą? Czy otrzymamy ten sam rezultat przy losowaniu ze zwrotem? Uogólnić zadanie na przypadek dowolnej ilości kul. 2. Rzucamy 6 razy monetą. Czy zdarzenia: A orzeł wypadł dokładnie 3 razy i B reszka wypadła dokładnie 3 razy są zdarzeniami niezależnymi? 3. Wiadomo, że P(A)=0,5; P(B)=0,4 oraz P(A B )=0,8. Czy zdarzenia A i B są niezależne? 4. Losujemy jedną kartę z talii 52 kart. Jakie jest prawdopodobieństwo, że jest to siódemka, jeśli wiadomo, że wyciągnięta karta nie jest figurą ani asem? 5. W pewnym przedsiębiorstwie 96% produkowanych wyrobów jest dobrych. Na każde 100 dobrych wyrobów 75 jest I gatunku. Obliczyć prawdopodobieństwo, ż losowo wybrana sztuka jest dobra. 6. Rzucono 3 kostki. Jakie jest prawdopodobieństwo, że przynajmniej na jednej kostce wypadnie jedynka, jeżeli na każdej kostce wypadła inna liczba oczek? 7. Robotnik obsługuje 3 maszyny. Prawdopodobieństwo tego, że pewnym czasie T maszyny nie wymagają obsługi wynosi 0,9 dla pierwszej; 0,8 dla drugiej; 0,85 dla trzeciej. Maszyny te pracują niezależnie od siebie. Obliczyć prawdopodobieństwo tego, że w czasie T : a) żadna z maszyn nie wymaga obsługi; b) wszystkie maszyny wymagają obsługi. 8. Z talii 52 kart losujemy dwie karty bez zwrotu. Jakie jest prawdopodobieństwo wylosowania asa z pozostałych 50 kart, jeśli nie wiadomo jakie dwie karty zostały uprzednio wyciągnięte? 9. Z urny zawierającej n kul o numerach od 1 do n wyjmujemy kolejno dwie kule, przy czym pierwszą kulę zwracamy do urny jeżeli jej numer jest różny od jedności. Obliczyć prawdopodobieństwo, że przy drugim losowaniu otrzymamy kulę o numerze Zestaw tematów egzaminacyjnych zawiera 10 tematów łatwych, 6 tematów trudnych i 4 tematy średnio trudne. Trzech studentów losuje tematy po kolei bez zwrotu. Który z nich ma największe prawdopodobieństwo wylosowania tematu łatwego? 11. W prawej kieszeni znajdują się 3 monety po 2 zł i 4 monety po 1 zł, a w lewej kieszeni 6 monet po 2 zł i 3 monety po 1 zł. Z prawej kieszeni do lewej przełożono losowo dwie monety. Obliczyć prawdopodobieństwo wyciągnięcia z lewej kieszeni po tym przełożeniu monety o wartości 2 zł. 12. W szufladzie jest 15 piłek tenisowych, w tym 9 nowych. Do pierwszej gry wzięto losowo 3 piłki. Po grze włożono je z powrotem do szuflady. Do drugiej gry także losowo wzięto 3 piłki. Jakie jest prawdopodobieństwo, że wszystkie piłki wzięte do drugiej gry były nowe?
6 Laboratorium nr 6. Wzór Bayesa. Schemat dwumianowy. Schemat wielomianowy. 1. Wiadomo, że 4% produkcji stanowią przedmioty wadliwe. Uproszczony schemat kontroli przepuszcza przedmioty bez wad z prawdopodobieństwem 0,98, a przedmioty wadliwe z prawdopodobieństwem 0,05. Obliczyć prawdopodobieństwo, że przedmiot, który uproszczona kontrola przepuściła jest bez wad. 2. W pierwszej urnie jest 5 kul białych i 7 kul zielonych, a w drugiej urnie jest 6 kul białych i 3 kule zielone. Z losowo wybranej urny wyciągamy bez zwrotu dwie kule. Obliczyć prawdopodobieństwo, że: a) obie wylosowane kule są białe; b) pochodzą z pierwszej urny, jeśli obie są zielone. 3. Jest dziesięć jednakowych urn. Dziewięć spośród nich zawiera po 2 kule białe i 2 kule czarne, a jedna urna zwiera 5 kul białych i 1 kulę czarną. Z losowo wybranej urny wylosowano kulę białą. Jakie jest prawdopodobieństwo, że losowania dokonano z urny w której jest 5 kul białych? 4. Wiadomo, że 25 kobiet na 1000 i 5 mężczyzn na 100 nie odróżnia kolorów. Z grupy, w której jest jednakowa liczba kobiet i mężczyzn wylosowano jedną osobę. Jakie jest prawdopodobieństwo, że wylosowana osoba okaże się daltonistą? Jakie jest prawdopodobieństwo, że wylosowana osoba jest mężczyzną, jeśli okazała się daltonistą? 5. Spośród 18 strzelców 5 trafia do celu z prawdopodobieństwem 0,8; 7 z prawdopodobieństwem 0,7; 4 z prawdopodobieństwem 0,6 i 2 z prawdopodobieństwem 0,5. Wybrany losowo strzelec strzelił do celu, ale nie trafił. Do której grupy najprawdopodobniej należał ten strzelec? 6. Co jest bardziej prawdopodobne: wygrać z równorzędnym przeciwnikiem a) 3 partie na 4 rozegrane, czy 5 partii na 8 rozegranych? b) nie mniej niż 3 partie na 4 rozegrane, czy nie mniej niż 5 partii na 8 rozegranych? 7. Dwóch koszykarzy oddaje po 3 rzuty piłką do kosza. Pierwszy z nich trafia o kosza z prawdopodobieństwem 0,6; drugi trafia z prawdopodobieństwem 0,7. Obliczyć prawdopodobieństwo tego, że a) koszykarze uzyskają tę samą ilość trafień; b) pierwszy koszykarz uzyska więcej trafień niż drugi. 8. Obliczyć prawdopodobieństwo tego, że czterocyfrowy (pięciocyfrowy) numer pierwszego napotkanego samochodu a) nie zawiera cyfry 5; b) nie zawiera dwóch Podczas gry w brydża jeden z czterech graczy nie dostał ani jednego asa w kolejnych trzech rozdaniach (w każdym otrzymał 13 kart z 52 kart w talii). Czy ma on powody do uskarżania się, że mu nie idzie karta? 10. Ilu niezależnych rozdań trzeba dokonać grając w brydża, aby prawdopodobieństwo otrzymania co najmniej raz czterech asów przez pewnego ustalonego gracza było nie mniejsze niż 0,5? 11. Obliczyć najbardziej prawdopodobną liczbę szóstek przy 10 (11; 12 oraz 20) rzutach kostką. 12. W urnie są 3 kule: biała, czerwona i niebieska. Z urny losujemy 5 razy po jednej kuli z zwrotem. Obliczyć prawdopodobieństwo, że białą i czerwoną kulę wylosujemy co najmniej dwa razy.
RACHUNEK PRAWDOPODOBIEŃSTWA
RACHUNEK PRAWDOPODOBIEŃSTWA Zadanie 1. W urnie jest 1000 kartoników będących losami loterii pieniężnej. Cztery z kartoników wygrywają po 100 zł i szesnaście po 10 zł. Reszta kartoników to losy puste. Pierwszy
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)
ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające
Bardziej szczegółowoc) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;
Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.
Bardziej szczegółowoRzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:
Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat
Bardziej szczegółowoKombinatoryka i rachunek prawdopodobieństwa (rozszerzenie)
Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) (1) Ile liczb czterocyfrowych można utworzyć używając jedynie cyfr 1,2,3,4,5,6,7,8? (2) Ile liczb czterocyfrowych o różnych cyfrach można utworzyć
Bardziej szczegółowoKURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej
Bardziej szczegółowoPRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT) NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI
IMIE I NAZWISKO PRAWDOPODOBIEŃSTWO PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia A na każdej kostce wypadła
Bardziej szczegółowoR_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych
Bardziej szczegółowoc) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.
Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (
Bardziej szczegółowoPrawdopodobieństwo
Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia
Bardziej szczegółowoc. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,
Bardziej szczegółowo04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite,
04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite, wzór Bayesa Definicja. 1. Prawdopodobieństwem warunkowym zajścia zdarzenia A pod warunkiem zajścia zdarzenia B, gdzie P(B > 0, nazywamy
Bardziej szczegółowo( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).
KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.
Bardziej szczegółowoMoneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
Bardziej szczegółowoMatematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
Bardziej szczegółowop k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi
Bardziej szczegółowoNAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.
IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo
Bardziej szczegółowoKombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru
Bardziej szczegółowoPrawdopodobieństwo zadania na sprawdzian
Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych
Bardziej szczegółowoLista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Bardziej szczegółowo= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.
Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne
Bardziej szczegółowoPRAWDOPODOBIEŃSTWO I KOMBINATORYKA
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo
Bardziej szczegółowoPodstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
Bardziej szczegółowoRachunek prawdopodobieństwa - ćwiczenia pierwsze Kombinatoryka. kierunek: informatyka i ekonometria I
Rachunek prawdopodobieństwa - ćwiczenia pierwsze Kombinatoryka. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 07.10.2011 Spis treści 1 Kombinatoryka 1 1 Kombinatoryka permutacja bez powtórzeń
Bardziej szczegółowoLista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe
Bardziej szczegółowodr Jarosław Kotowicz 14 października Zadania z wykładu 1
Rachunek prawdopodobieństwa - ćwiczenia drugie Prawdopodobieństwo warunkowe i całkowite. Wzór Bayesa. Zdarzenia niezależne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 14 października 2011
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
Bardziej szczegółowoLista zadania nr 1 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 1 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2 Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w Białymstoku
Bardziej szczegółowo01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Bardziej szczegółowoKURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka
1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:
Bardziej szczegółowoZadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 1.
Zestaw 1. Zadanie. 1. Wyobraźnia jest ważniejsza od wiedzy A.Einstein Czy zdarzenia polegające na wyciągnięciu z talii liczącej 52 karty dowolnej karty pik (zdarzenie A) i wyciągnięciu asa (zdarzenie B)
Bardziej szczegółowo01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Bardziej szczegółowo12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Bardziej szczegółowo01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska Przykład 1 Alicja wylosowała jedną kartę z
Bardziej szczegółowoDoświadczenie i zdarzenie losowe
Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.
Bardziej szczegółowoSPRAWDZIAN KOMBINATORYKA
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI SPRAWDZIAN KOMBINATORYKA 12 GRUDNIA 2011 CZAS PRACY: 45 MIN. ZADANIE 1 Spośród liczb {1, 2, 3,..., 1000} losujemy jednocześnie dwie, które
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja
Bardziej szczegółowoa. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której
Bardziej szczegółowo15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda
1. Każdej karcie bankomatowej jest przypisany numer identyfikacyjny zwany kodem PIN. Kod ten składa się z czterech cyfr(cyfry mogą się powtarzać, ale kodem PIN nie może być 0000). Oblicz prawdopodobieństwo,
Bardziej szczegółowoRachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Bardziej szczegółoworachunek prawdopodobieństwa - zadania
rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 6.10.2012 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0,1] oraz
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych
Bardziej szczegółowoZ4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów.
PERMUTACJE Z1. Oblicz: Z2. Doprowadź do najprostszej postaci wyrażenia: Z3. Sprawdź czy prawdziwa jest równość: Dana równość jest prawdziwa. Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile
Bardziej szczegółowoDODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b
DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez
Bardziej szczegółowoKURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź
Bardziej szczegółowoSkrypt 30. Prawdopodobieństwo
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Prawdopodobieństwo 5.
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ RACHUNEK PRAWDOPODOBIEŃSTWA Co powinienem umieć Umiejętności znam pojęcie zdarzenia elementarnego znam pojęcie doświadczenia losowego i potrafię
Bardziej szczegółowoa. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara
Bardziej szczegółowo12. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania
2. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania Zad.2.. Oblicz ile moŝna utworzyć z cyfr 0,, 2, liczb: a) dwucyfrowych, których cyfry mogą się powtarzać; b) trzycyfrowych o niepowtarzających się cyfrach;
Bardziej szczegółowoBiologia Zadania przygotowawcze do drugiego kolokwium z matematyki
Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki Pochodne funkcji i jej zastosowania 1. Oblicz pochodną funkcji f, gdy: a) f(x) = 3x 8 + 2 x + 3 7, b) f(x) = x 11 6x 5 + 2 x + 3 x, c)
Bardziej szczegółowoElementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka
Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach
Bardziej szczegółowoZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska
ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad. 1. (1 pkt) Ile jest wszystkich liczb naturalnych dwucyfrowych, w których
Bardziej szczegółowoKombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru
Bardziej szczegółowoZdarzenie losowe (zdarzenie)
Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano
Bardziej szczegółowoPrawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
Bardziej szczegółowoZadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3.
Zadanie 1. O zdarzeniach A, B, C z pewnej przestrzeni uzyskaliśmy informacje, iż P (A B C) = 0.6, P (B A C) = 0.3 oraz P (C A B) = 0.9. Obliczyć P [A B C (A B) (A C) (B C)]. Odp. 9/37 Zadanie 2. Wiadomo,
Bardziej szczegółowo1. Elementy kombinatoryki - zadania do wyboru
. Elementy kombinatoryki - zadania do wyboru Bernadeta Tomasz Zadania dodatkowe Zadanie.. Mamy do wyboru mieszkania i auta. Na ile sposobów można dokonać wyboru, jeśli. mamy wybrać mieszkanie i samochód,.
Bardziej szczegółowoLista 1. Prawdopodobieństwo klasyczne i geometryczne
Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej
Bardziej szczegółowoćwiczenia z rachunku prawdopodobieństwa
ćwiczenia z rachunku prawdopodobieństwa 9.10.2010 ogólna definicja prawdopodobieństwa, własności 1. Niech Ω = [0, 1] oraz niech Σ będzie pewną σ-algebrą podzbiorów odcinka [0, 1]. Udowodnić, że funkcja
Bardziej szczegółowoZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE TRZECIEJ.
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE TRZECIEJ. I. Kombinatoryka i rachunek prawdopodobieństwa ) Ile liczb pięciocyfrowych można utworzyć, wykorzystując wszystkie cyfry liczby 476? ) Pięciu przyjaciół
Bardziej szczegółowoKombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe
Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy:
Bardziej szczegółowoZadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,
Bardziej szczegółowoMETODY PROBABILISTYCZNE I STATYSTYKA
Andrzej Marciniak METODY PROBABILISTYCZNE I STATYSTYKA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku
Bardziej szczegółowoP r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
Bardziej szczegółowoZadania zestaw 1: Zadania zestaw 2
Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m
Bardziej szczegółowoBAZA ZADAŃ KLASA 3 Ha 2014/2015
BAZA ZADAŃ KLASA 3 Ha 2014/2015 GEOMETRIA 1 W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu opisanego ma długość 19 cm Oblicz pole tego trójkąta
Bardziej szczegółowoPrawdopodobieństwo GEOMETRYCZNE
Prawdopodobieństwo GEOMETRYCZNE Zadanie 1. Skoczek spadochronowy skacze nad kwadratową wyspą o boku 20km. Na środku wyspy znajduje się prostokątne lądowisko o wymiarach 2x3 km. Jakie jest prawdopodobieństwo,
Bardziej szczegółowoObliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.
Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa
Bardziej szczegółowoRachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne
Bardziej szczegółowodr Jarosław Kotowicz 29 października Zadania z wykładu 1
Rachunek prawdopodobieństwa - ćwiczenia czwarte Schematy rachunku prawdopodobieństwa. Prawdopodobieństwo geometryczne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 29 października 20 Spis
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
Bardziej szczegółowoKOMBINATORYKA I P-WO CZ.1 PODSTAWA
KOMBINATORYKA I P-WO CZ.1 PODSTAWA ZADANIE 1 (1 PKT) Pan Jakub ma marynarki, 7 par różnych spodni i 10 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoMatematyka dyskretna zestaw II ( )
Matematyka dyskretna zestaw II (17-18.10.2016) Uwaga: Część z zadań z tego zestawu opiera się na zasadzie szufladkowej Dirichleta. Zadanie 1. Na ile sposobów można umieścić w 7 szufladach 3 koszule tak,
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a)
ZADANIA - ZESTAW 1 Zadanie 11 Rzucamy trzy razy monetą A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie Oreślić zbiór zdarzeń elementarnych Wypisać zdarzenia elementarne sprzyjające
Bardziej szczegółowoPrawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym
Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród
Bardziej szczegółowoZestawy zadań z Metod Probabilistyki i Statystyki. dr Hanna Podsędkowska dr Katarzyna Lubnauer mgr Małgorzata Grzyb mgr Rafał Wieczorek
Zestawy zadań z Metod Probabilistyki i Statystyki dr Hanna Podsędkowska dr Katarzyna Lubnauer mgr Małgorzata Grzyb mgr Rafał Wieczorek 21 lutego 2014 1 MODEL KLASYCZNY PRAWDOPODOBIEŃSTWA 1 Model klasyczny
Bardziej szczegółowo{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)
.. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta
Bardziej szczegółowo= A. A - liczba elementów zbioru A. Lucjan Kowalski
Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie
Bardziej szczegółowoI. Kombinatoryka i prawdopodobieństwo. g) różnowartościowych, h) bez miejsc zerowych, i) z jednym miejscem zerowym, j) z dwoma miejscami zerowymi,
I. Kombinatoryka i prawdopodobieństwo I.1 Mała Lusia bawi się literkami A,A,A,E,K,M,M,T,T,Y ustawiając je w różnej kolejności. Jakie jest prawdopodobieństwo ustawienia wyrazu MATEMATYKA? I. Wśród funkcji
Bardziej szczegółowoTest na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
Bardziej szczegółowoRachunek prawdopodobieństwa lista zadań nr 6
1) Klasa zorganizowała loterię fantową. Do sprzedaży przeznaczono 50 losów ponumerowanych od 1 do 50. Organizatorzy przyjęli zasadę, że każdy los, którego numer jest liczbą podzielną przez 3, wygrywa fant.
Bardziej szczegółowoMetody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer
Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa. Losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie
Bardziej szczegółowoPodstawy metod probabilistycznych Zadania
Podstawy metod probabilistycznych Zadania 25 marca 2009 Zadanie 1 Czy jest możliwe, by P(A B) = 0, 9, P(A) = 0, 8, P(B) = 0, 3, i zdarzenia A i B były niezależne. Zadanie 2 Zdarzenia A i B są niezależne
Bardziej szczegółoworachunek prawdopodobieństwa - zadania
rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 9.10.2011 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0, 1] oraz
Bardziej szczegółowoDOŚWIADCZENIA WIELOETAPOWE
. 4. DOŚWIADCZENIA WIELOETAPOWE Drzewem stochastycznym nazywamy graf ilustrujący przebieg wieloetapowego doświadczenia losowego. Wierzchołkom drzewa stochastycznego przyporządkowane są wyniki poszczególnych
Bardziej szczegółowoRzucamy 10 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 10 razy orzeł i B reszka wypadła dokładnie 10 razy są zależne?
Zad. Rzucamy 0 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 0 razy orzeł i B reszka wypadła dokładnie 0 razy są zależne? Zad. Badania statystyczne przeprowadzone wśród studentów wykazały,
Bardziej szczegółowoZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o
Bardziej szczegółowoZagadnienia na powtórzenie
Zagadnienia na powtórzenie TERESA ZIEGLER IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz takie dokończenie zdania, aby otrzymać zdanie prawdziwe. Sześcian przecięto płaszczyzną zawierającą dwie równoległe
Bardziej szczegółowoĆw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6
Wariacje bez powtórzeń Jeśli w doświadczeniu losowym ze zbioru n-elementowego wybieramy k elementów w ten sposób, że: wybrane elementy nie mogą się powtarzać kolejność wybranych elementów jest istotna
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rozdział 2.3: Przykłady przestrzeni probabilistycznych. Katarzyna Rybarczyk-Krzywdzińska Przestrzeń probabilistyczna Przestrzeń
Bardziej szczegółowoRachunek Prawdopodobieństwa i Statystyka Matematyczna
Rachunek rawdopodobieństwa i Statystyka Matematyczna rowadzący: prof. dr hab. inż. Ireneusz Jóźwiak Zestaw nr. Opracowanie: Grzegorz Drzymała 4996 Grzegorz Dziemidowicz 49965 drian Gawor 49985 Zadanie..
Bardziej szczegółowoPrawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń
Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Zadanie 1 Po potasowaniu sześciu kart: asa, dwójki, trójki, czwórki, piątki i szóstki wyłożono na stół w rzędzie
Bardziej szczegółowo