MNIEJ I BARDZIEJ ZNANE PROBLEMY TEORII LICZB



Podobne dokumenty
Metodydowodzenia twierdzeń

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

Metody dowodzenia twierdze«

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

XVII Warmi«sko-Mazurskie Zawody Matematyczne

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, Instytut Matematyki Uniwersytetu Warszawskiego

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

O pewnym zadaniu olimpijskim

Funkcje, wielomiany. Informacje pomocnicze

Zbiory ograniczone i kresy zbiorów

Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie

1 Poj cia pomocnicze. Przykªad 1. A A d

Ukªady równa«liniowych

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

Materiaªy do Repetytorium z matematyki

Zbiory i odwzorowania

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki

Matematyka dyskretna dla informatyków

Liczenie podziaªów liczby: algorytm Eulera

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

Chen Prime Liczby pierwsze Chena

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

Zadanie 1. (8 punktów) Dana jest nast puj ca macierz: M =

Wielomiany o wspóªczynnikach rzeczywistych

Informacje pomocnicze

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa

RACHUNEK ZBIORÓW 2 A B = B A

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2

Ekstremalnie fajne równania

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

Teoria grafów i jej zastosowania. 1 / 126

Wykªad 4. Funkcje wielu zmiennych.

Maªgorzata Murat. Modele matematyczne.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

1 Granice funkcji wielu zmiennych.

x y x y x y x + y x y

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

Indeksowane rodziny zbiorów

Co i czym mo»na skonstruowa

1 Metody iteracyjne rozwi zywania równania f(x)=0

2 Liczby rzeczywiste - cz. 2

Geometria. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Podstawy logiki i teorii zbiorów wiczenia

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Interpolacja funkcjami sklejanymi

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Wska¹niki, tablice dynamiczne wielowymiarowe

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

Statystyka matematyczna - ZSTA LMO

Przetwarzanie sygnaªów

Zastosowania matematyki

Lab. 02: Algorytm Schrage

Wojewódzki Konkurs Matematyczny

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz

Zadania z rachunku prawdopodobie«stwa

MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut

Interpolacja Lagrange'a, bazy wielomianów

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH

Rozmaitości matematyczne. dr Agnieszka Kozak Instytut Matematyki UMCS

c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

Ÿ1 Oznaczenia, poj cia wst pne

Liczby pierwsze Fermata

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012

ZADANIA. Maciej Zakarczemny

Strategia czy intuicja?

Liczby zmiennoprzecinkowe

W zadaniach na procenty wyró»niamy trzy typy czynno±ci: obliczanie, jakim procentem jednej liczby jest druga liczba,

Historia kwadratów magicznych

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

Podstawy matematyki dla informatyków

Proste modele o zªo»onej dynamice

Aproksymacja funkcji metod najmniejszych kwadratów

Transkrypt:

MNIEJ I BARDZIEJ ZNANE PROBLEMY TEORII LICZB PAWEŠ GŠADKI Teoria liczb, mogªoby si wydawa, jest gaª zi matematyki zajmuj c si histori i lozo poj cia liczby, jego rozwojem i uogólnieniami. W rzeczywisto±ci zagadnieniami tymi zajmuje si arytmetyka teoretyczna, dziedzina za± bada«teorii liczb jest o wiele w»sza - - jest to badanie wªasno±ci liczb caªkowitych. Poj cie liczby naturalnej jest najbardziej pierwotnym poj ciem kojarzonym z matematyk. Dociekania dotycz ce istoty i wªasno±ci liczb naturalnych wydaj si le»e u podstaw najstarszych form my±li matematycznej. Wiadomo,»e zarówno Sumerowie, Babilo«czycy jak i staro»ytni Egipcjanie posiadali pewn wiedz z zakresu wªasno±ci liczb naturalnych. Tym nie mniej dopiero od czasów staro»ytnej Grecji mo»emy mówic o rozwoju wªa±ciwej teorii liczb. Pitagoras i jego uczniowie okoªo 500 r. p.n.e. prowadzili intensywne badania na polu liczb caªkowitych. Pierwszym systematycznym wykªadem zawieraj cym znane w staro»ytno±ci wyniki teorii liczb byªy Elementy Euklidesa (ok. 300 r. p.n.e). W±ród pó¹niejszych matematyków greckich wspomnie nale»y o Diofantosie (ok. 350 r. n.e.) i jego Artymrtyce - do dzisiejszych czasów zachowaªo si 6 z 13 ksi g tego dzieªa, daj cego poj cie o stopniu zaawansowania greckiej teorii liczb. Teoria liczb ma równie» bardzo star tradycj w Indiach, gdzie bujnie rozwijaªa si mi dzy 500 a 1200 rokiem naszej ery. W Europie zachodniej dokonania matematyków greckich znane s gªównie dzi ki matamatyce arabskiej. Rozwój europejskiej teorii liczb byª jednak bardzo powolny i dopiero od XVII stulecia mo»emy mówi o niej jako o niezale»nej gaª zi matematyki. Matematy francuski Pierre Fermat (1601-1665) uwa»any jest za ojca wi kszo±ci problemów, którymi zajmowaªa si teoria liczb w pó¹niejszych czasach. Dalszy rozwój teorii liczb wi»e si ±ci±le z nazwiskami Eulera (1707-1783), Lagrange'a (1736-1813), Legendre'a (1752-1833) i Gaussa (1777-1855). Pierwsza ksi»ka po±wi cona wyª cznie teorii liczb, Essai sur la theorie des nombres Legendre'a zostaªa wydana w 1798 roku, ale za podstawow pozycj uwa»a si ksi»k Gaussa Disquitiones Arethmeticae z 1801 roku. Pocz wszy od tej pracy teoria liczb staªa si samodzieln gaª zi nauki. Gauss uwa»aª,»e byªa to jego najwa»niejsza ksi»ka, a jego opinia o roli teorii liczb najlepiej sformuªowana jest w znanym cytacie: "Matematyka jest królow nauk, za± teoria liczb jest królow matematyki". 1. Problemy podziaªu liczby na sum skªadników Jak wiadomo, ka»da liczba naturalna jest suma pewnej ilo±ci jedynek: 1 = 1; 2 = 1 + 1; 3 = 1 + 1 + 1 Tak wi c je±li chodzi o budow liczb naturalnych przy pomocy dodawania, to jest ona niezmiernie prosta. Mo»na by wi c powiedzie,»e pod tym wzgl dem liczby naturalne zachowuj si bardzo jednolicie. Nie oznacza to jednak,»e wszystkie zagadnienia dotycz ce otrzymywania danej liczby przez sum innych liczb nale» 1

2 PAWEŠ GŠADKI do prostych, o czym za chwil si przekonamy. Wspomianymi problemami zajmuje si addytywna teoria liczb. Problem 1. Na ile sposobów mo»na przedstawi dan liczb jako sum dwóch ró»- nych skªadników? R o z w i z a n i e : I wariant: Za ró»ne rozkªady uwa»amy te» te, które ró»ni si tylko kolejno±ci skªadników. Nietrudno si przekona,»e dla danej liczby n 2 N rozkªady te, to: 1 + (n 1); 2 + (n 2); : : : ; (n 1) + 1 jest wi c ich: n 1 II wariant: Za ró»ne rozkªady nie uwa»amy tych, które ró»ni si tylko kolejno±ci skªadników. Tutaj rozwa»my dwa przypadki. Gdy liczba n jest nieparzysta, to ka»demu skªadnikowi k+(n k) odpowiada skªadnik (n k)+k, wi c wszystkich takich rozkªadów jest: n 1 2 Gdy liczba n jest parzysta postaci 2k, to skªadnikowi k nie odpowiada»aden inny skªadnik, wi c wszystkich rozkªadów jest: n2 Problem 2. Na ile sposobów mo»na przedstawi dan liczb jako sum trzech ró»- nych skªadników? R o z w i z a n i e : I wariant: Za ró»ne rozkªady uwa»amy te» te, które ró»ni si tylko kolejno±ci skªadników. Dla danej liczby n pierwszy skªadnik, liczb k mo»emy wybra na n 2 sposobów. Zostaje nam liczba n k, któr rozkªadamy na dwa skªadniki na n k 1 sposobów. Wszystkich rozkªadów jest wi c: (n 1 1) + (n 2 1) + (n 3 1) + : : : + [n (n 2) 1] = (n 1)(n = 2) 2 II wariant: Za ró»ne rozkªady nie uwa»amy tych, które ró»ni si tylko kolejno±ci skªadników. [ wiczenie] Problem 3. Na ile sposobów mo»na przedstawi dan liczb jako sum s ró»nych skªadników? R o z w i z a n i e : I wariant: Za ró»ne rozkªady uwa»amy te» te, które ró»ni si tylko kolejno±ci skªadników. [ wiczenie] Odpowied¹:n 1 s 1 Problem 4. Partitio Numerorum Na ile sposobów mo»na przedstawi dan liczb jako sum dowolnej liczby ró»nych skªadników? R o z w i z a n i e : Niezadowalaj ce. Zdeniujmy liczb : p(n) = liczba przedstawie«liczby n jako dowolnej sumy ró»nych skªadników

MNIEJ I BARDZIEJ ZNANE PROBLEMY TEORII LICZB 3 Dla niewielkich n, p(n) mo»na liczy "na piechot ". Mamy na przykªad: p(1) = 1; p(2) = 2; p(3) = 3; p(4) = 5; p(5) = 7; p(6) = 11 Stosunkowo ªatwo policzy jeszcze: p(7) = 15; p(8) = 22; p(9) = 30; p(10) = 42 Jak policzyª Mac Mahon: p(200) = 3972999029388 za± Lehmer sprawdziª w 1936 roku,»e liczba p(14031) skªada si ze 127 cyfr. Ogólny wzór na p(n) nie jest znany. Poszukiwano pewnych przybli»onych warto±ci liczby p(n). Jak udowodnili w 1918 roku Hardy i Ramanujan, zachodzi nast puj ce twierdzenie: Twierdzenie 1. p n(q2 3 1) < ln p(n) < q2 3 p n 2. Kwadraty magiczne Kwadratem magicznym nazywamy tabliczk nn liczb 1;2; : : : ; n 2 tak,»e ka»dy wiersz, ka»da kolumna i obydwie przek tne sumuj si do tej samej liczby, zwanej sum kwadratu magicznego. Nietrudno wyznaczy wzór na sum S kwadratu magicznego. Twierdzenie 2. S = n 2(n 2 + 1) D o w ó d : Sumuj wszystkie wiersze otrzymujemy (ze znanego wzoru na sum szeregu arytmetycznego) n2 2 (n 2 +1), co z drugiej strony jest równe n sumom kwadratu magicznego. Po podzieleniu przez n dostajemy tez. o Jasne jest,»e dla n = 1 istnieje tylko jeden kwadrat magoczny. Nietrudno si te» przekona,»e dla n = 2 takiego kwadratu nie ma. Dla n = 3 mamy jeden kwadrat magiczny: 8 1 6 3 5 7 4 9 2 Kwadrat ten znany byª ju» w staro»ytno±ci. Jak obliczyª w XVI w. Frenicle, dla n = 4 istnieje 880 kwadratów magicznych. Najbardziej znany jest kwadrat zamieszczony na jednej z rycin Albrechta Durera z 1514 roku, zatytuowany Melancholia: 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1 Mac Mahon sprawdziª,»e dla n = 5 istnieje przeszªo 60000 kwadratów magicznych. Oto jeden z nich: 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9

4 PAWEŠ GŠADKI 3. Problemy podziaªu liczby na sum skªadników pierwszych Nietrudno sprawdzi dla maªych liczb,»e ka»da wi ksza lub równa od 4 liczba parzysta jest sum dwóch nieparzystych liczb pierwszych. Mamy na przykªad: 6 = 3 + 3; 8 = 3 + 5; 10 = 3 + 7 = 5 + 5; 12 = 5 + 7; 14 = 7 + 7 = 11 + 3 Troch trudniej jest ju» dla liczby 100: 100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53 Cierpliwi mog sprawdzi,»e liczba 1000 ma 28 takich rozkªadów, a rekordzistk w±ród liczb mniejszych od 1000 jest liczba 990, maj ca a» 52 rozkªady. Problem 5. Hipoteza Goldbacha Czy parzysta liczba wi ksza lub równa od 4 zawsze jest sum dwóch liczb pierwszych? R o z w i z a n i e : Nieznane. Problem ten zostaª postawiony przez Goldbacha w 1742 roku i do dzisiaj - pomimo usilnych stara«- pozostaje nierozstrzygni ty, chocia» przy u»yciu komputerów wielkiej mocy zostaª potwierdzony ju» w bardzo wielu przypadkach. Hipoteza Goldbacha zostaªa zaliczona do jednego z siedmiu problemów milenijnych, za których rozwi zanie przewidziana jest nagroda wysoko±ci miliona dolarów. Z problemem tym zwi za mo»na inne zagadnienie: Problem 6. Postulat Bertranda Pomi dzy liczbami n i 2n istnieje liczba pierwsza. Zauwa»my,»e z hipotezy Goldbacha wynika ªatwo postulat Bertranda. Niech bowiem n b dzie liczb naturaln. Wówczas 2n + 2geq4, a zatem 2n + 2 = p + q, gdzie p i q s liczbami pierwszymi nieparzystymi. Mo»emy przyj,»e q p 3. Wobec tego 2n > q oraz 2n + 2 2q, a st d q le»y mi dzy n a 2n. Postulat Bertranda mo»na jednak udowodni niezale»nie od hipotezy Goldbacha. Postaramy si tutaj naszkicowa dowód. Niech (n) oznacza liczb liczb pierwszych nie wi kszych od n. Funkcj tak zdeniowaª Gauss. Na swoje 15 urodziny dostaª w prezencie tablice matematyczne, w których znajdowaªy si mi dzy innymi tablice liczb pierwszych. Przegl daj c je, Gauss zbudowaª nast puj c tabelk : n (n) n (n) n (n) 10 4 2;5 2;5 100 25 4; 1; 5 1000 168 6; 0 2; 0 10000 1229 8; 1 2; 1 100000 9592 10; 4 2; 1000000 78498 12; 7 2; 10000000 664579 15; 0 2; 3 100000000 5761455 17; 4 2; 4 1000000000 50827534 19; 7 2; 10000000000 455052512 22; 0 2; 3 Widzimy wi c,»e je±li n wzrasta o 10, to (n) n wzrasta mniej wi cej o 2,3. Có» to za tajemnicza liczba, 2,3? Okazuje si,»e ln 10 2; 3. Na podstawie tego spostrze»enia Gauss wysnuª przypuszczenie,»e n (n) ln n. Jego hipoteza potwierdziªa si po kilkudziesi ciu latach. W roku 1850 Czebyszew udowodniª nast puj ce twierdzenie:

MNIEJ I BARDZIEJ ZNANE PROBLEMY TEORII LICZB 5 Twierdzenie 3. 0;89ln n n (n) 1;11ln n n Dowód tego twierdzenia jest bardzo trudny. Dowód Czebyszewa wykorzystywaª zaawansowane metody analizy matematycznej. Pó¹niej Erdos i Kalmar zaprezentowali dowód elementarny, jednak dalej jest on do± skomplikowany. Ponadto w 1896 roku Hadamard i de la Vallee - Pousin pokazali nast puj ce twierdzenie: Twierdzenie 4. lim n!1 (n) = 1 n ln n Dowód tego twierdzenia jest jeszcze trudniejszy - klasyczne podej±cie wykorzystuje tzw. twierdzenia tauberowskie z zakresu analizy funkcjonalnej. W 1948 roku Selberg zaproponowaª inny dowód, wykorzystuj cy wyª cznie metody elementarne i pewne proste wªasno±ci funkcji logarytmicznej, tym nie mniej nadal jest on bardzo rozbudowany i powikªany. Tak czy inaczej, twierdzenie Czebyszewa zostaªo udowodnione. Poka»emy, jak ªatwo wynika z niego postulat Bertranda. Zdeniujmy bowiem funkcj f(x) = 0;89ln(2x) 1;11ln x x. Šatwo sprawdzamy,»e f jest funkcj rosn c i f(10) > 1;2111, a wi c (2x) (x) > 0;89 2x ln(2x) 1;11 x ln x > 1 dla x > 10. Zatem liczba liczb pierwszych mi dzy 2x a x dla x > 10 jest równa co najmniej jeden, a dla x 10 ªatwo mo»emy postulat sprawdzi "na palcach". Podobnie jak robili±my to wcze±niej, mo»emy pyta si, ile jest ró»nych - o ile w ogóle jakie± s - rozkªadów danej liczby parzystej na dwie liczby pierwsze. Mo»na postawi te» ogólniejszy problem: Problem 7. Ile jest rozkªadów liczby n na sum dowolnej liczby liczb pierwszych? Rozwi zanie nie jest znane. Mo»na jednak zdeniowa liczb P(n) równ liczbie takich rozkªadów dla liczby n i bada jej wªasno±ci. Bezpo±rednio sprawdzi mo»na,»e na przykªad: P(1) = 0; P(2) = P(3) = P(4) = P(5) = 1; P(6) = P(7) = 2; P(8) = 3; P(9) = 4 Jedyne co dotychczas udaªo si dla liczby P(n) pokaza, to nast pujace twierdzenie pochodz ce od Erdosa i Batemana: Twierdzenie 5. P(n + 1) P(n) oraz lim n!1 P(n + 1) P(n) = 1 4. Ci gi liczb pierwszych W 1861 roku Moritz Cantor postawiª nast puj ce pytanie: Problem 8. Czy - poza trójk 3, 5, 7 - trzy kolejne liczby pierwsze mog tworzy ci g arytmetyczny? Przez prawie 100 lat uwa»ano,»e odpowied¹ na to pytanie jest negatywna. Dopiero w 1956 Andrzej Schinzel zauwa»yª,»e 47, 53 i 59 s takimi liczbami - jak wi c wida, czasami problemy, które wydaj si trudne, okazuj si banalnie proste. Schinzel wskazaª te» kilka innych trójek liczb speªniaj cych powy»szy warunek, najmniejsza nast pna to 151, 157, 163. Pojawia si zatem inne pytanie: Problem 9. Czy istnieje niesko«czenie wiele trójek kolejnych liczb pierwszych tworz cych ci g arytmetyczny? Odpowied¹ na to pytanie nie jest znana. Podobnie bada mo»na ci gi utworzone z 4 kolejnych liczb pierwszych - jest nim na przykªad 251, 257, 263, 269.

6 PAWEŠ GŠADKI Mo»na te» zajmowa si ci gami arytmetycznymi niekoniecznie kolejnych liczb pierwszych. Daje si wskaza 10 kolejnych liczb pierwszych tworz cych ci g arytmetyczny. S to: 199;409;619;829;1039;1249;1459;1669;1879;2089 Podobnie mo»na bada ci gi liczb pierwszych dowolnej dªugo±ci. Ciekawszy z tego typu problemów wydaje si nast puj cy: Problem 10. Czy istnieje ci g arytmetyczny zªo»ony ze stu liczb pierwszych? Rozwi zanie nie jest znane, sprawdzono tylko,»e ci gu takiego nie ma w±ród ci gów o ró»nicy mniejszej, ni» kilkudziesi ciocyfrowa. Najbardziej znane z twierdze«obejmuj cych tematyk ci gów liczb pierwszych jest nast puj ce, pochodz ce od Dirichleta: Twierdzenie 6. Je»eli liczby a i b s wzgl dnie pierwsze, to w ci gu an + b jest niesko«czenie wiele liczb pierwszych Bibliografia [1] A. Czogaªa, M. Szyjewski, Teoria liczb, Skrypt do wykªadu [2] Sz. Jele«ski, Lilavati, WSiP, Warszawa 1968 [3] T. Nagell, Introduction to number theory, Chelsea Publishing Co., New York 1964 [4] W. Narkiewicz, Teoria liczb, PWN, Warszawa 1990 [5] W. Sierpi«ski, 200 zada«z elementarnej teorii liczb, PZWS, Warszawa 1964 [6] W. Sierpi«ski, Czym zajmuje si teoria liczb, Wiedza Powszechna, Warszawa 1957