Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
|
|
- Amelia Lis
- 8 lat temu
- Przeglądów:
Transkrypt
1 Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie obiektów w klasy (klastry, skupienia) obiektów o podobnych cechach Grupowanie: proces grupowania obiektów, rzeczywistych bądź abstrakcyjnych, w klasy, nazywane klastrami lub skupieniami, o podobnych cechach 1
2 Czym jest klaster? Istnieje wiele definicji: Zbiór obiektów, które są podobne Zbiór obiektów, takich, że odległość pomiędzy dwoma dowolnymi obiektami należącymi do klastra jest mniejsza aniżeli odległość pomiędzy dowolnym obiektem należącym do klastra i dowolnym obiektem nie należącym do tego klastra Spójny obszar przestrzeni wielowymiarowej, charakteryzujący się dużą gęstością występowania obiektów Zbiór dokumentów: Przykłady (1) Zbiór punktów w przestrzeni wielowymiarowej, w której pojedynczy wymiar odpowiada jednemu słowu z określonego słownika Współrzędne dokumentu w przestrzeni są zdefiniowane względną częstością występowania słów ze słownika. Klastry dokumentów odpowiadają grupom dokumentów dotyczących podobnej tematyk Przykłady (2) Zbiór sekwencji stron WWW: Pojedyncza sekwencja opisuje sekwencję dostępów do stron WWW danego serwera realizowaną w ramach jednej sesji przez użytkownika Klastry sekwencji odpowiadają grupom użytkowników danego serwera, którzy realizowali dostęp do tego serwera w podobny sposób 2
3 Składowe procesu grupowania (1) Składowe procesu grupowania (2) Proces grupowania: Reprezentacja obiektów (zawiera ekstrakcję/selekcję cech obiektów) Definicja miary podobieństwa pomiędzy obiektami (zależy od dziedziny zastosowań) Grupowanie obiektów (klastry) Znajdowanie charakterystyki klastrów Miary odległości (1) Dyskusja dotycząca podobieństwa, lub odległości, dwóch obiektów wymaga przyjęcia miary odległości pomiędzy dwoma obiektami x i y reprezentowanymi przez punkty w przestrzeni wielowymiarowej Klasyczne aksjomaty dla miary odległości 1. D(x, y) = 0 <-> x = y 2. D(x, y) = D(y, x) 3. D(x, y) D(x, z) + D(z, y) (nierówność trójkąta) 3
4 Miary odległości (2) Dana jest k-wymiarowa przestrzeń euklidesowa, odległość pomiędzy dwoma punktami x=[x1, x2,..., xk] oraz y=[y1, y2,..., yk] można zdefiniować: Odległość euklidesowa: Odległość Manhattan: Miary odległości (3) Odległość max z wymiarów: Odległość Minkowskiego: W przypadku, gdy obiekty nie poddają się transformacji do przestrzeni euklidesowej, proces grupowania wymaga zdefiniowania innych miar odległości (podobieństwa): sekwencja dostępów do stron WWW, sekwencje DNA, sekwencje zbiorów, zbiory atrybutów kategorycznych, dokumenty tekstowe, XML, grafy, itp.. Zmienne binarne (1) W jaki sposób obliczyć podobieństwo (lub niepodobieństwo) pomiędzy dwoma obiektami opisanymi zmiennymi binarnymi: Podejście: konstruujemy macierz niepodobieństwa q liczba zmiennych przyjmujących wartość 1 dla obu obiektów r... 1 dla obiektu i, i wartość 0 dla j s... 0 dla obiektu i, i wartość 1 dla j t... 0 dla obu obiektów p=q+r+s+t łączna liczba zmiennych 4
5 Zmienne binarne (2) Zmienne binarne symetryczne: Zmienną binarną nazywamy symetryczną jeżeli obie wartości tej zmiennej posiadają tą samą wagę (np. płeć) Niepodobieństwo pomiędzy obiektami i oraz j jest zdefiniowane następująco: Zmienne binarne (3) Zmienne binarne asymetryczne: zmienną binarną nazywamy asymetryczną jeżeli obie wartości tej zmiennej posiadają różne wagi (np. wynik badania EKG) Niepodobieństwo pomiędzy obiektami i oraz j jest zdefiniowane następująco: Zmienne binarne (4) Dana jest tablica zawierająca informacje o pacjentach 5
6 Zmienne kategoryczne Zmienna kategoryczna jest generalizacją zmiennej binarnej: może przyjmować więcej niż dwie wartości (np. dochód: wysoki, średni, niski) Niepodobieństwo (podobieństwo) pomiędzy obiektami i, j, opisanymi zmiennymi kategorycznymi, można zdefiniować następująco: gdzie p oznacza łączną liczbę zmiennych, m oznacza liczbę zmiennych,których wartość jest identyczna dla obu obiektów, n oznacza liczbę zmiennych, których wartość jest różna dla obu obiektów Metody grupowania - Typy metod Istnieje wiele różnych metod i algorytmów grupowania: Dla danych liczbowych i/lub danych symbolicznych Deterministyczne i probabilistyczne Rozłączne i przecinające się Hierarchiczne i płaskie Monoteiczny i politeiczny Przyrostowe i nieprzyrostowe Metody grupowania (1) Klasyfikacja metod 6
7 Metody grupowania (4) Dwa podstawowe podejścia do procesu grupowania obiektów: Metody hierarchiczne generują zagnieżdżoną sekwencję podziałów zbiorów obiektów w procesie grupowania Metody z iteracyjno-optymalizacyjne generują tylko jeden podział (partycję) zbioru obiektów w dowolnym momencie procesu grupowania Metody grupowania hierarchicznego (1) Obiekty A B C D E F G Metoda grupowania hierarchicznego polega na sekwencyjnym grupowaniu obiektów drzewo klastrów (tzw. dendrogram) Metody grupowania hierarchicznego (2) Podejście podziałowe (top-down): początkowo, wszystkie obiekty przypisujemy do jednego klastra; następnie, w kolejnych iteracjach, klaster jest dzielony na mniejsze klastry, które, z kolei, dzielone są na kolejne mniejsze klastry Podejście aglomeracyjne (bottom-up): początkowo, każdy obiekt stanowi osobny klaster, następnie, w kolejnych iteracjach, klastry są łączone w większe klastry 7
8 Metody grupowania hierarchicznego (2) Miary odległości (1) W obu podejściach, aglomeracyjnym i podziałowym, liczba klastrów jest ustalona z góry przez użytkownika i stanowi warunek stopu procesu grupowania: 4 podstawowe (najczęściej stosowane) miary odległości pomiędzy klastrami są zdefiniowane następująco, gdzie p p oznacza odległość pomiędzy dwoma obiektami (lub punktami), p i p, mi oznacza średnią wartość klastra Ci, ni oznacza liczbę obiektów należących do klastra Ci Minimalna odległość: Miary odległości (2) Maksymalna odległość: Odległość średnich: Średnia odległość: 8
9 Ogólny hierarchiczny aglomeracyjny algorytm grupowania Dane wejściowe: baza danych D obiektów (n- obiektów) Dane wyjściowe: dendrogram reprezentujący grupowanie obiektów 1) umieść każdy obiekt w osobnym klastrze; 2) skonstruuj macierz odległości pomiędzy klastrami; 3) Dla każdej wartości niepodobieństwa dk (dk może się zmieniać w kolejnych iteracjach) powtarzaj: Utwórz graf klastrów, w którym każda para klastrów, której wzajemna odległość jest mniejsza niż dk, jest połączona lukiem aż wszystkie klastry utworzą graf spójny Hierarchiczny aglomeracyjny algorytm grupowania Umieść każdy obiekt w osobnym klastrze. Skonstruuj macierz przyległości zawierającą odległości pomiędzy każdą parą klastrów Korzystając z macierzy przyległości znajdź najbliższą parę klastrów. Połącz znalezione klastry tworząc nowy klaster. Uaktualnij macierz przyległości po operacji połączenia Jeżeli wszystkie obiekty należą do jednego klastra, zakończ procedurę grupowania, w przeciwnym razie przejdź do kroku 2 Przykład (1) 9
10 Przykład (2) Przykład (3) Przykład (4) 10
11 Aglomeracyjny algorytm grupowania danych Rozdzielający algorytm grupowania danych 11
Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1
Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie
Grupowanie danych. Wprowadzenie. Przykłady
Grupowanie danych str. 1 Wprowadzenie Celem procesu grupowania jest podział zbioru obiektów, fizycznych lub abstrakcyjnych, na klasy obiektów o podobnych cechach, nazywane klastrami lub skupieniami Klaster
Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Eksploracja danych. Grupowanie wykład 1
Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Tematem wykładu są zagadnienia związane z grupowaniem. Rozpoczniemy od krótkiego wprowadzenia
Grupowanie Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633
Grupowanie Grupowanie 7 6 5 4 y 3 2 1 0-3 -2-1 0 1 2 3 4 5-1 -2-3 -4 x Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633 Wprowadzenie Celem procesu grupowania jest podział zbioru
Analiza Skupień Cluster analysis
Metody Eksploracji Danych w wykładzie wykorzystano: 1. materiały dydaktyczne przygotowane w ramach projektu Opracowanie programów nauczania na odległość na kierunku studiów wyższych Informatyka http://wazniak.mimuw.edu.pl
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Co to znaczy eksploracja danych Klastrowanie (grupowanie) hierarchiczne Klastrowanie
1. Grupowanie Algorytmy grupowania:
1. 1.1. 2. 3. 3.1. 3.2. Grupowanie...1 Algorytmy grupowania:...1 Grupowanie metodą k-średnich...3 Grupowanie z wykorzystaniem Oracle Data Miner i Rapid Miner...3 Grupowanie z wykorzystaniem algorytmu K-Means
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32
Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:
Sieci Kohonena Grupowanie
Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie
Elementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Czym jest analiza skupień?
Statystyczna analiza danych z pakietem SAS Analiza skupień metody hierarchiczne Czym jest analiza skupień? wielowymiarowa technika pozwalająca wykrywać współzależności między obiektami; ściśle związana
Grupowanie. Iteracyjno-optymalizacyjne metody grupowania Algorytm k-średnich Algorytm k-medoidów. Eksploracja danych. Grupowanie wykład 2
Grupowanie Iteracyjno-optymalizacyjne metody grupowania Algorytm k-średnich Algorytm k-medoidów Grupowanie wykład 2 Tematem wykładu są iteracyjno-optymalizacyjne algorytmy grupowania. Przedstawimy i omówimy
Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2
Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Algorytmy klastujące Problem 3 Mając daną chmurę punktów chcielibyśmy zrozumieć ich
Taksonomia numeryczna co to jest?
dr Ireneusz R. Moraczewski Zakład Systematyki i Geografii Roślin UW Al. Ujazdowskie 4, 00-478 Warszawa e-mail: moraczew@biol.uw.edu.pl Taksonomia numeryczna co to jest? To dziedzina formalna, leżąca na
Wstęp do grupowania danych
Eksploracja zasobów internetowych Wykład 5 Wstęp do grupowania danych mgr inż. Maciej Kopczyński Białystok 2014 Wstęp Istnieją dwie podstawowe metody klasyfikowania obiektów: metoda z nauczycielem, metoda
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wstęp do Techniki Cyfrowej... Teoria automatów
Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia
STATYSTYKA I DOŚWIADCZALNICTWO
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 9 Analiza skupień wielowymiarowa klasyfikacja obiektów Metoda, a właściwie to zbiór metod pozwalających na grupowanie obiektów pod względem wielu cech jednocześnie.
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana II stopień studiów Wykład 13b 2 Eksploracja danych Co rozumiemy pod pojęciem eksploracja danych Algorytmy grupujące (klajstrujące) Graficzna
METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA
METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu
Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Projektowanie rozmieszczenia stanowisk roboczych
Projektowanie rozmieszczenia stanowisk roboczych Metoda trójkątów Schmigalli Metoda trójkątów Schmigalli Dane wejściowe: - liczba rozmieszczonych stanowisk - macierz powiązań transportowych Metoda trójkątów
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
4.3 Grupowanie według podobieństwa
4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi
Diagnozowanie sieci komputerowej na podstawie opinii diagnostycznych o poszczególnych komputerach sieci
Diagnozowanie sieci komputerowej na podstawie opinii diagnostycznych o poszczególnych komputerach sieci Diagnozowanie systemu, w tym przypadku, pojmowane jest jako metoda określania stanu niezawodnościowego
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Podstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1 Tablice wielowymiarowe C umożliwia definiowanie tablic wielowymiarowych najczęściej stosowane
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa
Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa Konrad Miziński 14 stycznia 2015 1 Temat projektu Grupowanie hierarchiczne na podstawie algorytmu k-średnich. 2 Dokumenty
a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76
. p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować
Techniki grupowania danych w środowisku Matlab
Techniki grupowania danych w środowisku Matlab 1. Normalizacja danych. Jedne z metod normalizacji: = = ma ( y =, rσ ( = ( ma ( = min = (1 + e, min ( = σ wartość średnia, r współczynnik, σ odchylenie standardowe
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Sztuczna inteligencja : Algorytm KNN
Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr
SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization
Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne
Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska
Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja
Analiza skupień. Idea
Idea Analiza skupień Analiza skupień jest narzędziem analizy danych służącym do grupowania n obiektów, opisanych za pomocą wektora p-cech, w K niepustych, rozłącznych i możliwie jednorodnych grup skupień.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
INFORMATYKA W SZKOLE. Podyplomowe Studia Pedagogiczne. Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227
INFORMATYKA W SZKOLE Dr inż. Grażyna KRUPIŃSKA grazyna@fis.agh.edu.pl D-10 pokój 227 Podyplomowe Studia Pedagogiczne 2 Algorytmy Nazwa algorytm wywodzi się od nazwiska perskiego matematyka Muhamed ibn
Wyszukiwanie informacji w internecie. Nguyen Hung Son
Wyszukiwanie informacji w internecie Nguyen Hung Son Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy
Język programowania zbiór reguł określających, które ciągi symboli tworzą program komputerowy oraz jakie obliczenia opisuje ten program.
PYTHON Język programowania zbiór reguł określających, które ciągi symboli tworzą program komputerowy oraz jakie obliczenia opisuje ten program. Aby program napisany w danym języku mógł być wykonany, niezbędne
1 Automaty niedeterministyczne
Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów
STATYSTYKA I DOŚWIADCZALNICTWO
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Test niezależności chi-kwadrat (χ 2 ) Cel: ocena występowania zależności między dwiema cechami jakościowymi/skategoryzowanymi X- pierwsza cecha; Y druga cecha Przykłady
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl
Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Bazy danych TERMINOLOGIA
Bazy danych TERMINOLOGIA Dane Dane są wartościami przechowywanymi w bazie danych. Dane są statyczne w tym sensie, że zachowują swój stan aż do zmodyfikowania ich ręcznie lub przez jakiś automatyczny proces.
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Podejścia w skalowaniu wielowymiarowym obiektów symbolicznych
Marcin Pełka Uniwersytet Ekonomiczny we Wrocławiu Katedra Ekonometrii i Informatyki Podejścia w skalowaniu wielowymiarowym obiektów symbolicznych 1. Wprowadzenie Metody skalowania wielowymiarowego obiektów
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Metody analizy skupień Wprowadzenie Charakterystyka obiektów Metody grupowania Ocena poprawności grupowania
Wielowymiarowe metody segmentacji CHAID Metoda Automatycznej Detekcji Interakcji CHAID Cele CHAID Dane CHAID Przebieg analizy CHAID Parametry CHAID Wyniki Metody analizy skupień Wprowadzenie Charakterystyka
Skalowanie wielowymiarowe idea
Skalowanie wielowymiarowe idea Jedną z wad metody PCA jest możliwość używania jedynie zmiennych ilościowych, kolejnym konieczność posiadania pełnych danych z doświadczenia(nie da się użyć PCA jeśli mamy
Wykład 10 Skalowanie wielowymiarowe
Wykład 10 Skalowanie wielowymiarowe Wrocław, 30.05.2018r Skalowanie wielowymiarowe (Multidimensional Scaling (MDS)) Główne cele MDS: przedstawienie struktury badanych obiektów przez określenie treści wymiarów
ALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
Porównanie szeregów czasowych z wykorzystaniem algorytmu DTW
Zlot użytkowników R Porównanie szeregów czasowych z wykorzystaniem algorytmu DTW Paweł Teisseyre Instytut Podstaw Informatyki, Polska Akademia Nauk 21 września 2010 Miary podobieństwa między szeregami
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania
miejsca przejścia, łuki i żetony
Sieci Petriego Sieć Petriego Formalny model procesów umożliwiający ich weryfikację Główne konstruktory: miejsca, przejścia, łuki i żetony Opis graficzny i matematyczny Formalna semantyka umożliwia pogłębioną
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100
Analiza głównych składowych- redukcja wymiaru, wykł. 12
Analiza głównych składowych- redukcja wymiaru, wykł. 12 Joanna Jędrzejowicz Instytut Informatyki Konieczność redukcji wymiaru w eksploracji danych bazy danych spotykane w zadaniach eksploracji danych mają
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.
Spis treści 1 Wstęp: generatywne algorytmy uczące 2 Gaussowska analiza dyskryminacyjna 2.1 Gaussowska analiza dyskryminacyjna a regresja logistyczna 3 Naiwny Klasyfikator Bayesa 3.1 Wygładzanie Laplace'a
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, rozważane dotychczas problemy koncentrowały się na nauczeniu na podstawie zbioru treningowego i zbioru etykiet klasyfikacji
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego
Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład
Data Mining Wykład 5 Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny Indeks Gini Popularnym kryterium podziału, stosowanym w wielu produktach komercyjnych, jest indeks Gini Algorytm SPRINT
Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew
Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Sieci Petriego. Sieć Petriego
Sieci Petriego Sieć Petriego Formalny model procesów umożliwiający ich weryfikację Główne konstruktory: miejsca, przejścia, łuki i żetony Opis graficzny i matematyczny Formalna semantyka umożliwia pogłębioną
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych
Naszym zadaniem jest rozpatrzenie związków między wierszami macierzy reprezentującej poziomy ekspresji poszczególnych genów.
ANALIZA SKUPIEŃ Metoda k-means I. Cel zadania Zadaniem jest analiza zbioru danych, gdzie zmiennymi są poziomy ekspresji genów. Podczas badań pobrano próbki DNA od 36 różnych pacjentów z chorobą nowotworową.
Kwantyzacja wektorowa. Kodowanie różnicowe.
Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki
Eksploracja danych - wykład II
- wykład 1/29 wykład - wykład Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Październik 2015 - wykład 2/29 W kontekście odkrywania wiedzy wykład - wykład 3/29 CRISP-DM - standaryzacja
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie
Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest
Podstawy Programowania Obiektowego
Podstawy Programowania Obiektowego Wprowadzenie do programowania obiektowego. Pojęcie struktury i klasy. Spotkanie 03 Dr inż. Dariusz JĘDRZEJCZYK Tematyka wykładu Idea programowania obiektowego Definicja
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
ALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Ćwiczenia z Zaawansowanych Systemów Baz Danych
Ćwiczenia z Zaawansowanych Systemów Baz Danych Hurtownie danych Zad 1. Projekt schematu hurtowni danych W źródłach danych dostępne są następujące informacje dotyczące operacji bankowych: Klienci banku
Definicja pliku kratowego
Pliki kratowe Definicja pliku kratowego Plik kratowy (ang grid file) jest strukturą wspierająca realizację zapytań wielowymiarowych Uporządkowanie rekordów, zawierających dane wielowymiarowe w pliku kratowym,
Teoria układów logicznych
Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę ( Q, X,,, ) gdzie Q jest skończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, X jest skończonym zbiorem niepustym, nazwanym alfabetem
Zagadnienie klasyfikacji (dyskryminacji)
Zagadnienie klasyfikacji (dyskryminacji) Przykład Bank chce klasyfikować klientów starających się o pożyczkę do jednej z dwóch grup: niskiego ryzyka (spłacających pożyczki terminowo) lub wysokiego ryzyka
Idea. Algorytm zachłanny Algorytmy hierarchiczne Metoda K-średnich Metoda hierarchiczna, a niehierarchiczna. Analiza skupień
Idea jest narzędziem analizy danych służącym do grupowania n obiektów, opisanych za pomocą wektora p-cech, w K niepustych, rozłącznych i możliwie jednorodnych grup skupień. Obiekty należące do danego skupienia
Prawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.