Kwazi-elastyczne rozpraszanie neutronów (QENS) Badanie ruchów molekularnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kwazi-elastyczne rozpraszanie neutronów (QENS) Badanie ruchów molekularnych"

Transkrypt

1 Kwazi-elasyczne ozaszanie neuonów QENS Badanie uchów molekulanych Jan Kawczyk Insyu Fizyki Jądowej im. Henyka Niewodniczańskiego Polskiej Akademii Nauk Kaków

2 Rozaszanie neuonów zimnych i emicznych Meoda badania sukuy i dynamiki faz skondensowanych Neuony zimne E =.5 mev λ = 4 Å E = mev T K Neuony emiczne E = mev λ =.9 Å E = 5 mev T K

3 QENS - meoda badawcza ozwalająca uzyskiwać infomacje o szybkich ~ s sochasycznych uchach molekuł i gu molekulanych. Badanie zaówno uchów anslacyjnych jak i oacyjnych eoienacji. Meoda komlemenana do elaksacji dielekycznej sekoskoii IR i amanowskiej NMR Infomacje o ędkości oaz geomeii uchu. Model zekój czynny doasowanie do zmiezonych widm QENS.

4 Podwójnie óżniczkowy zekój czynny I ~ d d d k' S k κ E κ k k' 4 E' b Pawo ozaszania scaeing law S iκω κ e G dd Funkcja koelacji G oisuje sukuę i dynamikę óbki

5 Rozaszanie neuonów sójne niesójne S κ coh S κ inc izooy sin d d d k' k coh S coh inc κ S κ inc coh 4 b inc 4 b b inc H coh H coh inc D D C O N [ban]

6 Rozaszanie neuonów Sójne Niesójne Elasyczne Nieelasyczne Sójne elasyczne Sójne nieelasyczne Niesójne elasyczne Niesójne nieelasyczne

7 Dyfakcja neuonów neuonogafia ozaszanie sójne elasyczne INS ozaszanie nieelasyczne sójne i niesójne QENS ozaszanie niesójne awie elasyczne

8 Dyfakcja neuonów ozaszanie sójne elasyczne sukua kysalogaficzna INS ozaszanie nieelasyczne sójne i niesójne kzywe dysesji gęsość sanów wzbudzonych fonony magnony

9 Inensiy Dyfakcja neuonów ozaszanie sójne elasyczne sukua kysalogaficzna 9 K K 5 K K K K d hkl INS ozaszanie nieelasyczne sójne i niesójne kzywe dysesji gęsość sanów wzbudzonych fonony magnony

10 G H Inensiy Dyfakcja neuonów ozaszanie sójne elasyczne sukua kysalogaficzna 9 K K 5 K K K K d hkl INS ozaszanie nieelasyczne sójne i niesójne HMB K kzywe dysesji gęsość sanów wzbudzonych fonony magnony K K 4 6 E [mev]

11 Inensiy QENS ozaszanie niesójne oszezone maksimum elasyczne szybkie ~s uchy sochasyczne molekuł i gu molekulanych uchy anslacyjne i oacyjne eoienacja K 7 K 4 K K 8 K 5 K K K K Enegy [mev]

12 d d G e S ω i κ κ ~ κ S k k' d d d I Pawo funkcja ozaszania Sκ ω: Funkcja koelacji G oisuje gęsość awdoodobieńswa znalezienia aomu w chwili w unkcie jeśli w chwili = jakiś aom był w unkcie : j i j i d G

13 Rozaszania niesójne: S inc i ω κ κ e G S dd Klasyczna funkcja auokoelacji G s - gęsość awdoodobieńswa znalezienia aomu chwili w unkcie jeśli en sam aom w chwili = był w unkcie : G s

14 Reoienacja Model jednoosiowych zeskoków o º n. gua CH d = λ d d = d d = - d + d = = - λ d = = = = = = λ Równania Chamana-Kołmogoowa: i j d k ik k j d

15 d d d d d d j ij ij ij e e d d d d d d d Śedni czas między zeskokami czas ezydencji

16 G s d d G e S s ω i inc κ κ G s cos cos d d G e d e S s i i inc κ sin cos κ κ

17 ] [ ] [ cos cos cos cos cos cos d e d e d e d d e d e S i i i i i inc κ sin J sin cos cos d e i d e S i inc [ ] J κ

18 sin sin S inc κ Dla óbki olikysalicznej x x x d x sin j cos sin J sin HWHM funkcji Loenza J J J ] [ d e e e S i inc κ

19 S Szybka sochasyczna eoienacja molekuł i gu molekulanych Składowa elasyczna I EL i kwazi-elasyczna I QEL Γ ~ / EISF I EL I EL I QEL fκ

20 N Jednoosiowe zeskoki omiędzy N ównoważnymi ołożeniami N N l N lm N m x N x f f f S l N m i i i N i i inc sin sin cos sin J κ κ κ Jednoosiowa dyfuzja oacyjna J J Dl S l l l l l inc κ κ κ Izooowa dyfuzja oacyjna j j l Dl l S l l l l l inc κ κ κ

21 Dyfuzja anslacyjna Równanie dyfuzji D wsółczynnik dyfuzji G G D 4 ex 4 D S D D G κ G G

22 S Szybkie anslacyjne uchy sochasyczne molekuł i gu molekulanych Tylko składowa kwazi-elasyczna Γ = fκ

23 Pzykłady zasosowania meody QENS: Heksameylobenzen HMB Komleks HMB-TCNQ Komleks nafalen-tcnb Ciekły kyszał 5*CB

24 HMB heksameylobenzen J. Kawczyk J. Maye I. Nakaniec M. Nowina Konoka A. Pawlukojć O. Seinsvoll J.A. Janik Physica B

25 Sekome TOF Kjelle Nowegia NERA Dubna Rosja E o = 4.66 mev 4.65 mev κ =.9 Å Å - T = K K K K E =. mev.7 mev Należy uwzględnić oawki na: - ozaszanie naczyńka omiaowego - ło szybkich neuonów - ło ozaszania sójnego - ozaszanie wielokone.

26

27 S κ sin sin S diff l κ J κ J κ Dl l l l l Funkcja zdolności ozdzielczej Res Res = A + B - ex - - / z doasowania do widma dla T = K A B Doasowanie slou Sκ Res do wyników z doasowania modelu zeskoków o º T = K T = K = s =. s

28

29 Pawo Aheniusa z doasowania T = o ex E a /RT E a = 8 kj/mol

30

31 Pawo Aheniusa z doasowania T = o ex E a /RT E a = 8 kj/mol

32 HMB heksameylobenzen J. Kawczyk J. Maye I. Nakaniec M. Nowina Konoka A. Pawlukojć O. Seinsvoll J.A. Janik Physica B

33

34 Pzykłady zasosowania meody QENS: Heksameylobenzen HMB Komleks HMB-TCNQ Komleks nafalen-tcnb Ciekły kyszał 5*CB

35 Komleks z zeniesieniem ładunku HMB -TCNQ eacyjanochinodimean HMB TCNQ W. Sawka-Dobowolska G. Bao L. Sobczyk A. Pawlukojć H. Pasiewicz-Bąk H. Rundlöf J. Kawczyk M. Nowina-Konoka P. Jagielski J.A. Janik M. Page O. Seinsvoll E. Gech J. Nowicka-Scheibe J. Chem. Phys

36 Inensiy 9 K K 5 K Enegy [mev] 95 K 75 K 5 K K K 5 K K

37 HMB TCNQ heksameylobenzen eacyjanochinodimean

38 HMB szybka eoienacja oonów 8/ Model naychmiasowych zeskoków o o S κ sin sin κ zekaz ędu zekaz enegii odległość oonów od osi eoienacji =.6 Å a = długość zeskoku = / śedni czas między zeskokami a. TCNQ nieuchome oony 4/ Wkład ylko do części elasycznej

39 8 4 S S κ κ Funkcja zdolności ozdzielczej Res Res = A + B - ex - - / z doasowania do widma dla T = K A B Doasowanie slou Sκ Res do wyników z doasowania = 6 s T = K = s T = 9 K HMB: = s T = K =. s T = K

40 T = K T = 95 K

41 Pawo Aheniusa z doasowania E a T = o ex E a /RT E a =.7 kj/mol ln E a =.8 kj/mol /T [/K] HMB: E a = 8 kj/mol

42 Pzykłady zasosowania meody QENS: Heksameylobenzen HMB Komleks HMB-TCNQ Komleks nafalen-tcnb Ciekły kyszał 5*CB

43 Nafalen TCNB eacyjanobenzen 6º 44º K. Czaniecka J.M. Janik J.A. Janik J. Kawczyk I. Nakaniec J. Wąsicki R. Kowal K. Pigoń K. Ones J. Chem. Phys

44 λ λ π-φ φ a a a a a f f f f f f f f f f f f f S i i i j j cos sin sin L ]L [ 4 ]L [ 4 ]L [ 4 ] [ 4 κ κ κ κ κ κ κ κ κ κ κ κ κ κ Model jednoosiowych zeskoków omiędzy czeema nieównoważnymi ołożeniami J. Kawczyk Aca Phys. Pol. A

45 T = K T = 7 K = 7 s = s

46 Pzykłady zasosowania meody QENS: Heksameylobenzen HMB Komleks HMB-TCNQ Komleks nafalen-tcnb Ciekły kyszał 5*CB

47 Q =.6 Å -.69 Å - T = 5.9 K 5.7 K H. Suzuki A. Inaba J. Kawczyk M. Massalska-Aodź T. Kikuchi O. Yamamuo Jounal of Non-Cysalline Solids 57 74

48

49

50 Skala czasowa Śedni czas między zeskokami czas koelacji Zależność T enegia akywacji Sała dyfuzji anslacyjnej Geomeia uchu Reoienacja dyfuzja anslacyjna Cała molekuła gua molekulana omień eoienacji deueacja Pzeskoki o jaki ką? dyfuzja oacyjna Nieuchome aomy Udział w kilku uchach

Jan Krawczyk Kraków, Instytut Fizyki Jądrowej im. H. Niewodniczańskiego Polskiej Akademii Nauk

Jan Krawczyk Kraków, Instytut Fizyki Jądrowej im. H. Niewodniczańskiego Polskiej Akademii Nauk Jan Krawczyk Kraków, 10.12.2012 Instytut Fizyki Jądrowej im. H. Niewodniczańskiego Polskiej Akademii Nauk Rozpraszanie neutronów zimnych i termicznych jest metodą eksperymentalną bardzo dobrze nadającą

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Nośniki swobodne w półprzewodnikach

Nośniki swobodne w półprzewodnikach Nośniki swobodne w półpzewodnikach Półpzewodniki Masa elektonu Masa efektywna swobodnego * m m Opócz wkładu swobodnych nośników musimy uwzględnić inne mechanizmy np. wkład do polayzaci od elektonów związanych

Bardziej szczegółowo

Wstęp do fizyki jądrowej Tomasz Pawlak, 2009

Wstęp do fizyki jądrowej Tomasz Pawlak, 2009 4-6-7 Węp do fizyki jądowej Tomaz Pawak 9 oddziaływanie dwóch nukeonów mode poencjału dwuciałowego pawa ymeii (niezmienniczość wzgędem anfomacji) pawa zachowania wiekości fizycznych bak eoii pzykład: jednoodność

Bardziej szczegółowo

Dyskretny proces Markowa

Dyskretny proces Markowa Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Spektroskopia mionów w badaniach wybranych materiałów magnetycznych. Piotr M. Zieliński NZ35 IFJ PAN

Spektroskopia mionów w badaniach wybranych materiałów magnetycznych. Piotr M. Zieliński NZ35 IFJ PAN Spektroskopia mionów w badaniach wybranych materiałów magnetycznych Piotr M. Zieliński NZ35 IFJ PAN 1. Fundamenty spektroskopii mionów. Typowy eksperyment 3. Cel i obiekty badań 4. Przykłady otrzymanych

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

magnetyzm ver

magnetyzm ver e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu

Bardziej szczegółowo

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320

Bardziej szczegółowo

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu Jąda atomowe jako obiekty kwantowe Wpowadzenie Potencjał jądowy Spin i moment magnetyczny Stany enegetyczne nukleonów w jądze Pawo ozpadu Jąda atomowe jako obiekty kwantowe Magnetyczny Rezonans Jądowy

Bardziej szczegółowo

Fale elektromagnetyczne spektrum

Fale elektromagnetyczne spektrum Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury

Bardziej szczegółowo

Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani

Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani Nr 41/CB/2012 Nr 42/CB/2012 Nr 43/CB/2012 Nr 44/CB/2012 Nr 45/CB/2012 Nr 46/CB/2012 Nr 47/CB/2012 Nr 48/CB/2012 Nr 49/CB/2012 Nr 50/CB/2012 Nr 51/CB/2012 Nr 52/CB/2012 Nr 53/CB/2012 Nr 54/CB/2012 Nr 55/CB/2012

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

podsumowanie (E) E l Eds 0 V jds

podsumowanie (E) E l Eds 0 V jds e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε

Bardziej szczegółowo

Różnorodność uporządkowania cząsteczek materii miękkiej w kontekście ich dynamiki wewnętrznej

Różnorodność uporządkowania cząsteczek materii miękkiej w kontekście ich dynamiki wewnętrznej Różnorodność uporządkowania cząsteczek materii miękkiej w kontekście ich dynamiki wewnętrznej Ewa Juszyńska-Gałązka IFJ PAN, Oddział Fizyki Materii Skondensowanej, Zakład Badań Materii Miękkiej Plan wystąpienia:

Bardziej szczegółowo

drgania h armoniczne harmoniczne

drgania h armoniczne harmoniczne ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i) (3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

Ł ź Ś Ł ń Ż ć ź ć Ł Ś Ś Ś Ł Ł Ź Ś Ś Ś Ł Ś ź ć ć ć Ś Ś Ś Ł Ż Ś ń Ś Ł Ś Ł Ł Ź ć ć Ł ć Ń Ś Ą Ł ŁÓ Ź ń ń Ó ć Ł Ł ź ń ć ć ć Ś Ł Ł Ź Ś Ś ń Ż Ż Ż ć ć Ś Ś Ł Ź ć ń ć ć Ś Ł Ę ń Ś Ł Ł ź ć Ź ć ć ć ń ć Ś Ś Ż ć Ś ń

Bardziej szczegółowo

Ł Ś ń ń ń ź ź Ę Ś Ś Ć Ą Ę ź Ź Ń ń Ę Ą ń Ź ń ń ź Ś ń Ź ź ć Ł Ś Ą Ś ź Ą ń Ń Ź Ś Ó ŁÓ Ę Ó Ś ć ź Ę Ą Ś Ś Ś Ś ć Ą ź ń Ą ń Ź ź ź Ę Ł ń ń ń ź Ź Ą Ń Ą Ą ć Ź ń Ą Ń ń ń ź ć ń Ę Ś Ź ć ć ć ń ń ć ń ć ć Ź Ą ć ć ć ć

Bardziej szczegółowo

Ż Ł Ó ź Ł ź Ł ź Ó Ó Ź Ó ŁÓ ź Ł Ś Ł Ź ź ŁÓ ź Ł ć Ć ć ż ć ż ż ć ż ż Ó ć ć ż ć Ł ź ż ż Ł Ź Ó Ż ć ć Ł ż ż ź ż Ć Ó Ł Ó ż Ż ż ż ż Ł Ó ż Ą ż Ł Ł ć Ł Ł Ł ż Ł Ó ż Ł ź Ż Ś Ł ż Ł ć Ż Ą Ł ż ż Ó ć ż ć Ń ć ć ż ż ć

Bardziej szczegółowo

Ł ż ż ż Ź Ż ć Ś Ż ź ż ć Ł Ń ż Ł ż ż Ż Ż Ż Ę ż Ż Ż Ż ż ć Ź Ź ż ż Ż ż ć ż ć Ż Ż Ś ż Ę ż Ż Ż Ż ź Ż Ę ź ż ż ż Ż Ą ź Ż Ż ż ż Ż Ś ż ż ż Ż ż ź Ż ż ć Ż Ż Ó Ź Ż Ź ż Ł Ż ż Ś ć ć Ś ż Ż ć Ś ć Ą Ś Ń ć Ż ć Ę Ę Ż ć ż

Bardziej szczegółowo

Ó Ź Ź Ł Ź Ą Ź Ś Ź Ź Ą Ó Ź Ź Ź Ź Ź Ź Ź Ź Ź Ź Ś Ż Ś Ś Ś Ź Ź Ś Ó Ó Ż Ó Ć Ź Ś Ż Ś Ć Ó Ś Ź Ó Ó Ź Ś Ć Ś Ż Ź Ó Ź Ź Ż Ą Ó Ó Ó Ź Ź Ź Ż Ź Ź Ż Ź Ś Ź Ś Ź Ś Ś Ż Ó Ż Ż Ź Ź Ś Ó Ó Ż Ź Ż Ś Ź Ś Ż Ż Ś Ś Ż Ó Ć Ć Ń Ś ŁÓ

Bardziej szczegółowo

Ł ŁÓ ź ń ć ń ń Ó ć ń ć Ś Ś ń Ś Ś Ś ć ć Ć Ś ć Ż Ć Ś ć Ś ń Ł ć ć ć ź ń ń ń ń ń ń ź ń ń ń ź ń Ś Ś ć ć ń Ś ć Ś Ś Ć ź ń ń ź ń ń ń ń ć ć ć ć ć ć ć ź ń ź ć ć ć ć ń ń ć ć Ś ń ń ń ń ź ć Ę ń ń ć Ł ź ź ź Ć ć ć ź

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie

Bardziej szczegółowo

ostatnia aktualizacja 4 maja 2015

ostatnia aktualizacja 4 maja 2015 ostatnia aktualizacja 4 maja 2015 strona 1 Ziemia nie jest sztywna! Jest elastyczna, lepka, sprężysta... strona 2 punktu Początkowy potencjał w punkcie A W A strona 3 punktu Początkowy potencjał w punkcie

Bardziej szczegółowo

Elektrostatyka. + (proton) - (elektron)

Elektrostatyka. + (proton) - (elektron) lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

PODSTAWY CHEMII KWANTOWEJ. Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej

PODSTAWY CHEMII KWANTOWEJ. Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej PODSTWY CHEMII KWTOWEJ Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Identyfikacja cząstek

Identyfikacja cząstek Określenie masy i ładunku cząstek Pomiar prędkości przy znanym pędzie e/ µ/ π/ K/ p czas przelotu (TOF) straty na jonizację de/dx Promieniowanie Czerenkowa (C) Promieniowanie przejścia (TR) Różnice w charakterze

Bardziej szczegółowo

ver b drgania harmoniczne

ver b drgania harmoniczne ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0

Bardziej szczegółowo

Rozwiązania przykładowych zadań

Rozwiązania przykładowych zadań Rozwiązania przykładowych zadań Oblicz czas średni i czas prawdziwy słoneczny na południku λ=45 E o godzinie 15 00 UT dnia 1 VII. Rozwiązanie: RóŜnica czasu średniego słonecznego T s w danym miejscu i

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne

Bardziej szczegółowo

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0 Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego

Bardziej szczegółowo

SYSTEMY ELEKTROMECHANICZNE

SYSTEMY ELEKTROMECHANICZNE SYSTEMY ELEKTROMECHANICZNE kie. Elektotechnika, studia stopnia stacjonane, sem. 1, 010/011 SZKIC DO WYKŁADÓW SILNIKI BEZSZCZOTKOWE Z MAGNESAMI TRWAŁYMI (SBMT) (1) MODELE OBWODOWE DYNAMICZNE Mieczysław

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej

Bardziej szczegółowo

= sin. = 2Rsin. R = E m. = sin

= sin. = 2Rsin. R = E m. = sin Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Nadpłynność i nadprzewodnictwo

Nadpłynność i nadprzewodnictwo Nadpłynność i nadprzewodnictwo Krzysztof Byczuk Instytut Fizyki Teoretycznej, Wydział Fizyki, Uniwersytet Warszawski 13 marzec 2019 www.fuw.edu.pl/ byczuk Tarcie, opór, dysypacja... pomaga... przeszkadza...

Bardziej szczegółowo

V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania

V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs

Bardziej szczegółowo

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie

Bardziej szczegółowo

ZJAWISKA ELEKTROMAGNETYCZNE

ZJAWISKA ELEKTROMAGNETYCZNE ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego

Bardziej szczegółowo

Nieliniowa Optyczna Spektroskopia Supermolekuł

Nieliniowa Optyczna Spektroskopia Supermolekuł Nieliniowa Optyczna Spektroskopia Supermolekuł Tadeusz Bancewicz Zakład Optyki Nieliniowej, Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu, http://zon8.physd.amu.edu.pl/~tbancewi 6 marca

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1. Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Fizyka Fizyka eksperymentalna cząstek cząstek (hadronów w i i leptonów) Eksperymentalne badanie badanie koherencji koherencji kwantowej

Fizyka Fizyka eksperymentalna cząstek cząstek (hadronów w i i leptonów) Eksperymentalne badanie badanie koherencji koherencji kwantowej ZAKŁAD AD FIZYKI JĄDROWEJ Paweł Moskal, p. 344, p.moskal@fz-juelich.de Współczesna eksperymentalna fizyka fizyka jądrowaj jądrowa poszukiwanie jąder jąder mezonowych Fizyka Fizyka eksperymentalna cząstek

Bardziej szczegółowo

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo

Bardziej szczegółowo

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera. Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się

Bardziej szczegółowo

Optyka falowa. polaryzacja. dwójłomność optyczna. czym jest zjawisko polaryzacji stan a stopień polaryzacji sposoby polaryzacji

Optyka falowa. polaryzacja. dwójłomność optyczna. czym jest zjawisko polaryzacji stan a stopień polaryzacji sposoby polaryzacji W-21 (Jaoszewicz) 16 slajdów Na podsawie pezenacji pof. J. Rukowskiego Opyka falowa polayzacja czym jes zjawisko polayzacji san a sopień polayzacji sposoby polayzacji dwójłomność opyczna pzyczyny mikoskopowe

Bardziej szczegółowo

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 21 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 21

Bardziej szczegółowo

Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej

Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna

Bardziej szczegółowo

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie

Bardziej szczegółowo

Krople wielokrotne: samoorganizacja, struktura i

Krople wielokrotne: samoorganizacja, struktura i Krople wielokrotne: samoorganizacja, struktura i stabilność Jan Guzowski Instytut Chemii Fizycznej PAN, Warszawa Warszawa, 07.11.2011 Jan Guzowski (ICHF PAN) Krople wielokrotne 1 / 14 Samoorganizacja na

Bardziej szczegółowo