Kwazi-elastyczne rozpraszanie neutronów (QENS) Badanie ruchów molekularnych
|
|
- Kinga Przybysz
- 7 lat temu
- Przeglądów:
Transkrypt
1 Kwazi-elasyczne ozaszanie neuonów QENS Badanie uchów molekulanych Jan Kawczyk Insyu Fizyki Jądowej im. Henyka Niewodniczańskiego Polskiej Akademii Nauk Kaków
2 Rozaszanie neuonów zimnych i emicznych Meoda badania sukuy i dynamiki faz skondensowanych Neuony zimne E =.5 mev λ = 4 Å E = mev T K Neuony emiczne E = mev λ =.9 Å E = 5 mev T K
3 QENS - meoda badawcza ozwalająca uzyskiwać infomacje o szybkich ~ s sochasycznych uchach molekuł i gu molekulanych. Badanie zaówno uchów anslacyjnych jak i oacyjnych eoienacji. Meoda komlemenana do elaksacji dielekycznej sekoskoii IR i amanowskiej NMR Infomacje o ędkości oaz geomeii uchu. Model zekój czynny doasowanie do zmiezonych widm QENS.
4 Podwójnie óżniczkowy zekój czynny I ~ d d d k' S k κ E κ k k' 4 E' b Pawo ozaszania scaeing law S iκω κ e G dd Funkcja koelacji G oisuje sukuę i dynamikę óbki
5 Rozaszanie neuonów sójne niesójne S κ coh S κ inc izooy sin d d d k' k coh S coh inc κ S κ inc coh 4 b inc 4 b b inc H coh H coh inc D D C O N [ban]
6 Rozaszanie neuonów Sójne Niesójne Elasyczne Nieelasyczne Sójne elasyczne Sójne nieelasyczne Niesójne elasyczne Niesójne nieelasyczne
7 Dyfakcja neuonów neuonogafia ozaszanie sójne elasyczne INS ozaszanie nieelasyczne sójne i niesójne QENS ozaszanie niesójne awie elasyczne
8 Dyfakcja neuonów ozaszanie sójne elasyczne sukua kysalogaficzna INS ozaszanie nieelasyczne sójne i niesójne kzywe dysesji gęsość sanów wzbudzonych fonony magnony
9 Inensiy Dyfakcja neuonów ozaszanie sójne elasyczne sukua kysalogaficzna 9 K K 5 K K K K d hkl INS ozaszanie nieelasyczne sójne i niesójne kzywe dysesji gęsość sanów wzbudzonych fonony magnony
10 G H Inensiy Dyfakcja neuonów ozaszanie sójne elasyczne sukua kysalogaficzna 9 K K 5 K K K K d hkl INS ozaszanie nieelasyczne sójne i niesójne HMB K kzywe dysesji gęsość sanów wzbudzonych fonony magnony K K 4 6 E [mev]
11 Inensiy QENS ozaszanie niesójne oszezone maksimum elasyczne szybkie ~s uchy sochasyczne molekuł i gu molekulanych uchy anslacyjne i oacyjne eoienacja K 7 K 4 K K 8 K 5 K K K K Enegy [mev]
12 d d G e S ω i κ κ ~ κ S k k' d d d I Pawo funkcja ozaszania Sκ ω: Funkcja koelacji G oisuje gęsość awdoodobieńswa znalezienia aomu w chwili w unkcie jeśli w chwili = jakiś aom był w unkcie : j i j i d G
13 Rozaszania niesójne: S inc i ω κ κ e G S dd Klasyczna funkcja auokoelacji G s - gęsość awdoodobieńswa znalezienia aomu chwili w unkcie jeśli en sam aom w chwili = był w unkcie : G s
14 Reoienacja Model jednoosiowych zeskoków o º n. gua CH d = λ d d = d d = - d + d = = - λ d = = = = = = λ Równania Chamana-Kołmogoowa: i j d k ik k j d
15 d d d d d d j ij ij ij e e d d d d d d d Śedni czas między zeskokami czas ezydencji
16 G s d d G e S s ω i inc κ κ G s cos cos d d G e d e S s i i inc κ sin cos κ κ
17 ] [ ] [ cos cos cos cos cos cos d e d e d e d d e d e S i i i i i inc κ sin J sin cos cos d e i d e S i inc [ ] J κ
18 sin sin S inc κ Dla óbki olikysalicznej x x x d x sin j cos sin J sin HWHM funkcji Loenza J J J ] [ d e e e S i inc κ
19 S Szybka sochasyczna eoienacja molekuł i gu molekulanych Składowa elasyczna I EL i kwazi-elasyczna I QEL Γ ~ / EISF I EL I EL I QEL fκ
20 N Jednoosiowe zeskoki omiędzy N ównoważnymi ołożeniami N N l N lm N m x N x f f f S l N m i i i N i i inc sin sin cos sin J κ κ κ Jednoosiowa dyfuzja oacyjna J J Dl S l l l l l inc κ κ κ Izooowa dyfuzja oacyjna j j l Dl l S l l l l l inc κ κ κ
21 Dyfuzja anslacyjna Równanie dyfuzji D wsółczynnik dyfuzji G G D 4 ex 4 D S D D G κ G G
22 S Szybkie anslacyjne uchy sochasyczne molekuł i gu molekulanych Tylko składowa kwazi-elasyczna Γ = fκ
23 Pzykłady zasosowania meody QENS: Heksameylobenzen HMB Komleks HMB-TCNQ Komleks nafalen-tcnb Ciekły kyszał 5*CB
24 HMB heksameylobenzen J. Kawczyk J. Maye I. Nakaniec M. Nowina Konoka A. Pawlukojć O. Seinsvoll J.A. Janik Physica B
25 Sekome TOF Kjelle Nowegia NERA Dubna Rosja E o = 4.66 mev 4.65 mev κ =.9 Å Å - T = K K K K E =. mev.7 mev Należy uwzględnić oawki na: - ozaszanie naczyńka omiaowego - ło szybkich neuonów - ło ozaszania sójnego - ozaszanie wielokone.
26
27 S κ sin sin S diff l κ J κ J κ Dl l l l l Funkcja zdolności ozdzielczej Res Res = A + B - ex - - / z doasowania do widma dla T = K A B Doasowanie slou Sκ Res do wyników z doasowania modelu zeskoków o º T = K T = K = s =. s
28
29 Pawo Aheniusa z doasowania T = o ex E a /RT E a = 8 kj/mol
30
31 Pawo Aheniusa z doasowania T = o ex E a /RT E a = 8 kj/mol
32 HMB heksameylobenzen J. Kawczyk J. Maye I. Nakaniec M. Nowina Konoka A. Pawlukojć O. Seinsvoll J.A. Janik Physica B
33
34 Pzykłady zasosowania meody QENS: Heksameylobenzen HMB Komleks HMB-TCNQ Komleks nafalen-tcnb Ciekły kyszał 5*CB
35 Komleks z zeniesieniem ładunku HMB -TCNQ eacyjanochinodimean HMB TCNQ W. Sawka-Dobowolska G. Bao L. Sobczyk A. Pawlukojć H. Pasiewicz-Bąk H. Rundlöf J. Kawczyk M. Nowina-Konoka P. Jagielski J.A. Janik M. Page O. Seinsvoll E. Gech J. Nowicka-Scheibe J. Chem. Phys
36 Inensiy 9 K K 5 K Enegy [mev] 95 K 75 K 5 K K K 5 K K
37 HMB TCNQ heksameylobenzen eacyjanochinodimean
38 HMB szybka eoienacja oonów 8/ Model naychmiasowych zeskoków o o S κ sin sin κ zekaz ędu zekaz enegii odległość oonów od osi eoienacji =.6 Å a = długość zeskoku = / śedni czas między zeskokami a. TCNQ nieuchome oony 4/ Wkład ylko do części elasycznej
39 8 4 S S κ κ Funkcja zdolności ozdzielczej Res Res = A + B - ex - - / z doasowania do widma dla T = K A B Doasowanie slou Sκ Res do wyników z doasowania = 6 s T = K = s T = 9 K HMB: = s T = K =. s T = K
40 T = K T = 95 K
41 Pawo Aheniusa z doasowania E a T = o ex E a /RT E a =.7 kj/mol ln E a =.8 kj/mol /T [/K] HMB: E a = 8 kj/mol
42 Pzykłady zasosowania meody QENS: Heksameylobenzen HMB Komleks HMB-TCNQ Komleks nafalen-tcnb Ciekły kyszał 5*CB
43 Nafalen TCNB eacyjanobenzen 6º 44º K. Czaniecka J.M. Janik J.A. Janik J. Kawczyk I. Nakaniec J. Wąsicki R. Kowal K. Pigoń K. Ones J. Chem. Phys
44 λ λ π-φ φ a a a a a f f f f f f f f f f f f f S i i i j j cos sin sin L ]L [ 4 ]L [ 4 ]L [ 4 ] [ 4 κ κ κ κ κ κ κ κ κ κ κ κ κ κ Model jednoosiowych zeskoków omiędzy czeema nieównoważnymi ołożeniami J. Kawczyk Aca Phys. Pol. A
45 T = K T = 7 K = 7 s = s
46 Pzykłady zasosowania meody QENS: Heksameylobenzen HMB Komleks HMB-TCNQ Komleks nafalen-tcnb Ciekły kyszał 5*CB
47 Q =.6 Å -.69 Å - T = 5.9 K 5.7 K H. Suzuki A. Inaba J. Kawczyk M. Massalska-Aodź T. Kikuchi O. Yamamuo Jounal of Non-Cysalline Solids 57 74
48
49
50 Skala czasowa Śedni czas między zeskokami czas koelacji Zależność T enegia akywacji Sała dyfuzji anslacyjnej Geomeia uchu Reoienacja dyfuzja anslacyjna Cała molekuła gua molekulana omień eoienacji deueacja Pzeskoki o jaki ką? dyfuzja oacyjna Nieuchome aomy Udział w kilku uchach
Jan Krawczyk Kraków, Instytut Fizyki Jądrowej im. H. Niewodniczańskiego Polskiej Akademii Nauk
Jan Krawczyk Kraków, 10.12.2012 Instytut Fizyki Jądrowej im. H. Niewodniczańskiego Polskiej Akademii Nauk Rozpraszanie neutronów zimnych i termicznych jest metodą eksperymentalną bardzo dobrze nadającą
= ± Ne N - liczba całkowita.
POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Nośniki swobodne w półprzewodnikach
Nośniki swobodne w półpzewodnikach Półpzewodniki Masa elektonu Masa efektywna swobodnego * m m Opócz wkładu swobodnych nośników musimy uwzględnić inne mechanizmy np. wkład do polayzaci od elektonów związanych
Wstęp do fizyki jądrowej Tomasz Pawlak, 2009
4-6-7 Węp do fizyki jądowej Tomaz Pawak 9 oddziaływanie dwóch nukeonów mode poencjału dwuciałowego pawa ymeii (niezmienniczość wzgędem anfomacji) pawa zachowania wiekości fizycznych bak eoii pzykład: jednoodność
Dyskretny proces Markowa
Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Spektroskopia mionów w badaniach wybranych materiałów magnetycznych. Piotr M. Zieliński NZ35 IFJ PAN
Spektroskopia mionów w badaniach wybranych materiałów magnetycznych Piotr M. Zieliński NZ35 IFJ PAN 1. Fundamenty spektroskopii mionów. Typowy eksperyment 3. Cel i obiekty badań 4. Przykłady otrzymanych
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
magnetyzm ver
e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu
POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH
Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu
Jąda atomowe jako obiekty kwantowe Wpowadzenie Potencjał jądowy Spin i moment magnetyczny Stany enegetyczne nukleonów w jądze Pawo ozpadu Jąda atomowe jako obiekty kwantowe Magnetyczny Rezonans Jądowy
Fale elektromagnetyczne spektrum
Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury
Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani
Nr 41/CB/2012 Nr 42/CB/2012 Nr 43/CB/2012 Nr 44/CB/2012 Nr 45/CB/2012 Nr 46/CB/2012 Nr 47/CB/2012 Nr 48/CB/2012 Nr 49/CB/2012 Nr 50/CB/2012 Nr 51/CB/2012 Nr 52/CB/2012 Nr 53/CB/2012 Nr 54/CB/2012 Nr 55/CB/2012
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.
Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do
podsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
Różnorodność uporządkowania cząsteczek materii miękkiej w kontekście ich dynamiki wewnętrznej
Różnorodność uporządkowania cząsteczek materii miękkiej w kontekście ich dynamiki wewnętrznej Ewa Juszyńska-Gałązka IFJ PAN, Oddział Fizyki Materii Skondensowanej, Zakład Badań Materii Miękkiej Plan wystąpienia:
drgania h armoniczne harmoniczne
ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
dr inż. Zbigniew Szklarski
ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.
Ł ź Ś Ł ń Ż ć ź ć Ł Ś Ś Ś Ł Ł Ź Ś Ś Ś Ł Ś ź ć ć ć Ś Ś Ś Ł Ż Ś ń Ś Ł Ś Ł Ł Ź ć ć Ł ć Ń Ś Ą Ł ŁÓ Ź ń ń Ó ć Ł Ł ź ń ć ć ć Ś Ł Ł Ź Ś Ś ń Ż Ż Ż ć ć Ś Ś Ł Ź ć ń ć ć Ś Ł Ę ń Ś Ł Ł ź ć Ź ć ć ć ń ć Ś Ś Ż ć Ś ń
Ł Ś ń ń ń ź ź Ę Ś Ś Ć Ą Ę ź Ź Ń ń Ę Ą ń Ź ń ń ź Ś ń Ź ź ć Ł Ś Ą Ś ź Ą ń Ń Ź Ś Ó ŁÓ Ę Ó Ś ć ź Ę Ą Ś Ś Ś Ś ć Ą ź ń Ą ń Ź ź ź Ę Ł ń ń ń ź Ź Ą Ń Ą Ą ć Ź ń Ą Ń ń ń ź ć ń Ę Ś Ź ć ć ć ń ń ć ń ć ć Ź Ą ć ć ć ć
Ż Ł Ó ź Ł ź Ł ź Ó Ó Ź Ó ŁÓ ź Ł Ś Ł Ź ź ŁÓ ź Ł ć Ć ć ż ć ż ż ć ż ż Ó ć ć ż ć Ł ź ż ż Ł Ź Ó Ż ć ć Ł ż ż ź ż Ć Ó Ł Ó ż Ż ż ż ż Ł Ó ż Ą ż Ł Ł ć Ł Ł Ł ż Ł Ó ż Ł ź Ż Ś Ł ż Ł ć Ż Ą Ł ż ż Ó ć ż ć Ń ć ć ż ż ć
Ł ż ż ż Ź Ż ć Ś Ż ź ż ć Ł Ń ż Ł ż ż Ż Ż Ż Ę ż Ż Ż Ż ż ć Ź Ź ż ż Ż ż ć ż ć Ż Ż Ś ż Ę ż Ż Ż Ż ź Ż Ę ź ż ż ż Ż Ą ź Ż Ż ż ż Ż Ś ż ż ż Ż ż ź Ż ż ć Ż Ż Ó Ź Ż Ź ż Ł Ż ż Ś ć ć Ś ż Ż ć Ś ć Ą Ś Ń ć Ż ć Ę Ę Ż ć ż
Ó Ź Ź Ł Ź Ą Ź Ś Ź Ź Ą Ó Ź Ź Ź Ź Ź Ź Ź Ź Ź Ź Ś Ż Ś Ś Ś Ź Ź Ś Ó Ó Ż Ó Ć Ź Ś Ż Ś Ć Ó Ś Ź Ó Ó Ź Ś Ć Ś Ż Ź Ó Ź Ź Ż Ą Ó Ó Ó Ź Ź Ź Ż Ź Ź Ż Ź Ś Ź Ś Ź Ś Ś Ż Ó Ż Ż Ź Ź Ś Ó Ó Ż Ź Ż Ś Ź Ś Ż Ż Ś Ś Ż Ó Ć Ć Ń Ś ŁÓ
Ł ŁÓ ź ń ć ń ń Ó ć ń ć Ś Ś ń Ś Ś Ś ć ć Ć Ś ć Ż Ć Ś ć Ś ń Ł ć ć ć ź ń ń ń ń ń ń ź ń ń ń ź ń Ś Ś ć ć ń Ś ć Ś Ś Ć ź ń ń ź ń ń ń ń ć ć ć ć ć ć ć ź ń ź ć ć ć ć ń ń ć ć Ś ń ń ń ń ź ć Ę ń ń ć Ł ź ź ź Ć ć ć ź
Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.
Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
ostatnia aktualizacja 4 maja 2015
ostatnia aktualizacja 4 maja 2015 strona 1 Ziemia nie jest sztywna! Jest elastyczna, lepka, sprężysta... strona 2 punktu Początkowy potencjał w punkcie A W A strona 3 punktu Początkowy potencjał w punkcie
Elektrostatyka. + (proton) - (elektron)
lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie
L(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
PODSTAWY CHEMII KWANTOWEJ. Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej
PODSTWY CHEMII KWTOWEJ Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
Identyfikacja cząstek
Określenie masy i ładunku cząstek Pomiar prędkości przy znanym pędzie e/ µ/ π/ K/ p czas przelotu (TOF) straty na jonizację de/dx Promieniowanie Czerenkowa (C) Promieniowanie przejścia (TR) Różnice w charakterze
ver b drgania harmoniczne
ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0
Rozwiązania przykładowych zadań
Rozwiązania przykładowych zadań Oblicz czas średni i czas prawdziwy słoneczny na południku λ=45 E o godzinie 15 00 UT dnia 1 VII. Rozwiązanie: RóŜnica czasu średniego słonecznego T s w danym miejscu i
Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)
Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne
na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0
Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego
SYSTEMY ELEKTROMECHANICZNE
SYSTEMY ELEKTROMECHANICZNE kie. Elektotechnika, studia stopnia stacjonane, sem. 1, 010/011 SZKIC DO WYKŁADÓW SILNIKI BEZSZCZOTKOWE Z MAGNESAMI TRWAŁYMI (SBMT) (1) MODELE OBWODOWE DYNAMICZNE Mieczysław
1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)
. Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny
TECHNIKI INFORMATYCZNE W ODLEWNICTWIE
ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej
= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
Nadpłynność i nadprzewodnictwo
Nadpłynność i nadprzewodnictwo Krzysztof Byczuk Instytut Fizyki Teoretycznej, Wydział Fizyki, Uniwersytet Warszawski 13 marzec 2019 www.fuw.edu.pl/ byczuk Tarcie, opór, dysypacja... pomaga... przeszkadza...
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego
Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie
ZJAWISKA ELEKTROMAGNETYCZNE
ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego
Nieliniowa Optyczna Spektroskopia Supermolekuł
Nieliniowa Optyczna Spektroskopia Supermolekuł Tadeusz Bancewicz Zakład Optyki Nieliniowej, Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu, http://zon8.physd.amu.edu.pl/~tbancewi 6 marca
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.
Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
dr inż. Zbigniew Szklarski
Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.
WYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Fizyka Fizyka eksperymentalna cząstek cząstek (hadronów w i i leptonów) Eksperymentalne badanie badanie koherencji koherencji kwantowej
ZAKŁAD AD FIZYKI JĄDROWEJ Paweł Moskal, p. 344, p.moskal@fz-juelich.de Współczesna eksperymentalna fizyka fizyka jądrowaj jądrowa poszukiwanie jąder jąder mezonowych Fizyka Fizyka eksperymentalna cząstek
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.
Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
Optyka falowa. polaryzacja. dwójłomność optyczna. czym jest zjawisko polaryzacji stan a stopień polaryzacji sposoby polaryzacji
W-21 (Jaoszewicz) 16 slajdów Na podsawie pezenacji pof. J. Rukowskiego Opyka falowa polayzacja czym jes zjawisko polayzacji san a sopień polayzacji sposoby polayzacji dwójłomność opyczna pzyczyny mikoskopowe
IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne
r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 21 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 21
Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej
ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna
Podstawy fizyki sezon 2 8. Fale elektromagnetyczne
Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie
Krople wielokrotne: samoorganizacja, struktura i
Krople wielokrotne: samoorganizacja, struktura i stabilność Jan Guzowski Instytut Chemii Fizycznej PAN, Warszawa Warszawa, 07.11.2011 Jan Guzowski (ICHF PAN) Krople wielokrotne 1 / 14 Samoorganizacja na