IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne
|
|
- Nina Duda
- 8 lat temu
- Przeglądów:
Transkrypt
1 r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1
2 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne charakteryzujemy wektorem natężenia pola E=E(r,t). [E]=N/C=kg. m/s 3. A=V/m Siła działająca na cząstkę obdarzoną elektrycznym ładunkiem Q wynosi: F el = QE r,t ( ) Pole magnetyczne charakteryzujemy wektorem indukcji magnetycznej B=B(r, t). [B]=Ns/Cm=kg/s. A; 1Tesla Siła działająca na cząstkę o ładunku elektrycznym Q wynosi: F = Qv B r,t magn ( ) Razem oba człony wyrażają siłę Lorentza: F= F + F = Q E+ v B elektr magn ( ) Jan Królikowski Fizyka IBC
3 r. akad. 005/ 006 Ruch w jednorodnym polu elektrycznym dy m = QE dt Rozwiązując r. ruchu dostajemy następujące rozwiązanie w obszarze jednorodnego pola E: x = v t 0 QE t y = m z= 0 Ruch z tymi warunkami początkowymi jest płaski w płaszczyźnie XOY y v 0 Działa stała siła: F E = QE E Warunki początkowe: L x = y = z = 0 v = v ;v = v = 0 x0 0 y0 z0 x Jan Królikowski Fizyka IBC 3
4 r. akad. 005/ 006 Ruch w jednorodnym polu elektrycznym cd. Selektory prędkości Można obliczyć kąt θ pod jakim wylatuje cząstka z obszaru pola elektrycznego: dy tg θ= = dx QEL mv x= L 0 Widać, że ustawiając kolimator poziomy na odpowiedniej wysokości za obszarem pola elektrycznego możemy wybrać cząstki o określonym tg θ, a więc o określonej prędkości. y v 0 E x θ Jeszcze lepszym selektorem prędkości jest konfiguracja skrzyżowanych pól E i B prostopadłych do wektora prędkości. Cząstki o prędkości v=e/b poruszają się w takim urządzeniu po linii prostej. Jan Królikowski Fizyka IBC 4
5 Ruch w jednorodnym polu magnetycznym B r. akad. 005/ 006 Równanie ruchu rozpisane na składowe: dx dy m = QB dt dt dy dx m = QB dt dt dz m = 0 dt y prosta B prosta Łuk okręgu x Warunki początkowe: x = y = z = v 0;v 0;v 0 x0 y0 z0 W płaszczyźnie prostopadłej do pola B ruch w obszarze pola jest ruchem jednostajnym po okręgu. Częstość kołowa tego ruchu wynosi: ω= QB m Jan Królikowski Fizyka IBC 5
6 r. akad. 005/ 006 dz Ruch w jednorodnym polu magnetycznym B cd. R. ruchu możemy raz prosto scałkować po czasie bo: d dx ω y = 0 dt dt d dy + ω x = 0 dt dt dt = 0 daje Z 1 szego rozwiązania wyznaczamy 1dx y = ω dt v 0x ω dx =ω y+ v dt dy = ω x+ v dt dz = v 0z dt 0x 0y Po wstawieniu do drugiego rozwiązania: 1dx = ω x+ v 0y ω dt d v0y v0y x ω x = 0 dt ω ω v0y x( t) = + Cx cos( ω t+ φ) ω v0x tg φ= ; C = v + v / ω= v v0y Podstawiając do 1 szego rozwiązania: x 0x 0y 0 v v = + ω +φ ω ω 0x 0 y sin t ( ) ω Jan Królikowski Fizyka IBC 6
7 Ruch w jednorodnym polu magnetycznym B cd. r. akad. 005/ 006 Wreszcie znajdujemy z(t): z(t) = v t = v t 0z 0 Podnosząc rozwiązania na x i y do kwadratu eliminujemy zależność od czasu i dostajemy: v 0y 0x 0 0 x v v y m v + + = = r = QB ω ω ω Ruch w płaszczyźnie XOY jest ruchem jednostajnym po okręgu o promieniu cyklotronowym r. Ruch w przestrzeni jest ruchem jednostajnym po spirali (helisie). Jednorodne pole magnetyczne jak widać nie zmienia wartości prędkości cząstki. Zachodzi ważny związek: Br = mv / Q 0 Pomiar promienia krzywizny toru w jednorodnym polu magnetycznym może więc posłużyć do pomiaru pędu w płaszczyźnie prostopadłej do pola. Jest to podstawa działania wszelkich spektrometrów magnetycznych cząstek naładowanych. Jan Królikowski Fizyka IBC 7
8 Ruch w jednorodnych polach magnetycznym B i elektrycznym E r. akad. 005/ 006 Wykorzystywany jest w zastosowaniach praktycznych w fizyce jądrowej i fizyce cząstek elementarnych do: separacji izotopów spektrometrii masowej pomiaru pędu cząstek naładowanych. Selekcji prędkości cząstek naładowanych Przykład: spektrometr masowy Bainbridge a Różne konfiguracje przestrzenne pól E i B wykorzystywane są do różnych celów. Kilka przykładów podamy poniżej, inne są przeliczone w podręczniku Wróblewskiego i Zakrzewskiego t.i Jan Królikowski Fizyka IBC 8
9 r. akad. 005/ 006 Widmo mas izotopów ksenonu Na górnym rysunku: widmo mas izotopów ksenonu ze skał (pochodzą z rozpadu uranowców) Na dolnym rysunku: widmo mas izotopów ksenonu w powietrzu Jan Królikowski Fizyka IBC 9
10 r. akad. 005/ 006 Separator WIGISOL przy warszawskim cyklotronie Cyklotron i wyprowadzenia wiązki Hala eksperymentalna Jan Królikowski Fizyka IBC 10
11 Spektrometr beta w Troitsku k/ Moskwy Pomiar pędów elektronów ~18000 ev/c r. akad. 005/ 006 B Pole E Pole E Pole B W tym eksperymencie próbowano zmierzyć masę neutrina elektronowego: m <.5 ev/c. Jan Królikowski Fizyka IBC 11
12 r. akad. 005/ 006 Magnetyczny spektrometr Compact Muon Solenoid (CMS) przy Large Hadron Collider (LHC) w CERNie Pomiar pędów cząstek od 1 GeV/c do 7000 GeV/c Jan Królikowski Fizyka IBC 1
13 r. akad. 005/ 006 Symulacja torów cząstek w polu magnetycznym CMS Centralny Detektor śladowy CEWKA KALORYMETR Jan Królikowski Fizyka IBC 13
14 r. akad. 005/ 006 Konstrukcja największej na świecie cewki nadprzewodzącej (dł. 13 m, średn. 6 m, pole B=4T) Nawijanie cewki nadprzewodzącej 4T w Ansaldo w Genui. CMS Wkładanie wewnętrznej części kriostatu. Cewka jest już włożona Jan Królikowski Fizyka IBC 14
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
Ruch ładunków w polu magnetycznym
Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym
cz. 1. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek
Theory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Ruch cząstek naładowanych w polach elektrycznym i magnetycznym. Równania ruchu cząstek i ich rozwiązania. Ireneusz Mańkowski
Ruch cząstek naładowanych w polach elektrycznym i magnetycznym. Równania ruchu cząstek i ich rozwiązania. I LO im. Stefana Żeromskiego w Lęborku 2 kwietnia 2012 Ruch ładunku równolegle do linii pola Ruch
Odp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
Ramka z prądem w jednorodnym polu magnetycznym
Ramka z prądem w jednorodnym polu magnetycznym Siła wypadkowa = 0 Wypadkowy moment siły: τ = w F + w ( ) F ( ) = 2 w F w τ = 2wF sinθ = IBl 2 sinθ = θ=90 o IBl 2 θ to kąt między wektorem w i wektorem F
dr inż. Zbigniew Szklarski
Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v v L Jeżeli na dodatni ładunek q poruszający
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY
MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład IX: Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada dynamiki Siły
V.6 Pęd i energia przy prędkościach bliskich c
r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
MAGNETYZM. PRĄD PRZEMIENNY
Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)
26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego
Włodzimierz Wolczyński 26 MAGETYZM Indukcja magnetyczna a natężenie pola magnetycznego B indukcja magnetyczna H natężenie pola magnetycznego μ przenikalność magnetyczna ośrodka dla paramagnetyków - 1 1,
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 4 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Ruch ładunków w polu magnetycznym
Ruch ładunków w polu agnetyczny W polu agnetyczny i elektryczny na poruszające się ładunki działa siła Lorentza: F q E B Wykorzystuje się to w wielu urządzeniach, takich jak telewizor, ikroskop elektronowy,
30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY
30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV Magnetyzm POZIOM PODSTAWOWY Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod
Pole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
Wiązka elektronów: produkcja i transport. Sławomir Wronka
Wiązka elektronów: produkcja i transport Szkoła Fizyki Akceleratorów Medycznych, Świerk 2007 Ruch cząstki w polu elektrycznym 2 Pole elektryczne powoduje zmianę energii kinetycznej mv 2 mv02 = q U 2 2
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Rozdział 3. Pole magnetyczne
Rozdział 3. Pole magnetyczne 2018 Spis treści Siła magnetyczna Linie pola magnetycznego, kierunek pola Ruch naładowanych cząstek w polu magnetycznym Działanie pola magnetycznego na przewodnik z prądem
VI. 6 Rozpraszanie głębokonieelastyczne i kwarki
r. akad. 005/ 006 VI. 6 Rozpraszanie głębokonieelastyczne i kwarki 1. Fale materii. Rozpraszanie cząstek wysokich energii mikroskopią na bardzo małych odległościach.. Akceleratory elektronów i protonów.
Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.
Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt
Wprowadzenie do fizyki pola magnetycznego
Wprowadzenie do fizyki pola magnetycznego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/magnetostatics/index.htm Powszechnym źródłem pola magnetycznego
Elektrostatyczna energia potencjalna U
Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko
Podstawy fizyki sezon 2 5. Pole magnetyczne II
Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Indukcja magnetyczna
ver magnetyzm
ver-2.01.12 magnetyzm prądy proste prądy elektryczne oddziałują ze soą. doświadczenie Ampère a (1820): F ~ 2 Ι 1 Ι 2 siła na jednostkę długości przewodów prądy proste w próżni jednostki w elektryczności
Podstawy fizyki sezon 2 4. Pole magnetyczne 1
Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego
Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera
Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat
Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
3.5 Wyznaczanie stosunku e/m(e22)
Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.
Mechanika ruchu obrotowego
Mechanika ruchu obrotowego Fizyka I (Mechanika) Wykład X: Przypomnienie, ruch po okręgu Oscylator harmoniczny, wahadło Ruch w jednorodnym polu elektrycznym i magnetycznym Prawa ruchu w układzie obracajacym
Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe
Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Uniwersytet Warszawski - Wydział Fizyki opiekun: dr Artur Kalinowski 1 Plan prezentacji Eksperyment CMS Układ wyzwalania Metoda
II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC
II prawo Kirchhoffa algebraiczna suma zmian potencjału napotykanych przy pełnym obejściu dowolnego oczka jest równa zeru klucz zwarty w punkcie a - ładowanie kondensatora równanie ładowania Fizyka ogólna
dr inż. Zbigniew Szklarski
Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza F L Jeżeli na dodatni ładunek q poruszający
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
5. (2 pkt) Uczeń miał za zadanie skonstruował zwojnicę do wytwarzania pola magnetycznego o wartości indukcji
Magnetyzm Dane ogólne do zadań: ładunek elektronu: masa elektronu: masa protonu: masa neutronu: 1,6 19 9,11 C 31 1,67 1,675 kg 7 7 kg kg Własności magnetyczne substancji 1. (1 pkt). ( pkt) 3. ( pkt) Jaka
Fizyka cząstek elementarnych
Wykład III Metody doświadczalne fizyki cząstek elementarnych I Źródła cząstek elementarnych Elektrony, protony i neutrony tworzą otaczającą nas materię. Aby eksperymentować z elektronami wystarczy zjonizować
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
V.4 Ruch w polach sił zachowawczych
r. akad. 5/ 6 V.4 Ruch w polach sił zachowawczych. Ruch cząstki w potencjale jednowyiarowy. Ruch w polu siły centralnej. Wzór Bineta 3. Przykład: całkowanie wzoru Bineta dla siły /r Dodatek: całkowanie
Compact Muon Solenoid
Compact Muon Solenoid (po co i jak) Piotr Traczyk CERN Compact ATLAS CMS 2 Muon Detektor CMS był projektowany pod kątem optymalnej detekcji mionów Miony stanowią stosunkowo czysty sygnał Pojawiają się
Jak działają detektory. Julia Hoffman
Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady
Podstawy akceleratorowej spektrometrii mas. Techniki pomiarowe
Podstawy akceleratorowej spektrometrii mas Techniki pomiarowe Podstawy spektrometrii mas Spektrometria mas jest narzędziem znajdującym szerokie zastosowanie w badaniach fizycznych i chemicznych. Umożliwia
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Temat: Ruch cząstek naładowanych w polu magnetycznym. 1. Cele edukacyjne. a) kształcenia. Scenariusz lekcji
Scenariusz lekcji Klasa: II LP Czas lekcji: 1 godzina lekcyjna Temat: Ruch cząstek naładowanych w polu 1. Cele edukacyjne a) kształcenia Wiadomości: zna pojęcie siły Lorentza wskazuje wielkości, od których
Egzamin z fizyki Informatyka Stosowana
Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka
1.6. Ruch po okręgu. ω =
1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane
Zadania z mechaniki dla nanostudentów. Seria 3. (wykład prof. J. Majewskiego)
Zadania z mechaniki dla nanostudentów Seria 3 (wykład prof J Majewskiego) Zadanie 1 Po równi pochyłej o kącie nachylenia do poziomu równym α zsuwa się klocek o masie m, na który działa siła oporu F = m
Wykład 14: Indukcja cz.2.
Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład
F = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
POLE MAGNETYCZNE W PRÓŻNI
POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.
Detektory gazowe w polu magnetycznym.
Detektory gazowe w polu magnetycznym. Własności detektorów gazowych zależą od dryfu elektronów i jonów, które są generenowane przez rejestrowaną cząstkę albo w lawinie elektronowej przy anodzie. Ponadto
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Magnesy krótka historia
Siła Lorentza Magnesy krótka historia Magnetyczne właściwości rud żelaza znane były w starożytności Te naturalne magnesy nie był silne i wystarczały do demonstrowania działania siły magnetycznej na lekkie
Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera
Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat
4.1 Pole magnetyczne. Siła Lorentza. Wektor indukcji
Rozdział 4 Magnetostatyka 4.1 Pole magnetyczne. Siła Lorentza. Wektor indukcji magnetycznej Przez magnetostatykę rozumiemy tę część nauki o magnetyzmie, która dotyczy stałych, niezależnych od czasu pól
Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.
Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz
Fizyka I. Kolokwium
Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Marek Kowalski
Jak zbudować eksperyment ALICE? (A Large Ion Collider Experiment) Jeszcze raz diagram fazowy Interesuje nas ten obszar Trzeba rozpędzić dwa ciężkie jądra (Pb) i zderzyć je ze sobą Zderzenie powinno być
POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a
POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Pole magnetyczne Wykład LO Zgorzelec 13-01-2016
Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu
Kinematyka: opis ruchu
Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe
5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )
Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół
Szkoła z przyszłością. Oddziaływanie cząstek β z polem magnetycznym
Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 5-4 Otwock-Świerk ĆWICZENIE
Wybrane zagadnienia fizyki jądrowej i cząstek elementarnych. Seweryn Kowalski
Wybrane zagadnienia fizyki jądrowej i cząstek elementarnych Seweryn Kowalski Listopad 2007 Akceleratory Co to jest akcelerator Każde urządzenie zdolne do przyspieszania cząstek, jonów naładowanych do wysokich
Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych
Jak działają detektory Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych LHC# Wiązka to pociąg ok. 2800 paczek protonowych Każda paczka składa się. z ok. 100 mln protonów 160km/h
FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.
DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka
SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI.
SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy. 1. Karta
Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci
Podstawy fizyki. Wykład 10. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 10 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Magnetyzm Pole magnetyczne Siła Lorentza Efekt Halla Akceleratory Siła magnetyczna Indukcja elektromagnetyczna Prawo
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Słowniczek pojęć fizyki jądrowej
Słowniczek pojęć fizyki jądrowej atom - najmniejsza ilość pierwiastka jaka może istnieć. Atomy składają się z małego, gęstego jądra, zbudowanego z protonów i neutronów (nazywanych inaczej nukleonami),
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Zasada bezwładności. Isaac Newton
Prawa ruchu Zasada Zasada bezwładności Druga Druga zasada dynamiki i równania ruchu Ruch Ruch swobodny i nieswobodny Przykłady rozwiązywania równań ruchu Opis Opis ruchu w nieinercjalnym układzie odniesienia
Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa
Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:
Wstęp do fizyki jądrowej Tomasz Pawlak, 2013
24-06-2007 Wstęp do fizyki jądrowej Tomasz Pawlak, 2013 część 1 własności jąder (w stanie podstawowym) składniki jąder przekrój czynny masy jąder rozmiary jąder Rutherford (1911) Ernest Rutherford (1871-1937)
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1
POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład 9 lato 2016/17 1 Definicja wektora indukcji pola magnetycznego F q( v) Jednostką indukcji pola jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu
Podstawy fizyki sezon 2 4. Pole magnetyczne 1
Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego