1 Wstęp. arytmetykę finansową (problemy związane z oprocentowaniem i dyskontowaniem, w szczególności plany spłaty kredytów);
|
|
- Alicja Komorowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wstęp Zastosowania matematyki w ekonomii obejmują cały szereg zagadnień, poczynając od prostych operacji arytmetycznych. Dzięki matematyce ekonomiści są w stanie opisywać złożone zjawiska i formułować hipotezy i modele podlegające weryfikacji. Znaczna część wiedzy ekonomicznej ma postać rozmaitych modeli, w których występują w miarę jasno sprecyzowane założenia, z których przy pomocy pojęć i metod matematycznych otrzymuje się wnioski. Wykorzystywane dziedziny matematyczne, to oprócz arytmetyki statystyka matematyczna, rachunek różniczkowy (będący podstawą tzw. rachunku marginalnego), algebra liniowa (w szczególności tzw. model Leontiewa posługujący się macierzami wejścia i wyjścia). Do algebry można zaliczyć także programowanie liniowe, będące teorią opisującą problem minimalizacji lub maksymalizacji funkcji liniowej na zbiorze określonym przez układ warunków liniowych (tj. równań lub nierówności liniowych). Jest wreszcie cały szereg metod związanych z finansami i ubezpieczeniami. Termin matematyka finansowa pojawił się w 946 roku jako tytuł książki Richardsona Financial Mathematics. Współcześnie tą nazwą obejmuje się: arytmetykę finansową (problemy związane z oprocentowaniem i dyskontowaniem, w szczególności plany spłaty kredytów); matematykę ubezpieczeń (obliczanie wielkości składki, wielkości rezerw na wypłaty w oparciu o probabilistyczne modele i statystyki umieralności, czy wypadkowości); wycenę papierów wartościowych (akcji, obligacji, instrumentów pochodnych). Są w matematyce finansowej miejsca wymagające zaawansowanej wiedzy matematycznej teorii procesów stochastycznych, metody analizy danych, równań różniczkowych. Obecnie jest to jednak dział matematyki stosowanej, który w zasadzie nie wnosi nowych idei matematycznych, a raczej tylko korzysta z dorobku innych dziedzin matematyki. Warto jednak wspomnieć, że specjalizacja w tej dziedzinie jest dla matematyka szansą uzyskania nagrody Nobla (z ekonomii). Są liczne przykłady. Specjalistów od matematyki ubezpieczeń nazywamy aktuariuszami. Odpowiadają oni za kalkulację składek i rezerw firmy ubezpieczeniowej. W krajach zachodnich jest to całkiem spora grupa zawodowa np. w USA ok.
2 W Polsce jest obecnie kilkuset aktuariuszy. Aby zostać aktuariuszem trzeba ukończyć studia wyższe matematykę lub ekonomię, a następnie zdać egzamin państwowy, który Ministerstwo Finansów organizuje mniej więcej raz w roku. Egzamin jest czteroczęściowy i obejmuje: matematykę finansową; matematykę ubezpieczeń życiowych; matematykę ubezpieczeń majątkowych; prawdopodobieństwo i statystykę. 2 Wartość pieniądza jako funkcja czasu Pieniądz zmienia swoją wartość wraz z upływem czasu. Zmiany te wynikają z rozmaitych przyczyn. Np. pieniądz zmienia swoją wartość przy denominacji, ale tym nie będziemy się zajmować. Również nie będziemy się zajmować inflacją w istocie w większości rozważań zakłada się inflację zerową. Będzie nas głównie interesować zmiana realnej wartości pieniądza będąca skutkiem rozwoju gospodarki. Pieniądz jest ekwiwalentem towaru czy usługi możemy wymieniać jedno na drugie. Jeśli towarów przybywa, to pieniądz zwiększa swoją wartość, bo staje się ekwiwalentem większej niż przedtem ilości produktów. Wyrazem zmiany wartości pieniądza w czasie są zmiany wartości konta bankowego. Jeżeli do banku wpłacamy kwotę K 0 nazywaną wartością początkową lub teraźniejszą (ang. present value, P V ), to po pewnym okresie (miesiąc, kwartał, rok) przyjmuje ona wartość K nazywaną wartością końcową lub przyszłą (ang. future value, F V ). Różnicę Z = K K 0 nazywamy odsetkami (ang. interest). Odsetki wyrażamy w jednostkach pieniężnych. Są one formą zapłaty banku za udzielenie przez właściciela kapitału prawa dysponowania daną kwotą. Bank nie płaci właścicielowi bezinteresownie, liczy bowiem, że te pieniądze zainwestowane w jakieś przedsięwzięcie, czy pożyczone komuś w formie kredytu przyniosą mu dochód większy niż odsetki, które wypłaci właścicielowi pieniędzy. Odsetki zależą zarówno od okresu, na jaki została wpłacona dana kwota, jak i od wielkości tej kwoty. Konieczny jest więc obiektywny wskaźnik umożliwiający porównanie warunków oferowanych przez różne banki. Tym 2
3 wskaźnikiem jest stopa procentowa (ang. interest rate) oznaczana literą r. Określamy ją jako stosunek odsetek do wartości początkowej: r = Z K 0 = K K 0 K 0. Jest to więc liczba niemianowana, np. r = 0,. Można ją wyrażać w procentach, mnożąc przez 00%. Zapisy: r = 0, i r = 0% są równoważne. Jednak we wszystkich wzorach należy traktować r jako liczbę niemianowaną. Mamy więc zależności: Z = K 0 r, K = K 0 ( + r). W określeniu r nie występuje czas, ale przecież musimy go uwzględniać. Robimy to mówiąc o stopie rocznej, kwartalnej, miesięcznej, czy jednodniowej. Przedział czasu, którego stopa dotyczy nazywamy okresem stopy procentowej.wyjaśnimy pewne pojęcia. Oprocentowaniem nazywamy wyznaczanie odsetek. Odsetki mogą być wypłacone na końcu okresu wypożyczenia (oprocentowanie z dołu) lub na początku (oprocentowanie z góry). Przykład. Jeżeli stopa roczna wynosi 3%, to osoba wpłacająca do banku 00 zł otrzyma przy oprocentowaniu z dołu za rok kwotę 3 zł; przy oprocentowaniu z góry od razu kwotę 3 zł, i za rok 00 zł. Kapitalizacja jest to dopisywanie odsetek do kapitału. Czas, po którym dopisuje się odsetki nazywamy okresem kapitalizacji. Okres ten może być równy okresowi stopy procentowej (mówimy wtedy o kapitalizacji zgodnej) lub inny (kapitalizacja niezgodna). Po kapitalizacji wartość przyszła staje się wartością teraźniejszą. Jeśli kapitalizacji podlega tylko kapitał początkowy, to nazywamy ją prostą. W tym modelu odsetki nie podlegają oprocentowaniu. Jeśli oprocentowaniu podlega cała zgromadzona do tej pory kwota, to nazywamy ją złożoną. Oprocentowaniu podlega więc i kapitał początkowy, i nagromadzone odsetki. Reasumując, stopę procentową podaje się zawsze w związku z podstawowym okresem czasu, np. można mówić o stopie rocznej 6%. Trzeba także podać okres kapitalizacji (konwersji) jest to przedział czasowy na końcu którego dopisuje się odsetki. 3
4 Stopa procentowa nazywa się efektywną jeśli jej okres pokrywa się z okresem konwersji oznacza to, że odsetki dopisuje się na koniec okresu podstawowego. Niech r oznacza efektywną roczną stopę procentową. Rozważmy rachunek, na który wpłacono K 0 j.p. i na który na koniec okresu (roku) i wpłaca się dodatkowo kwotę p i. Jaki jest stan rachunku po n latach? Niech K i będzie stanem na koniec roku i (łącznie z płatnością p i ). Odsetki za rok poprzedni wynoszą rk i, więc K i = K i + rk i + p i. () Ten wzór rekurencyjny można przepisać w postaci: K i ( + r)k i = p i. Pomnóżmy to równanie przez ( + r) n i : ( + r) n i K i ( + r) n i+ K i = ( + r) n i p i. Stąd n n n ( + r) n i K i ( + r) n i+ K i = ( + r) n i p i, n n ( + r) n i K i + ( + r) 0 n K n ( + r) n i K i ( + r) n K 0 = ( + r) n i p i, czyli n K n = ( + r) n K 0 + ( + r) n i p i. Potęgi ( + r) nazywamy czynnikami pomnażającymi. Początkowy kapitał K po h latach wynosi ( + r) h K. Przykład. Jaka wartość osiągnie kapitał 000 zł przy oprocentowaniu złożonym rocznym przy stopie 6% po 3. latach? Odp.: K 3 = ( + 0, 06) = 9, 02 Jeżeli wzór () napiszemy w postaci K i K i = rk i + p i i zsumujemy po i, to otrzymamy n n K n K 0 = rk i + p i. Zatem przyrost wartości jest sumą wszystkich odsetek i wszystkich wpłat. 4
5 3 Stopy nominalne Jeżeli okres konwersji nie pokrywa się z okresem podstawowym, to mówimy o kapitalizacji niezgodnej. Stopa procentowa nazywa się wtedy stopą nominalną. Przykładowo, stopa roczna 6% z kwartalnym okresem konwersji oznacza, że co trzy miesiące do rachunku dopisuje się, 5% kapitału. Oznacza to, że początkowy kapitał wzrasta do (, 05) 4 =, 0636 na koniec roku. Inaczej, nominalna stopa 6% z okresem kapitalizacji 3 miesiące jest równoważna efektywnej stopie 6,36%. Niech r będzie daną roczną efektywną stopą procentową. Określamy r (m) jako stopę nominalną kapitalizowaną m razy w roku, równoważną stopie r. Z równości czynników pomnażających mamy skąd ( r (m) ) m + = + r, m r (m) = m[( + r) m ]. W granicy, gdy m otrzymujemy kapitalizację ciągłą. Niech δ = lim m r(m). Liczbę δ nazywamy intensywnością (natężeniem) oprocentowania równoważną stopie r. Ponieważ więc r (m) = ( + r) m ( + r) 0, m ( + r) m ( + r) 0 ( + r) x ( + r) 0 δ = lim m r(m) = lim m = lim x 0 x m = d dx (( + r)x ) x=0 = [( + r) x ln( + r)] x=0 = ln( + r), lub e δ = + r. Zatem czynnik pomnażający dla okresu h lat wynosi ( + r) h = e δh (h może być dowolną liczbą rzeczywistą). 5 =
6 Można uzasadnić, że r (m) jest malejącą funkcją m, np. interpretując r (m) jako współczynnik kierunkowy siecznej do krzywej ( + r) x, która jest wypukła. Mamy więc nierówności: Przykład liczbowy dla r = 6%: m r (m) 0, , , , , ,0584 0,05827 δ <... < r (2) <... < r (2) < r Uwaga. Stopa efektywna dla stopy nominalnej kapitalizowanej m razy w roku wynosi r ef = ( + r m) m, a w granicy, gdy m, r ef = e r. 4 Wpłaty ciągłe Rozważmy rachunek, na który dokonywane są wpłaty ciągłe w wysokości p(t). Zatem wpłaty na rachunek dla małego przedziału czasu od t do t+dt wynoszą p(t)dt. Niech K(t) oznacza stan rachunku w chwili t. Załóżmy, że odsetki są również dopisywane w sposób ciągły z intensywnością oprocentowania δ(t) (może ona zależeć od czasu t). Wtedy kwota odsetek w przedziale [t, t + dt] wynosi K(t)δ(t)dt. Całkowity przyrost kapitału w tym przedziale jest więc równy dk(t) = K(t)δ(t)dt + p(t)dt. Otrzymujemy równanie liniowe Przepiszmy je w postaci K (t) = K(t)δ(t) + p(t). e t 0 δ(s)ds K (t) e t 0 δ(s)ds K(t)δ(t) = e t 0 δ(s)ds p(t). 6
7 czyli d t dt [e δ(s)ds 0 K(t)] = e t δ(s)ds 0 p(t). Całkujemy od 0 do h: e h h δ(s)ds 0 K(h) K(0) = e t δ(s)ds 0 p(t)dt. 0 Stąd h h K(h) e δ(s)ds h 0 K(0) = e δ(s)ds 0 e t δ(s)ds 0 p(t)dt, 0 więc h h K(h) = e δ(s)ds h 0 K(0) + e δ(s)ds t p(t)dt. 0 Szczególne przypadki: ) Jeżeli w chwili t = 0 wpłacamy kwotę K(0), a potem nic więcej (tzn p(t) = 0), to h K(h) = e δ(s)ds 0 K(0). Tyle wynosi zakumulowana wartość wpłaty K(0). 2) Jeżeli δ(t) = δ (stała intensywność oprocentowania), to 5 Czas bankowy h K(h) = e δh K(0) + e δh e δt p(t)dt. Ponieważ banki posługują się na ogół rocznymi stopami procentowymi, podstawowe znaczenie mają dwie (wydawałoby sie proste) operacje: obliczenie ile jest dni między dwiema ustalonymi datami zamiana liczby dni na liczbę lat. Otóż w praktyce bankowej, a także w matematyce finansowej oprócz zwykłego czasu kalendarzowego występuje czas bankowy. Jednostkami tego czasu są: rok bankowy o długości 360 dni oraz miesiąc bankowy o długości 30 dni. Przyjmujemy oznaczenia: t K dokładna liczba dni (według czasu kalendarzowego), t B bankowa liczba dni (według czasu bankowego), n K liczba lat kalendarzowych, 7 0
8 n B liczba lat bankowych. Np. między 3 marca i 7 czerwca jest 96 ( ) dni kalendarzowych, ale tylko 94 ( ) dni bankowych. Przeliczając na lata otrzymujemy: n K = 96 = 0, 2630 i n 365 B = 94 = 360 0, 26. Możliwe są więc cztery warianty obliczania dni i lat: (n K, t K ), (n K, t B ), (n B, t K ), (n B, t B ). Banki najchętniej stosują wariant (n B, t K ), tzn. rachunek dni według czasu kalendarzowego i rachunek lat według czasu bankowego. Jest to bowiem wariant najkorzystniejszy dla wierzyciela (a głównie w takiej roli występują banki). Nie wszystko jednak od nich zależy. Ustawa o kredycie konsumenckim (dotycząca kredytów do wysokości zł, ale nie hipotecznych) narzuca bankom wzór obliczania stopy procentowej według reguły (n K, t K ). 6 Metoda liczb procentowych Stosuje się ją w przypadku kapitalizacji prostej przy oprocentowaniu konta z często zmieniającym się wkładem (np. a vista). Niech r będzie roczną stopą procentową. Przyszła wartość kwoty K 0 po t dniach oprocentowania wynosi a odsetki za ten okres K t = K 0 ( + t r 360 ), Z t = K 0 t r 360. Czynnik K 0 t to liczba procentowa, a 360 to dzielnik procentowy. r Przyjmijmy, że na rachunku bankowym dokonano N operacji bankowych wpłat (+) i wypłat (-). Wysokość kwoty i-tej operacji oznaczamy S i. Niech t i oznacza liczbę dni, które upłynęły między dniem dokonania i-tej operacji a dniem rozrachunku t. Przy tych oznaczeniach wartość końcowa, w chwili t, wynosi r K t = S ( + t 360 ) + S r 2( + t ) + + S r N( + t N 360 ) N r N = S i ( + t i 360 ) = S i + r N S i t i
9 Sumę L = N S i t i nazywamy sumaryczną liczbą procentową. Zatem N K t = S i + r 360 L. Przykład. Na rachunku bankowym dokonano następujących operacji: wpłata 860 zł, wpłata 340 zł, wypłata 600 zł. Jaką maksymalną kwotę będzie można pobrać z tego rachunku w dniu 29.05, jeżeli roczna stopa procentowa wynosi 9%? Oper. Data Stan k. Wpłaty Wypłaty L. dni L. proc Tutaj: 3 L = S i t i = 0700, a więc odsetki wynoszą Stan konta: Z t = r 360 r L = 27, = 0, 00025, K = , 675 = 627, Kapitalizacja złożona z góry, zgodna Przypomnijmy, że oprocentowanie z góry oznacza, że odsetki są wypłacane na początku okresu kapitalizacji. Przyszłą wartość kapitału K 0 na początku n-tego okresu kapitalizacji oznaczymy symbolem W n. Obliczmy W : wpłacana kwota K 0 podlega oprocentowaniu z góry dając odsetki K 0 r. Odsetki te, dołączane do kapitału można traktować jako następną wpłatę, która daje odsetki Kr 2, itd. Zatem W = K 0 + K 0 r + K 0 r 2 + = K 0 r, 9
10 (o ile r < ). Analogicznie: Zatem W n+ = W n r. W n = K 0, n =, 2,.... ( r) n Liczbę nazywamy czynnikiem wartości przyszłej lub współczynnikiem r akumulacji. Przykład. Ile wynosi roczna stopa procentowa jeżeli przy rocznej stopie złożonej z góry z kapitału 600 j.p. uzyskano po jednym roku wartość 750 j.p.? 750 = 600 r, r = 60 75, r = 5 75 = 0, 2. Przykład. Ile wynosi roczna stopa procentowa jeżeli przy rocznej stopie złożonej z góry odsetki za drugi rok od kwoty początkowej K 0 = 400 j.p. wynoszą 44 j.p. Z 2 = W 2 W 44 = 400 ( r) r, stąd r = 0, Kapitalizacja przy zmiennej stopie procentowej Załóżmy, że przez n okresów obowiązywała stopa r, przez n 2 okresów obowiązywała stopa r 2, itd. Jaka jest przyszła wartość kapitału K 0 po n okresach, gdzie n = p n i? Zakładamy, że okres stopy procentowej jest zawsze taki sam i równy okresowi kapitalizacji. Jeżeli obowiązuje model kapitalizacji prostej, to: p Z = K 0 n r + K 0 n 2 r K 0 n p r p = K 0 n i r i. 0
11 Zatem wartość przyszła po czasie n: p K n = K 0 + Z = K 0 ( + n i r i ). Dla modelu kapitalizacji złożonej (z dołu, z góry) oraz kapitalizacji ciągłej wartość kapitału po danym okresie staje się wartością początkową dla okresu następnego. Zatem dla kapitalizacji złożonej z dołu: K n = K 0 ( + r ) n ( + r 2 ) n2 ( + r p ) np ; dla kapitalizacji złożonej z góry: dla kapitalizacji ciągłej: W n = K 0 ( r ) n ( r 2 ) n2 ( r p ) np ; K(n) = K 0 e n r e n 2r2 e nprp = K 0 e p n ir i. W przypadku występowania zmiennej stopy procentowej uzasadnione jest wprowadzenie pojęcia przeciętnej stopy procentowej. Definicja Przeciętną stopą procentową nazywamy taką stałą stopę r prz dla której przyszła wartość kapitału jest taka sama jak przyszła wartość tego kapitału przy zmieniającej się stopie procentowej. Stąd: dla modelu kapitalizacji prostej: p K 0 ( + nr prz ) = K 0 ( + n i r i ), r prz = p n i r i ; n dla modelu kapitalizacji złożonej z dołu: ( + r prz ) n = ( + r ) n ( + r 2 ) n2 ( + r p ) np, r prz = n ( + r ) n ( + r2 ) n 2 ( + rp ) np ;
12 dla modelu kapitalizacji złożonej z góry: ( r prz ) n = ( r ) n ( r 2 ) n2 ( r p ) np, r prz = n ( r ) n ( r2 ) n 2 ( rp ) np ; dla modelu kapitalizacji ciągłej: 9 Dyskonto K 0 e nrprz = K 0 e p n ir i, r prz = p n i r i. n Do tej pory zakładliśmy, że odsetki dopisuje się na końcu okresu kapitalizacji (z dołu). Czasem odsetki są wypłacane na początku okresu (z góry). Wtedy nazywamy je dyskontem, a odpowiadająca stopa nazywa się stopą dyskontową. Niech d będzie roczną stopą dyskontową. Osoba inwestująca kapitał K otrzymuje z góry odsetki równe dk, a kapitał K jest wypłacany na koniec okresu. Inwestując otrzymane odsetki, dk, na tych samych warunkach, otrzymuje się dodatkowe odsetki Kd d = Kd 2 i dodatkowo zainwestowana kwota będzie zwrócona na koniec roku. Reinwestując otrzymane odsetki, Kd 2 otrzymuje się z góry Kd 3, itd. Zatem widzimy, że na koniec okresu inwestor wpłacający kwotę K otrzyma K + Kd + Kd 2 + = d K. Równoważną efektywną stopę procentową można obliczyć z równości r. +r d = + r, skąd d = Ten wynik ma prostą interpretację: jeżeli inwestuje się kapitał w wysokości, to d (czyli odsetki płatne z góry) jest równe zdyskontowanej wartości odsetek r (płatnych z dołu). Równoważną równość: r = d d 2
13 interpretujemy tak: odsetki płatne na koniec okresu są zakumulowaną wartością odsetek płatnych na początku okresu. Niech d (m) będzie równoważną nominalną stopą dyskontową naliczaną m razy w roku. Zatem inwestor otrzymuje d(m) K na początku okresu, a kapitał K na koniec. Równość czynników pomnażających dla m-tej części roku m wyraża się przez co daje d(m) m = + r(m) m = ( + r) m, ( ) d (m) = m, ( + r) m a także (przypomnijmy, że r (m) = m ( ( + r) m ) : Stąd mamy prosty związek: d (m) = r(m) + r(m) m d = (m) m + r. (m) Stąd lim m d(m) = lim m r(m) = δ, co nie powinno dziwić: przy ciągłym naliczaniu odsetek różnica między odsetkami z góry i z dołu znika. Mamy nierówności: Przykład. Dla r = 6: d (m) 0, , , , , ,0583 0,05827 d <... < d (2) <... < d (2) < δ. 3
14 0 Dyskonto handlowe (bankowe, przybliżone) Dyskonto handlowe, D H, stosuje się w przypadku korzystania z weksli, czeków, obligacji sprzedawanych z dyskontem. Wartość nominalna papieru wartościowego jest znana i jest to wartość końcowa. Dyskonto handlowe powoduje obniżenie wartości nominalnej do tzw. wartości aktualnej. Dyskonto handlowe jest proporcjonalne do wartości nominalnej danego papieru wartościowego (i czasu, którego dotyczy). Współczynnik proporcjonalności nazywa się stopą dyskontową, i ozn. d. Zatem: D H = W nom dn gdzie n jest liczbą okresów. Najczęściej dyskonto handlowe stosuje się w obrocie wekslami. Weksel jest papierem wartościowym stwierdzającym zobowiązanie do zapłacenia pewnej określonej kwoty w określonym terminie. Posiadacz weksla może go sprzedać (zdyskontować) przed terminem w banku komercyjnym. Bank ten może z kolei redyskontować go w banku centralnym. Te operacje związane są z pomniejszeniem wartości weksla o wartość odpowiedniego dyskonta. Jeżeli d oznacza roczną stopę dyskontową, a n liczbę dni między datą spłaty weksla a datą jego zakupu, to Odstępujący weksel otrzyma kwotę: d D H = W nom 360 n. W akt = W nom D H, czyli W akt = W nom ( d 360 n). Dalej n będzie znowu oznaczało liczbę okresów (a nie liczbę dni). Dyskontowanie handlowe nie jest działaniem odwrotnym do oprocentowania przy tej samej stopie procentowej. Dla oprocentowania prostego mamy: K n D H = K n K n rn = K n ( rn) = K 0 ( + nr)( nr) = = K 0 ( n 2 r 2 ) < K 0 4
15 czyli dodanie odsetek prostych do K 0 daje K n, ale odjęcie D H od K n nie daje K 0. Stopę procentową r i stopę dyskontową d, dla których dyskonto matematyczne proste jest równe dyskontu handlowemu, nazywamy stopami równoważnymi. Obliczmy zależność między nimi: oraz D H = D M, K n dn = K 0 rn, K 0 ( + nr)d = K 0 r, d = r + nr d r = nd. Stąd wynika, że równoważność stopy procentowej i dyskontowej zależy od liczby okresów n. Przykład. Firma A dostarczyła firmie B towary o wartości zł. Firma B zaproponowała uiszczenie zapłaty za dwa miesiące, przy czym za okres zwłoki zobowiązała się zapłacić odsetki proste wg rocznej stopy 6%. Wyrazem przeprowadzonej transakcji był weksel kupiecki. Przeanalizować. Weksel wystawiony przez B ma wartość nominalną: K = 40000( + 2 0, 6 ) 4066, Jeżeli firma A potrzebuje gotówki natychmiast, to przedstawia weksel do dyskonta w banku. Dyskonto handlowe wyznaczone przy stopie dyskontowej równej stopie procentowej wynosi Firma A otrzyma D H = 4066, 67 0, ,. W akt = 4066, , = 3997, 56. Dyskonto handlowe jest zarobkiem banku. Przykład. W dniu lipca hurtownia A sprzedała towar sklepowi B, przy czym zobowiązanie zapłaty zostało potwierdzone wekslem kupieckim o 5
16 wartości nominalnej zł płatnym.09. Hurtownia A zdyskontowała ten weksel w banku.08, przy czym stopa dyskontowa wynosiła 20%. Bank zdyskontował ten weksel w NBP dnia 6.08 wg stopy redyskontowej 5%. Wyznaczyć zysk hurtowni A oraz zarobek (marżę) banku na tej transakcji. W dniu.08: W akt = 20000( 0, 2 3) 9655, Tyle otrzymuje hurtownia A. Jej zysk wiąże się z możliwością zainwestowania tej kwoty na okres jednego miesiąca. Jeżeli stopa zwrotu z tej inwestycji wynosi 2% miesięcznie, to jej wartość wynosi.09: W akt ( + 0, 02) = 20048, 67, więc zysk hurtowni wynosi 393,. Natomiast marża banku komercyjnego jest różnicą wartości aktualnych weksla 6.08 wynikającą z różnicy stóp dyskontowych, czyli: 20000( 0, , 2 0, 2 0, 5 5) 20000( 5) = = 4,
Oprocentowanie, dyskonto, inflacja
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Oprocentowanie, dyskonto, inflacja. Wstęp Zastosowania matematyki w ekonomii obejmują cały szereg zagadnień, poczynając od prostych operacji
Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II
Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział
Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady
Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty
Elementy matematyki finansowej
ROZDZIAŁ 2 Elementy matematyki finansowej 1. Procent składany i ciągły Stopa procentowa i jest związana z podstawową jednostką czasu, jaką jest zwykle jeden rok. Jeśli pożyczamy komuś 100 zł na jeden rok,
System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa
System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana
Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane
Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o
Matematyka bankowa 1 1 wykład
Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl
Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE
Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują
mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2
Ćwiczenia 2 Wartość pieniądza w czasie Zmienna wartość pieniądza w czasie jest pojęciem, które pozwala porównać wartość różnych sum pieniężnych otrzymanych w różnych okresach czasu. Czy 1000 PLN otrzymane
Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014
Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu
INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. wrzesień Projekt dofinansowała Fundacja mbanku
INDEKS FINANSISTY Monika Skrzydłowska PWSZ w Chełmie wrzesień 2017 Projekt dofinansowała Fundacja mbanku Monika Skrzydłowska (PWSZ w Chełmie) INDEKS FINANSISTY wrzesień 2017 1 / 40 Spis treści 1 Wprowadzenie
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7
Wartość przyszła pieniądza: Future Value FV
Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie
Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy
I = F P. P = F t a(t) 1
6. Modele wartości pieniądza w czasie. Współczynnik akumulacji kapitału. Kapitalizacja okresowa, kapitalizacja ciągła. Wartość bieżąca, wartość przyszła. Pojęcia kredytu, renty, renty wieczystej, zadłużenia
Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski
Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej
Temat 1: Wartość pieniądza w czasie
Temat 1: Wartość pieniądza w czasie Inwestycja jest w istocie bieżącym wyrzeczeniem się dla przyszłych korzyści. Ale teraźniejszość jest względnie dobrze znana, natomiast przyszłość to zawsze tajemnica.
System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa
System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy
Zadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl
[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN
LITERATURA: [1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN [2 ] E. Smaga, Arytmetyka finansowa, PWN [3 ] M. Sobczyk, Matematyka finansowa, Placet [4 ] M. Szałański, Podstawy matematyki finansowej,
Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2,
Ciągi liczbowe Czym jest ciąg? Ciąg liczbowy, to funkcja o argumentach naturalnych, której wartościami są liczby rzeczywiste. Wartość ciągu dla liczby naturalnej n oznaczamy symbolem a n i nazywamy n-tym
Wartość przyszła pieniądza
O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków
Elementy matematyki finansowej w programie Maxima
Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,
1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku
1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.
Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Zadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH
REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH M. BIENIEK Przypomnijmy, że dla dowolnego wektora przepływów c rezerwę w chwili k względem funkcji dyskonta v zdefiniowaliśmy jako k(c; v) = Val k ( k c; v), k = 0,
WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE
WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE PYTANIA KONTROLNE Różnica pomiędzy: inwestycją, projektem inwestycyjnym, przedsięwzięciem inwestycyjnym Rodzaje inwestycji ze względu na cel Wartość pieniądza w
Zadania do wykładu Matematyka bankowa 1 i 2
Zadania do wykładu Matematyka bankowa 1 i 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address:
Licz i zarabiaj matematyka na usługach rynku finansowego
Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania
Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino
Ćwiczenia 5 Pojęcie benchmarku, tracking error Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Renata Karkowska, Wydział Zarządzania UW 1 Współczynnik Sharpe a Renata Karkowska,
Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent Pojęcie renty Wartość początkowa i końcowa renty Renty o stałych ratach Renta o zmiennych ratach Renta uogólniona Zadanie 1 Przez 2 lata na koniec każdego miesiąca wpłacamy 1 000 PLN
2a. Przeciętna stopa zwrotu
2a. Przeciętna stopa zwrotu Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2a. Przeciętna stopa zwrotu Matematyka
Akademia Młodego Ekonomisty
Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Matematyka finansowa wokół nas dr Agnieszka Bem Uniwersytet Ekonomiczny we Wrocławiu 20 listopada 2017 r. Wartość pieniądzaw czasie Wartość
Matematyka finansowa w pakiecie Matlab
Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka
7. Papiery wartościowe: weksle i bony skarbowe
7. Papiery wartościowe: weksle i bony skarbowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. Papiery w Krakowie) wartościowe:
Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995.
Bibliografia Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Elton E.J., Gruber M.J., Nowoczesna teoria portfelowa i analiza papierów wartościowych,
Papiery wartościowe o stałym dochodzie
Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,
Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.
1940, 17 = K 4 = K 2 (1, 05)(1 + x 200 )3. Stąd, po wstawieniu K 2 dostaję:
Poniższe rozwiązania są jedynie przykładowe. Każde z tych zadań da się rozwiązać na wiele sposobów, ale te na pewno są dobre (i prawdopodobnie najprostsze). Komentarze (poza odpowiedziami) są zbędne -
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
8. Papiery wartościowe: obligacje
8. Papiery wartościowe: obligacje Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w 8. Krakowie) Papiery wartościowe: obligacje
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)
WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy
Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200
Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień)
dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego
Zajęcia 8 - Równoważność warunków oprocentowania
Zajęcia 8 - Równoważność warunków oprocentowania Zadanie 1 Mając roczną stopę oprocentowania prostego 18% wyznaczyć równoważną stopę: 1. miesięczną. 2. tygodniową. 3. 2-letnią. Uzasadnić wyniki. Czy czas
Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy
Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan
Matematyka Ekonomiczna
Matematyka Ekonomiczna Dr. hab. David Ramsey e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey Pokój 5.16, B-4 Godziny konsultacji: Wtorek 11-13, Czwartek 11-13 28 września
WIBOR Stawka referencyjna Polonia Stopa referencyjna Stopa depozytowa Stopa lombardowa
WIBOR (ang. Warsaw Interbank Offered Rate) - referencyjna wysokość oprocentowania kredytów na polskim rynku międzybankowym. Wyznaczana jest jako średnia arytmetyczna wielkości oprocentowania podawanych
Matematyka I dla DSM zbiór zadań
I Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. Matematyka I dla DSM zbiór zadań do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i 3. i= 5 ( ) i
4. Strumienie płatności: okresowe wkłady oszczędnościowe
4. Strumienie płatności: okresowe wkłady oszczędnościowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4. Strumienie w Krakowie)
Akademia Młodego Ekonomisty
Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Uniwersytet Szczeciński 7 grudnia 2017 r. Wartość pieniądza w czasie, siła procentu składanego, oprocentowanie rzeczywiste, nominalne i realne
Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia
PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH
Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą
Podstawy teorii oprocentowania. Łukasz Stodolny Radosław Śliwiński Cezary Kwinta Andrzej Koredczuk
Podstawy teorii oprocentowania Łukasz Stodolny Radosław Śliwiński Cezary Kwinta Andrzej Koredczuk Cykl produkcyjny zakładów ubezpieczeń Ryzyko działalności zakładu ubezpieczeń Ryzyko finansowe działalności
Akademia Młodego Ekonomisty
Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 20 października 2014 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane
MODELOWANIE RYNKÓW FINANSOWYCH (MAP1171)
Przedmiot: MODELOWANIE RYNKÓW FINANSOWYCH (MAP1171) Prowadzący wykład: dr Krzysztof Samotij, e-mail: krzysztof.samotij@pwr.edu.pl Czas i miejsce wykładu: poniedziałki (wg definicji J.M. Rektora) g. 9:15-11:00,
Matematyka bankowa 2
1. Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki Uniwersytet Łódzki 2. Instytut Nauk Ekonomicznych i Informatyki Państwowa Wyższa Szkoła Zawodowa w Płocku Matematyka bankowa 2 średnio- i
WACC Montaż finansowy Koszt kredytu
WACC Montaż finansowy Koszt kredytu Na następne zajęcia proszę przygotować listę zakupów niezbędną do realizacji projektu. PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową
Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
Matematyka Ekonomiczna
Matematyka Ekonomiczna David Ramsey, Prof. PWr e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey Pokój 5.16, B-4 Godziny konsultacji: Poniedziałek 14-16, Wtorek 16-18
Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
System bankowy i tworzenie wkładów
System bankowy i tworzenie wkładów Wykład nr 4 Wyższa Szkoła Technik Komputerowych i Telekomunikacji w Kielcach 2011-03-29 mgr Wojciech Bugajski 1 Prawo bankowe z dn.27.08.1997 Definicja banku osoba prawna
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Piotr Szczepankowski Poziom studiów (I lub II stopnia): I stopnia
WACC Montaż finansowy Koszt kredytu
WACC Montaż finansowy Koszt kredytu PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową i dyskontową Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we
Matematyka finansowa 17.05.2003
1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja
Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut
Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rachunki oszczędnościowe
Matematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Matematyka finansowa Ćwiczenia ZPI 1 Zadanie 1. Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku
2b. Inflacja. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. Matematyka finansowa
2b. Inflacja Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2b. Inflacja Matematyka finansowa 1 / 22 1 Motywacje i
Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.
Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.
Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.
Polityka monetarna państwa
Polityka monetarna państwa Definicja pieniądza To miara wartości dóbr i usług To ustawowy środek zwalniania od zobowiązań Typy pieniądza Pieniądz materialny: monety, banknoty, czeki, weksle, akcje, obligacje
Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k
2.1 Stopa Inflacji Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych stóp inflacji, gdzie cząstkowa stopa
UBEZPIECZENIA NA ŻYCIE
UBEZPIECZENIA NA ŻYCIE M BIENIEK Ubezpieczenie na życie jest to kontrakt pomiędzy ubezpieczycielem a ubezpieczonym gwarantujący, że ubezpieczyciel w zamian za opłacanie składek, wypłaci z góry ustaloną
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.
2.1 Wartość Aktualna Renty Stałej
2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza
STOPA PROCENTOWA I STOPA ZWROTU
Piotr Cegielski, MAI, MRICS, CCIM STOPA PROCENTOWA I STOPA ZWROTU (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 9 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)
Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3
Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty
Egzamin dla Aktuariuszy z 7 grudnia 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 7 grudnia 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:....... Czas egzaminu: 100 minut Ośrodek Doskonalenia
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy
1. Ubezpieczenia życiowe
1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas
Prof. nadzw. dr hab. Marcin Jędrzejczyk
Prof. nadzw. dr hab. Marcin Jędrzejczyk 1. Zakup akcji, udziałów w obcych podmiotach gospodarczych według cen nabycia. 2. Zakup akcji i innych długoterminowych papierów wartościowych, traktowanych jako
Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Zastosowanie matematyki w finansach i bankowości
Zastosowanie matematyki w finansach i bankowości Maciej Wolny I. Kalkulacja wartości pieniądza w czasie... 1 II. Nominalna, efektywna i realna stopa procentowa... 4 III. Spłata kredytów w równych i różnych
System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje
System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem
Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje
Matematyka finansowa - lista zagadnień teoretycznych
Matematyka finansowa - lista zagadnień teoretycznych Ostatnie zadanie na egzaminie będzie się składać z jednego bardziej skomplikowanego lub dwóch prostych pytań teoretycznych. Pytanie takie będzie dotyczyło
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1. Rozważamy
METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2
METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE Ćwiczenia nr 1 i 2 - Cel ćwiczeń - Komunikacja email: i.ratuszniak@efficon.pl, w temacie - mopi - Konsultacje: pokój: 428,