Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy liniowy : prt
|
|
- Seweryn Leszczyński
- 8 lat temu
- Przeglądów:
Transkrypt
1 Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych Element jednowymiarowy liniowy : prt Jest to element bardzo podobny do spryny : współrzdne lokalne i globalne jego wzłów s takie same nie potrzeba adnych transformacji układów współrzdnych, a jego sztywno zdefiniowana jest porednio, za pomoc pola przekroju A, długoci L oraz modułu Younga E. Element ma dwa wzły definiujce jego koce. i k = EA/L j x wzeł element wzeł L Jeli sztywno elementu opisuje stała k=ea/l, a kady wzeł moe przemieci si tylko w kierunku osi x (ma jeden stopie swobody), to macierz sztywnoci elementu zdefiniowanego dwoma wzłami (a wic dwoma stopniami swobody) zapisuje si jako macierz 2x2 (kady wymiar macierzy to liczba stopni swobody całego elementu): k K = k EA k k = L EA L EA L EA L jeli w całym układzie wielu połczonych ze sob prtów wystpi n wzłów, to macierz sztywnoci bdzie miała wymiar nxn. W dalszym cigu obowizuje ogólny układ równa liniowych metody: [K]{u} = {f} gdzie: [K] macierz sztywnoci, {u} wektor przemieszcze wzłów, {f} wektor sił działajcych w wzłach. Jeli znamy sztywno elementu oraz przemieszczenia wzłów moemy wyliczy działajce siły, a jeli znamy siły, to po rozwizaniu równania moemy wyliczy przemieszczenia. Funkcje realizujce obliczenia MES na elementach prtowych w Matlabie (naley je przepisa w osobnych plikach M-File, nadajc im nazwy takie, jakie maj zawarte w nich funkcje): ponisz funkcj zapisujemy w pliku: SztywnoscElementPretowy.m function y = SztywnoscElementPretowy(E,A,L) %funkcja tworzy macierz sztywnosci dla pojedynczego elementu pretowego %wymiar wyniku : 2x2 y = [E*A/L E*A/L; -E*A/L E*A/L]; ponisz funkcj zapisujemy w pliku: ZlozSztywnoscPretow.m function y = ZlozSztywnoscPretow(K,k,i,j) %funkcja sklada w jedna macierz sztywnosci K wszystkie prety %w zadaniu laczac wszystkie sztywnosci pojedynczych elementow k %zdefiniowanych wezlami i j
2 %UWAGA! Funkcja moze byc wywolana po wczesniejszym uruchomieniu %funkcji SztywnoscElementPretowy! %skladanie K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); %i wynik zwracany przez funkcje y = K; ponisz funkcj zapisujemy w pliku: SilyElementPretowy.m function y = SilyElementPretowy(k,u) %funkcja wylicza sily wezlowe dla danego elementu na podstawie znanych przemieszczen u i sztywnosci k y = k * u; ponisz funkcj zapisujemy w pliku: NaprezeniaElementPretowy.m function y = NaprezeniaElementPretowy(k,u,A) %funkcja wylicza naprezenia dla danego elementu na podstawie znanych przemieszczen u, sztywnosci k oraz pola przekroju A y = k * u/a; Przykład nr 1. Dla podanego układu elementów wykonanych z materiału o znanym module E = 21GPa, polu przekroju A =.3m 2 i sile obciajcej P = 1kN wyznaczy ponisze niewiadome przy załoeniu, e wzeł nr 3 jest przesuwany o.2m: 1. macierz sztywnoci układu 2. przemieszczenie wzła nr 2 3. reakcje w wzłach nr 1 i 3 4. sił w kadym elemencie 5. naprenie w kadym elemencie Rozwizanie: Krok 1 dyskretyzacja zadania Zadanie jest ju podzielone na elementy i wzły : - element nr 1 zdefiniowany jest wzłami nr i=1 i j=2 - element nr 2 zdefiniowany jest wzłami nr i=2 i j=3 wzeł nr 2 jest wspólny dla obu elementów elementy s połczone w wle nr 2. W wzłach nr 1 i 3 s podpory, ale podpora w wle nr 3 jest przemieszczana. P 1.5m 1m δ=.2
3 Krok 2 utworzenie macierzy sztywnoci dla kadego elementu Wprowadzamy zmienne globalne, które przechowuj dane materiałowe i geometryczne naszego zadania: E, A i L1 oraz L2 >>E=21e6 >>A=.3 >>L1=1.5 >>L2=1 Mamy dwa elementy, zatem tworzymy dwie macierze sztywnoci : k1 i k2 komendami: >>k1=sztywnoscelementpretowy(e,a,l1) >>k2=sztywnoscelementpretowy(e,a,l2) Krok 3 składanie macierzy sztywnoci elementów w jedn globaln macierz dla całego układu Poniewa w układzie mamy 3 wzły, wic globalna macierz sztywnoci bdzie miała wymiar 3x3. Macierz K naley przed składaniem wyzerowa, co wykonujemy komend: >>K=zeros(3,3) Poniewa mamy dwa elementy, to funkcj ZlozSztywnoscPretow trzeba wywoła dwa razy niezalenie dla kadego elementu, podajc jako parametry globaln macierz K (która jest wynikiem), macierz elementu k (k1, a potem k2) i numery wzłów definiujce dany element (najpierw 1 i 2, a potem 2 i 3): >>K=ZlozSztywnoscPretow(K,k1,1,2) >>K=ZlozSztywnoscPretow(K,k2,2,3) Na odpowiednich miejscach w macierzy K pojawi si sumowane sztywnoci poszczególnych elementów (PROSZ SPRAWDZI!). Krok 4 uwzgldnienie warunków brzegowych Stworzona macierz sztywnoci ma posta: K 42 = a układ równa [K]{u}={f} mona rozpisa w posta: u1 f 1 63 = f 2 63 u3 f 3 Warunkami brzegowymi w naszym zadaniu s: - przemieszczenie wzła nr 1 jest niemoliwe podpora: u1 = - w wle nr 2 jest obcienie : f2 = P = -1kN (w lewo, przeciwnie do zwrotu osi x) - w wle nr 3 jest ruchoma podpora : u3 =.2m (narzucone przemieszczenie) Po uwzgldnieniu powyszych wiadomych, układ równa przyjmuje posta:
4 f 1 63 u 2 = f 3 nie znamy zatem przemieszczenia i reakcji f1 i f3 (podpory). Krok 5 rozwizanie równa Przygldajc si układowi równa zauwaymy, e mona go rozwiza po kawałku, ale tym razem znana warto przemieszczenia u3 jest róna od zera nie moemy zastosowa postpowania z poprzedniej lekcji. Wydzielimy cały wiersz z macierzy sztywnoci dla nieznanego przemieszczenia : f 1 63 u 2 = f 3.2 [ ] u 2 = { 1} Prosz zauway, e wiersz macierzy sztywnoci przemnoony przez kolumn przemieszcze da w wyniku jedn warto : znan sił (K 1x3 x u 3x1 = f 1x1 ): co mona uproci do równania: K(2,1) * u1 + K(2,2) * + K(2,3) * u3 = f2-42 * + 15 * + (-63) *.2 = -1 K(2,2) * = f2 - K(2,3) * u3 15 * = *.2 w Matlabie realizujemy to poleceniami: przepisanie tylko jednego wyrazu z 2 wiersza i 2 kolumny z K do k: >>k=k(2,2) stworzenie wektora wyrazów wolnych (prawej strony równania) ze znan sił f2=-1kn oraz znanym przemieszczeniem u3=.2: >>f=-1-k(2,3)*.2 wyliczamy nieznane przemieszczenia poleceniem (eliminacja Gaussa): >>u=k\f i otrzymujemy w wyniku: u =.12m.
5 Krok 6 obróbka wyników (postprocessing) Majc przemieszczenia wszystkich wzłów, moemy obliczy reakcje w podporach. Najpierw zbierzmy przemieszczenia w jeden wektor (dodajemy u1= i u3=.2 do wyniku ): >>U=[;u;.2] a potem wyliczmy siły: >>F=K*U otrzymamy: F1 = -5.; F2 = -1. i F3 = 51.. Zatem reakcja w podporze nr 1 wynosi -5kN i jest skierowana przeciwnie do zwrotu osi x (w lewo, znak ujemny), natomiast reakcja w podporze 2 jest równa 51kN i jest skierowana w prawo. Siły w elementach wyznaczymy dziki funkcji SilyElementPretowy(k,u), której parametrami s: macierz sztywnoci elementu (k1 i k2) oraz przemieszczenia wzłów definiujcych dany element (czyli u1 i, a potem i u3): najpierw przygotujemy pary przemieszcze dla kadego elementu: >>u1=[u(1);u(2)] >>=[U(2);U(3)] a potem wyznaczymy siły: >>f1=silyelementpretowy(k1,u1) >>f2=silyelementpretowy(k2,) Wyniki wskazuj, e oba elementy s rozcigane siłami 5kN i 51kN. Naprenia w elementach wyznaczymy dziki funkcji NaprezeniaElementPretowy(k,u,A), której parametrami s: macierz sztywnoci elementu (k1 i k2), przemieszczenia wzłów definiujcych dany element (czyli u1 i, a potem i u3) oraz pole przekroju elementów A: >>s1=naprezeniaelementpretowy(k1,u1,a) >>s2=naprezeniaelementpretowy(k2,,a) Uzyskane naprenia dla elementów: 1.66E5 kpa i 1.EkPa (rozcigajce DLACZEGO?) Przykład nr 2. Dla podanego wspornika o zmiennym przekroju A1 =.2m 2 A2 =.12m 2, wykonanego z materiału o module E = 21GPa, obcionego sił P = 18kN wyznaczy przemieszczenie jego wolnego koca. P Rozwizanie: 3m
6 Krok 1 dyskretyzacja zadania Wspornik dzielimy na 5 elementów i 6 wzłów : - element nr 1 zdefiniowany jest wzłami nr i=1 i j=2 - element nr 2 zdefiniowany jest wzłami nr i=2 i j=3 - element nr 3 zdefiniowany jest wzłami nr i=3 i j=4 - element nr 4 zdefiniowany jest wzłami nr i=4 i j=5 - element nr 5 zdefiniowany jest wzłami nr i=5 i j=6 P k1 k2 k3 k4 k5 Dyskretyzacja jest konieczna ze wzgldu na zmienn sztywno wspornika. Mona uy wikszej liczby elementów, aby zwiekszy dokładno oblicze. Kady z piciu elementów ma stał sztywno stałe pole przekroju, które mona wyliczy interpolujc liniowo wartoci porednie pola A pomidzy kocami wspornika: A(x) = A1 + (A2-A1) / L * x A(x) =.2 + (.12.2) / 3 * x A(x) = / 3 * x gdzie x jest odległoci od lewego koca wspornika (w metrach). Krok 2 utworzenie macierzy sztywnoci dla kadego elementu Tworzymy zmienne globalne. Dla kadego elementu wyliczamy jego pole przekroju dla x w rodku rozpitoci danego elementu: >>E=21e6 >>L=.6 >>A1=.2+.1/3*.3 >>A2=.2+.1/3*.9 >>A3=.2+.1/3*1.5 >>A4=.2+.1/3*2.1 >>A5=.2+.1/3*2. Mamy pi elementów, zatem tworzymy pi macierzy sztywnoci : od k1 do k5 komendami: >>k1=sztywnoscelementpretowy(e,a1,l) >>k2=sztywnoscelementpretowy(e,a2,l) >>k3=sztywnoscelementpretowy(e,a3,l) >>k4=sztywnoscelementpretowy(e,a4,l) >>k5=sztywnoscelementpretowy(e,a5,l) Krok 3 składanie macierzy sztywnoci elementów w jedn globaln macierz dla całego układu Poniewa w układzie mamy 6 wzłów, wic globalna macierz sztywnoci bdzie miała wymiar 6x6. Macierz K naley przed składaniem wyzerowa, co wykonujemy komend: >>K=zeros(6,6) 5x.6m=3m
7 Poniewa mamy pi elementów, to funkcj ZlozSztywnoscPretow trzeba wywoła pi razy niezalenie dla kadego elementu, podajc jako parametry globaln macierz K (która jest wynikiem), macierz elementu k (od k1 do k5) i numery wzłów definiujce dany element: >>K=ZlozSztywnoscPretow(K,k1,1,2) >>K=ZlozSztywnoscPretow(K,k2,2,3) >>K=ZlozSztywnoscPretow(K,k3,3,4) >>K=ZlozSztywnoscPretow(K,k4,4,5) >>K=ZlozSztywnoscPretow(K,k5,5,6) Na odpowiednich miejscach w macierzy K pojawi si sumowane sztywnoci poszczególnych elementów. Krok 4 uwzgldnienie warunków brzegowych Stworzona macierz sztywnoci ma posta: K = a układ równa [K]{u}={f} mona rozpisa w posta: u1 f 1 f 2 u3 f 3 = u4 f 4 u5 f u6 f 6 Warunkami brzegowymi w naszym zadaniu s: - przemieszczenie wzła nr 6 jest niemoliwe podpora: u6 =, - nie ma obcie w wzłach nr 2 do 5 : f2 = f3 = f4 = f5 =, - w wle nr 1 zaczepiona jest siła P: f1 = -18kN Po uwzgldnieniu powyszych wiadomych, układ równa przyjmuje posta: u1 18 u3 = u4 u f 6 nie znamy zatem przemieszcze u1 u5, a take reakcji f6 (podpora).
8 Krok 5 rozwizanie równa Układ równa rozwiemy po kawałku, wykrelajc ostatni wiersz i kolumn dla znanego przemieszczenia u6, zostawiajc reszt dla nieznanych u1 u5: u1 18 u3 = u4 u f u1 18 u3 = u4 u5 w Matlabie realizujemy to poleceniami: przepisanie wierszy 1-5 i kolumn 1-5 z K do k: >>k=k(1:5,1:5) stworzenie wektora f ze znanymi siłami f1 = -18, f2 f5=kn: >>f=[-18;;;;] wyliczamy nieznane przemieszczenia poleceniem (eliminacja Gaussa): >>u=k\f i otrzymujemy w wyniku: 1-4 ( )m. Krok 6 obróbka wyników (postprocessing) Majc wyliczone przemieszczenia wszystkich wzłów moemy odpowiedzie na polecenie w zadaniu: przemieszczenie swobodnego koca wspornika wyniesie u1 = -.451E-4m. UWAGA! Wyliczenie sił i napre prosz zrealizowa samodzielnie. Zadanie nr 1. Zadania do samodzielnego rozwizania: Dla układu jak na rysunku poniej, majc: E=GPa, A=.5m 2 wyznaczy: 1. macierz sztywnoci układu 2. przemieszczenie wzłów nr 2,3 i 4 oraz P1=1kN i P2=15kN,
9 3. reakcje w wle nr 1 4. sił w kadym elemencie 5. naprenia P1 P2 Zadanie nr 2. 1m 2m 1m Rozwiza przykład nr 2 dla 1 elementów zamiast 5. Porówna wyniki. Zadanie nr 3. Dla układu jak na rysunku poniej, majc E=2GPa i A=.1m 2 sztywno spryny: k=1kn/m oraz sił P=25kN, wyznaczy: 1. macierz sztywnoci układu 2. przemieszczenie wzła nr 2 3. reakcj w wzłach nr 1 i 3 4. naprenie w prcie 5. sił w sprynie dla elementu prtowego, k 1 E,A 2 3 2m P
Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna
Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba
Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element dwuwymiarowy liniowy : belka
etody komputerowe i obliczeniowe etoda Elementów Skoczonych Element dwuwymiarowy liniowy : belka Jest to element bardzo podobny do prta: współrzdne lokalne i globalne jego wzłów s takie same nie potrzeba
Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element dwuwymiarowy liniowy : prt 2D
Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych Element dwuwymiarowy liniowy : prt 2D Jest to element dwuwymiarowy o rónych współrzdnych lokalnych i globalnych wzłów niezbdne s transformacje
Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1
Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1 Wyznaczy wektor sił i przemieszcze wzłowych dla układu elementów przedstawionego na rysunku poniej (rysunek nie jest w skali!).
Metody komputerowe i obliczeniowe Metoda Elementów Skończonych. Element dwuwymiarowy liniowy : rama 2D
Metody komputerowe i obliczeniowe Metoda Elementów Skończonych Element dwuwymiarowy liniowy : rama D Jest to element dwuwymiarowy o róŝnych współrzędnych lokalnych i globalnych węzłów niezbędne są transformacje
Metoda Rónic Skoczonych
Metoda Rónic Skoczonych Cz 3 Prostoktna płyta na sprystym podłou Zadanie Wyznaczy przemieszczenia i siły wewntrzne w prostoktnej płycie na sprystym podłou dla nastpujcych warunków: współczynnik podatnoci
Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są
PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich
PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)
PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie
Interpolacja funkcjami sklejanymi
Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych
Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego.
Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego. Jerzy Grobelny Politechnika Wrocławska Projektowanie zadaniowe jest jednym z podstawowych podej do racjonalnego kształtowania
DYNAMIKA RAM WERSJA KOMPUTEROWA
DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000
Twierdzenia ekstremalne teorii plastycznoci
Twierdzenia ekstremalne teorii plastycznoci Oprócz nonoci przekroju (sprystej i plastycznej) uywane jest take pojcie nonoci granicznej konstrukcji, czyli najwikszego obcienia przenoszonego przez konstrukcj
gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa
Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY
ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział
OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA
POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS
Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz
Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia
Mechanika i Budowa Maszyn
Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach
Program Sprzeda wersja 2011 Korekty rabatowe
Autor: Jacek Bielecki Ostatnia zmiana: 14 marca 2011 Wersja: 2011 Spis treci Program Sprzeda wersja 2011 Korekty rabatowe PROGRAM SPRZEDA WERSJA 2011 KOREKTY RABATOWE... 1 Spis treci... 1 Aktywacja funkcjonalnoci...
gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Zad. 3: Układ równań liniowych
1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich
.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty.
!"! " #$%& '()#$$ &%$! #$ %$ &%$& &$&! %&'" )$$! *$$&%$! +,- +-.! $ Celem wiczenia jest zapoznanie studenta ze strukturami: lista, stos, drzewo oraz ich implementacja w jzyku ANSI C. Zrozumienie działania
Stateczność ramy - wersja komputerowa
Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych
Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU
Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU Przed przystpieniem do liczenia deklaracji PIT-36, PIT-37, PIT-O i zestawienia PIT-D naley zapozna si z objanieniami do powyszych deklaracji. Uwaga:
W Y B R A N E P R O B L E M Y I N Y N I E R S K I E PROJEKT SIŁOMIERZA Z ZASTOSOWANIEM TENSOMETRII OPOROWEJ
W Y B R A N E P R O B L E M Y I NY N I E R S K I E Z E S Z Y T Y N A U K O W E I N S T Y T U T U A U T O M A T Y Z A C J I P R O C E S Ó W T E C H N O L O G I C Z N Y C H I Z I N T E G R O W A N Y C H
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Aproksymacja funkcji metod najmniejszych kwadratów
Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone
III TUTORIAL Z METOD OBLICZENIOWYCH
III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do
Publikacje nauczycieli
Strona 1 z 11 strona głównaarchiwumindeks autorówforumkontakt Publikacje nauczycieli Wiesław Urbanik, Zespół Szkół Publicznych, Szkoła Podstawowa i Gimnazjum w Sieniawie Liczby ujemne Tekst sterujcy Wstp
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak
Algebra Liniowa 2 Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Podobie«stwo macierzy, diagonalizacja macierzy 1. Znale¹ macierze przeksztaªcenia liniowego T
Planowanie adresacji IP dla przedsibiorstwa.
Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli
Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.
Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
UKŁADY RÓWNAŃ LINIOWYCH
Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną
Moemy tutaj doda pokoje do nieruchomoci (jeli wynajmujemy j na pokoje), zakwaterowa najemców, lub te dokona rezerwacji pokoju.
Pokoje i lokatorzy Moemy tutaj doda pokoje do nieruchomoci (jeli wynajmujemy j na pokoje), zakwaterowa najemców, lub te dokona rezerwacji pokoju. Dodawa rezerwacj lub lokatora do danego pokoju moemy te
Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B)
Zadanie Obliczy warto prdu I oraz napicie U na rezystancji nieliniowej R(I), której charakterystyka napiciowo-prdowa jest wyraona wzorem a) U=0.5I. Dane: E=0V R =Ω R =Ω Rys Rys. metoda analityczna Rys
geometry a w przypadku istnienia notki na marginesie: 1 z 5
1 z 5 geometry Pakiet słuy do okrelenia parametrów strony, podobnie jak vmargin.sty, ale w sposób bardziej intuicyjny. Parametry moemy okrela na dwa sposoby: okrelc je w polu opcji przy wywołaniu pakiety:
Metoda eliminacji Gaussa
Metoda eliminacji Gaussa Rysunek 3. Rysunek 4. Rozpoczynamy od pierwszego wiersza macierzy opisującej nasz układ równań (patrz Rys.3). Zakładając, że element a 11 jest niezerowy (jeśli jest, to niezbędny
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili
Politechnika lska w Gliwicach Instytut Maszyn i Urzdze Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych
Politechnika lska w Gliwicach Instytut Maszyn i Urzdze Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych wiczenie laboratoryjne z wytrzymałoci materiałów Temat wiczenia: Wyznaczanie
Metoda elementów brzegowych
Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem (Wpisuje zdajcy przed rozpoczciem pracy) KOD ZDAJCEGO MMA-PGP-0 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut ARKUSZ I MAJ ROK 00 Instrukcja dla zdajcego.
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Statyczna próba skrcania
Laboratorium z Wytrzymałoci Materiałów Statyczna próba skrcania Instrukcja uzupełniajca Opracował: Łukasz Blacha Politechnika Opolska Katedra Mechaniki i PKM Opole, 2011 2 Wprowadzenie Do celów wiczenia
1 Metody iteracyjne rozwi zywania równania f(x)=0
1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0
Zastosowanie programu Microsoft Excel do analizy wyników nauczania
Grayna Napieralska Zastosowanie programu Microsoft Excel do analizy wyników nauczania Koniecznym i bardzo wanym elementem pracy dydaktycznej nauczyciela jest badanie wyników nauczania. Prawidłow analiz
Macierze i Wyznaczniki
Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,
Zadania do wykonaj przed przyst!pieniem do pracy:
wiczenie 3 Tworzenie bazy danych Biblioteka tworzenie kwerend, formularzy Cel wiczenia: Zapoznanie si ze sposobami konstruowania formularzy operujcych na danych z tabel oraz metodami tworzenia kwerend
Numeryczne zadanie wªasne
Rozdziaª 11 Numeryczne zadanie wªasne W tym rozdziale zajmiemy si symetrycznym zadaniem wªasnym, tzn. zadaniem znajdowania warto±ci i/lub wektorów wªasnych dla macierzy symetrycznej A = A T. W zadaniach
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie
x y x y x y x + y x y
Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0
Modelowanie nacisku na powierzchni styku wargowego piercienia uszczelniajcego z wałem
mgr in. Leszek GRABKA Laserhouse S.C. dr in. Józef MARKOWICZ dr hab. in. Stanisław SZWEDA, prof. Pol. l. Politechnika lska Modelowanie nacisku na powierzchni styku wargowego piercienia uszczelniajcego
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Obliczenie kratownicy przy pomocy programu ROBOT
Obliczenie kratownicy przy pomocy programu ROBOT 1. Wybór typu konstrukcji (poniższe okno dostępne po wybraniu ikony NOWE) 2. Ustawienie norm projektowych oraz domyślnego materiału Z menu górnego wybieramy
Izolacja Anteny szerokopasmowe i wskopasmowe
Izolacja Anteny szerokopasmowe i wskopasmowe W literaturze technicznej mona znale róne opinie, na temat okrelenia, kiedy antena moe zosta nazwana szerokopasmow. Niektórzy producenci nazywaj anten szerokopasmow
ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1.
Statyka kratownicy drewnianej o różnych przekrojach prętów, obciążonej siłai, wilgocią i ciężare własny ORIGIN - ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - oduł Younga drewna αw. ρ - współczynnik
Ćwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił.
Ewa Kloczkowska, KBI 1, rok akademicki 006/007 Ćwiczenie nr 3 Obliczanie układów statycznie niewyznaczalnych metodą sił. Dla układu prętowego przedstawionego na rysunku naleŝy: 1) Obliczyć i wykonać wykresy
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria
Projektowanie algorytmów rekurencyjnych
C9 Projektowanie algorytmów rekurencyjnych wiczenie 1. Przeanalizowa działanie poniszego algorytmu dla parametru wejciowego n = 4 (rysunek 9.1): n i i
1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Optymalne rozmieszczanie wiskotycznych tłumików drga cz 2
Roman Lewandowski Autor pragnie wyrazi podzikowanie swoim studentom: Tomaszowi Drgasowi, Jakubowi Jaroszyskiemu, Tobiaszowi Rynowieckiemu i Maciejowi Makowskiemu, którzy wykonali wikszo oblicze bdcych
Projekt okablowania strukturalnego dla I semestru Akademii CISCO we WSIZ Copernicus we Wrocławiu
Przygotował: mgr in. Jarosław Szybiski Projekt okablowania strukturalnego dla I semestru Akademii CISCO we WSIZ Copernicus we Wrocławiu 1. Wstp Okablowanie strukturalne to pojcie, którym okrela si specyficzne
Bazy danych. Plan wykładu. Metody organizacji pliku rekordów. Pojcie indeksu. Wykład 11: Indeksy. Pojcie indeksu - rodzaje indeksów
Plan wykładu Bazy Wykład 11: Indeksy Pojcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Bash i algorytmy. Elwira Wachowicz. 20 lutego
Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad
WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Obliczenie kratownicy przy pomocy programu ROBOT
Geometria i obciąŝenie Obliczenie kratownicy przy pomocy programu ROBOT Przekroje 1. Wybór typu konstrukcji 2. Definicja domyślnego materiału Z menu górnego wybieramy NARZĘDZIA -> PREFERENCJE ZADANIA 1
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
5.1. Kratownice płaskie
.. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.
PROWIZJE Menad er Schematy rozliczeniowe
W nowej wersji systemu pojawił si specjalny moduł dla menaderów przychodni. Na razie jest to rozwizanie pilotaowe i udostpniono w nim jedn funkcj, która zostanie przybliona w niniejszym biuletynie. Docelowo
METODA SIŁ KRATOWNICA
Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..
Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.
WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla
PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:
Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość
Lekcja 9 - LICZBY LOSOWE, ZMIENNE
Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my
SUPLEMENT SM-BOSS WERSJA 6.15
SUPLEMENT SM-BOSS WERSJA 6.15 Spis treci Wstp...2 Pierwsza czynno...3 Szybka zmiana stawek VAT, nazwy i PKWiU dla produktów...3 Szeroki wydruk rejestru VAT...4 Filtry wydruków dotyczcych VAT...5 Kontrola
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody
Informacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
WYZNACZANIE PRZEMIESZCZEŃ SOLDIS
WYZNACZANIE PRZEMIESZCZEŃ SOLDIS W programie SOLDIS-PROJEKTANT przemieszczenia węzła odczytuje się na końcu odpowiednio wybranego pręta. Poniżej zostanie rozwiązane przykładowe zadanie, które również zostało
1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza
165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie
Podstawowe obiekty AutoCAD-a
LINIA Podstawowe obiekty AutoCAD-a Zad1: Narysowa lini o pocztku w punkcie o współrzdnych (100, 50) i kocu w punkcie (200, 150) 1. Wybierz polecenie rysowania linii, np. poprzez kilknicie ikony. W wierszu
KLUCZ ODPOWIEDZI DO ZADA ZAMKNITYCH POPRAWNA ODPOWIED 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D
KLUCZ ODPOWIEDZI DO ZADA ZAMKNITYCH NR ZADANIA POPRAWNA ODPOWIED D C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 0 C B A 3 A 4 B 5 D 6 B 7 C 8 A 9 B 0 D Zadanie ( pkt) MODEL OCENIANIA ZADAN OTWARTYCH Uzasadnij, e punkty
Linie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też