Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Wielkość: px
Rozpocząć pokaz od strony:

Download "Evaluation of estimation accuracy of correlation functions with use of virtual correlator model"

Transkrypt

1 Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu wrtualnego korelatora Przedmotem badań jest nepewność towarzysząca cyfrowym pomarom korelacyjnym. Analtyczne modele błędów estymacj funkcj korelacyjnych są skomplkowane na ch podstawe trudno szacować dokładność w welu sytuacjach pomarowych. Opracowane odpowednego narzędza nformatycznego (modelu wrtualnego korelatora umożlwło przeprowadzene badań eksperymentalnych z tego zakresu. W artykule zaprezentowano model wrtualnego korelatora oraz wybrane wynk badań wykonanych w celu sprawdzena poprawnośc dzałana aplkacj. Evaluaton of estmaton accuracy of correlaton functons wth use of vrtual correlator model The subject of the research s uncertanty n dgtal correlaton measurements. Analytcal models of estmaton errors of correlaton functons are hghly complex, therefore evaluaton of accuracy s dffcult and n many cases s unachevable. For that reason a vrtual correlator model s proposed as an alternatve to analytcal modelng. The model enables determnng of dgtal measurements uncertanty. In ths artcle some prelmnary research results are presented and dscussed. A comparson of bas of the mean square value estmator modeled n athcad (Eq. 4 and obtaned by means of vrtual correlator model (Eq. s carred out.. Wstęp Funkcje korelacyjne znajdują wcąż wele zastosowań. Najważnejsze z nch to pomary sygnałów determnstycznych losowych w obecnośc zakłóceń oraz wyznaczane odległośc, prędkośc opóźneń. Estymatory funkcj korelacyjnych realzowane są za pomocą analzatorów sygnałów oraz specjalstycznej aparatury. Obecne wększość pomarów realzowanych jest cyfrowo. Na dokładność estymatorów parametrów charakterystyk sygnałów zdetermnowanych wpływa główne rozdzelczość kwantowana, natomast jakość estymacj sygnałów losowych zależy przede wszystkm od lczby użytych próbek. Newelke wymagana stawane kwantowanu sygnałów przypadkowych były nspracją opracowana przetwarzana a-c z losowym sygnałem dtherowym, które jest obecne ważnym sposobem udoskonalana systemów pomarowych.. Podstawy teoretyczne Funkcja autokorelacj ergodycznego procesu {x(t} może być wyrażona zależnoścą []:

2 ( τ x(tx(t T Rx lm τdt, ( T T natomast funkcja korelacj wzajemnej ergodycznych procesów {x(t} {y(t} wyrażenem []: gdze: x(t y(t realzacje procesów, τ opóźnene, T czas obserwacj. R ( τ x(ty(t T T lm τdt, ( T Każda z nch może być określana na podstawe cyfrowej reprezentacj sygnałów. Zastosowane konwersj a-c z dtherem w zastosowanu do korelacj wzajemnej oznacza, że do sygnałów x(t oraz y(t dodawane są dwa dodatkowe sygnały d (t d (t nazywane dtherowym. Uzyskane sygnały x (t y (t są przetwarzane odpowedno z krokem próbkowana t oraz kwantowana q q do postac cyfrowej x q ( y q (. Następne są one opóźnane względem sebe o k próbek, mnożone, a wynk mnożena jest uśrednany. Uzyskany w ten sposób estymator przyjmuje postać: R ( k x q( y q ( k. (3 Sygnały dtherowe d (t d (t mają wartośc średne równe zero są nezależne od sebe od sygnałów x(t y(t. Zastosowane kwantowana typu roundoff w każdym z dwóch kanałów korelatora jest źródłem obcążena estymatora []: b [ R ( k ] q π q π qq 4π ( π Φ ( v π / q, v Φ d q v ( v, v (, l ( π Φ ( v, v π l / q Φ d l l q v ( v, v (, l l ( l l l l Φ d π Φ q d π l Φ q π π, l q q gdze: Φ (v,v łączna funkcja charakterystyczna sygnałów badanych x y, Φ d (v, Φ d (v funkcja charakterystyczna sygnału dtherowego d (t, d (t. Jeśl przetwarzane a-c realzowane jest bez dthera, to obcążene jest postac []: (4

3 b ~ [ R ( k ] q π q π qq 4π ( Φ ( v π / q, v v ( v, v (, l ( Φ ( v, v π l / q l l v l ( v, v (, l ( π π Φ, l l l l q q (5 Warunk, jake muszą spełnać sygnały badane oraz dtherowe, aby obcążene ne wystąpło, szczegółowo analzowano m.n. w []. Zwrócono uwagę na konwersję a-c z dtherem jako doskonałe narzędze służące do zmnejszana obcążena estymatora. Nestety, stosując take przetwarzane należy lczyć sę z występowanem warancj. Jeśl sygnały dtherowe dobrane są tak, że estymator (3 jest neobcążony, to warancja może być wyrażona zależnoścą [3]: gdze: Var Var [ R ( k ] Var R ( k [ R ( k ] l E [ ] Var [ R ( k ], (6 [ x( y( k x( l y( l k ] R ( k (7 jest warancją korelatora, w którym ne występuje kwantowane z dtherem, natomast: Var [ R ( k ] E[ x ( y ( k ] E x ( y ( k { [ ]} q q (8 jest składową warancj powodowaną kwantowanem z sygnałem dtherowym. atematyczna analza warancj jest dość skomplkowana. W pracy [4] dokonano przykładowej analzy dla przypadku, gdy sygnały dtherowe mają rozkład prostokątny. Nestety, uzyskane wnosk są dosyć skąpe. Borąc pod uwagę złożoność analtycznych model obcążena warancj postanowono opracować oprogramowane, nazywane dalej modelem wrtualnego korelatora, które może być użyte do oceny jakośc estymacj. 3. odel wrtualnego korelatora Do realzacj modelu wrtualnego korelatora zastosowano środowsko LabWndows frmy Natonal Instruments w wersj 7.. Środowsko to umożlwa projektowane złożonych aplkacj pomarowych przeznaczonych do pracy w systeme operacyjnym Wndows [5]. 3

4 Wykonany model umożlwa m.n. przeprowadzane badań symulacyjnych wpływu kwantowana oraz kwantowana z sygnałem dtherowym na składowe nepewnośc cyfrowych estymatorów funkcj korelacyjnych: - autokorelacj sygnału w torze perwszym modelu korelatora (rys.; - korelacj wzajemnej sygnałów w torze perwszym drugm. Rys.. Sygnał harmonczny z dtherem o rozkładze normalnym oraz jego funkcja autokorelacj Fg.. A harmonc sgnal wth Gaussan dther and ts autocorrelaton functon W każdym kanale korelatora można generować sygnał okresowy (harmonczny, prostokątny, trójkątny n. o zadanych przez użytkownka parametrach oraz dodatkowo jeden z dwóch sygnałów dtherowych: - sygnał o rozkładze normalnym, zerowej wartośc średnej zadanej wartośc odchylena standardowego; - sygnał o rozkładze równomernym, zerowej wartośc średnej zadanej wartośc ampltudy. W obu kanałach korelatora możlwe jest kwantowane sygnałów. Przetwarzane a-c realzowane jest za pomocą bpolarnego przetwornka o podanych przez użytkownka parametrach przetwarzana takch jak: lczba B btów oraz zakres przetwarzana U FS [V]. Podczas przetwarzana należy zwrócć uwagę, aby sygnał z dtherem ne przekroczył zakresu przetwornka. W tym celu maksymalną wartość generowanego napęca należy oblczyć korzystając z zależnośc, dla dthera gaussowskego: U FS A 3σ max, (9 gdze: A ampltuda przetwarzanego sygnału, σ max przyjęta maksymalna wartość odchylena standardowego dthera, oraz dla dthera o rozkładze równomernym: U FS A A max, ( gdze A max jest maksymalną wartoścą ampltudy dthera. 4

5 Program umożlwa ustawene następujących parametrów przetwarzana: - częstotlwośc próbkowana sygnału; - lczby próbek sygnału; - wartośc przesunęca czasowego funkcj korelacj oraz umożlwa oblczene: - wartośc średnej arytmetycznej z N wynków estymacj funkcj autokorelacj lub korelacj wzajemnej; - oceny obcążena estymatora (mary błędu systematycznego; - oceny warancj estymatora opsującej losową składową błędu; - oceny względnego błędu standardowego (względnej nepewnośc standardowej typu A. W opracowanym programe do realzacj przetwarzana a-c, korelacj sygnałów oraz wyznaczana składowych nepewnośc, zastosowano funkcje spoza bblotek LabWndows. W celu zobrazowana sposobu przeprowadzana badań symulacyjnych z użycem modelu korelatora przedstawono nżej przebeg przykładowego eksperymentu. 4. Przebeg eksperymentu, uzyskane wynk oraz ch ocena Ważnym etapem eksperymentu było porównane wynków uzyskanych za pomocą modelu korelatora z teoretycznym błędam estymacj wartośc średnokwadratowej sygnału harmoncznego [6]. Badana wykonano dla sygnału dtherowego o rozkładze normalnym. Wartość średnokwadratowa jest wartoścą funkcj autokorelacj dla argumentu równego zero. Względne obcążene estymatora określono na podstawe zależnośc: Rx ( (, N Rx ( δ σ / q, ( A / ~ x, jest średną arytmetyczną z N wynków estymacj wartośc funkcj autokorelacj dla argumentu równego zero. gdze R d ( N Eksperyment przebegał w ten sposób, że w wrtualnym korelatorze zostały wygenerowane sygnały harmonczne dtherowe o rozkładze normalnym oraz wartośc skutecznej σ,.q,.3q,.5q,.8q, q. Aby sygnał z dtherem ne przekroczył zakresu przetwornka, dobrano maksymalną wartość generowanego sygnału dla dthera o odchylenu σ max q zgodne z zależnoścą (9 oraz wzorem: U q FS, ( B gdze: q krok kwantowana, U FS zakres przetwarzana, B lczba btów przetwornka bpolarnego. Następne oblczono wartość średnokwadratową sygnału harmoncznego z dtherem: R ( A x σ. (3 5

6 Po wprowadzenu do programu oblczonych parametrów dokonano estymacj względnego obcążena dla lczby powtórzeń eksperymentu N. Otrzymane wynk porównano z oblczonym za pomocą programu athcad na podstawe zależnośc [6]: δ J ( σ / q 6 ( A q σ A q q ( β β J ( β e β σ π q A gdze β π. q Na rys. przedstawono przykładowe wynk badań uzyskane z eksperymentu zgodne z ( oraz analz matematycznych na podstawe (4. Jak wynka z wykresów, względne obcążene estymatora maleje wraz ze wzrostem stosunku odchylena standardowego sygnału dtherowego do kroku kwantowana przetwornka, a uzyskane z eksperymentu wynk są zbeżne z oblczonym w programe athcad. Wartośc względnego obcążena estymatora dla A/q σ /q,5 wynoszą odpowedno: δ (,5,65, (,5,65 δ, natomast dla A/q 9: 4 δ,5,3, δ (,5,. ( 4 (4 Rys.. Względne obcążene estymatora wartośc średnokwadratowej sygnału harmoncznego z gaussowskm dtherem w funkcj σ /q: a A/q, b A/q9 Fg.. Relatve bas of the mean square value estmator of the harmonc sgnal wth Gaussan dther as functon of σ /q: a A/q, b A/q9 6

7 5. Podsumowane Analtyczne modele błędów estymacj określanych cyfrowo funkcj korelacyjnych mają ogranczone zastosowane praktyczne z powodu dużej złożonośc. W tej sytuacj dla celów badawczych został opracowany w środowsku LabWndows frmy Natonal Instruments model wrtualnego korelatora. W programe zostały użyte orygnalne procedury określana estymatorów funkcj korelacyjnych, poneważ dostępne funkcje paketu LabWndows prowadzły do newarygodnych wynków. Zaprezentowane w artykule rezultaty badań obcążena estymatora w zależnośc od pozomu sygnału dtherowego, będące częścą prowadzonych badań, są zbeżne z wynkam analz teoretycznych. Planowane jest zastosowane modelu korelatora w badanach wpływu sygnałów dtherowych na warancję estymatorów funkcj korelacyjnych odpowedzalną za nepewność typu A. 6. Lteratura [] J. S. Bendat, A. G. Persol: Random data: analyss and measurement procedures. Wley, New York 986. [] J. Lal-Jadzak.: Accuracy n determnaton of correlaton functons by dgtal methods. etrology and easurement Systems, vol. VIII, no.,. [3] K. Y. Chang, A. D. oore: odfed dgtal correlator and ts estmaton errors. IEEE Trans. on IT, 97, pp [4] J. Lal-Jadzak: Bas and varance of crosscorrelaton functon estmator determned on the bass of sgnals resultng from A/D converson wth dther. etrology and easurement Systems, vol. X, no. 4, 3. [5] LabWndows/CVI Internet Developers Toolkt Onlne Help. [6] J. Lal-Jadzak: Kształtowane dokładnośc w pomarach korelacyjnych. onografa, no., Wyd. Pol. Zelonogórskej, Zelona Góra. 7

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

MODEL WIRTUALNEGO KORELATORA

MODEL WIRTUALNEGO KORELATORA ODEL WITUALNEGO KOELATOA II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 5-8 czerwca 005, Z otniki Luba skie Elżbieta Kawecka Instytut Informatyki i Elektroniki, Uniwersytet Zielonogórski

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Wpływ kwantowania na dokładność estymacji momentów sygnałów o rozkładach normalnych

Wpływ kwantowania na dokładność estymacji momentów sygnałów o rozkładach normalnych Wpływ kwantowania na dokładność estymacji momentów sygnałów o rozkładach normalnych Elżbieta Kawecka Jadwiga Lal-Jadziak * Przedstawiono twierdzenia Widrowa i warunki odtwarzalności dla kwantowania w zastosowaniu

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn Wyznaczane zastępczej sprężyn Ćwczene nr 10 Wprowadzene W przypadku klku sprężyn ze sobą połączonych, można mu przypsać tzw. współczynnk zastępczej k z. W skrajnych przypadkach sprężyny mogą być ze sobą

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

SPRAWDZANIE PRAWA MALUSA

SPRAWDZANIE PRAWA MALUSA INSTYTUT ELEKTRONIKI I SYSTEMÓW STEROWANIA WYDZIAŁ ELEKTRYCZNY POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM FIZYKI ĆWICZENIE NR O- SPRAWDZANIE PRAWA MALUSA I. Zagadnena do przestudowana 1. Fala elektromagnetyczna,

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH

MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH Adam Mchczyńsk W roku 995 grupa nstytucj mędzynarodowych: ISO Internatonal Organzaton for Standardzaton (Mędzynarodowa Organzacja Normalzacyjna),

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

PORÓWNANIE METOD ANALIZY EFEKTYWNOŚCI NA PRZYKŁADZIE SERWERA APLIKACJI W SIECI LOKALNEJ

PORÓWNANIE METOD ANALIZY EFEKTYWNOŚCI NA PRZYKŁADZIE SERWERA APLIKACJI W SIECI LOKALNEJ STUDI IFORMTIC Volume 3 umber 3 (98) Tadeusz CZCHÓRSKI, Krzysztof GROCHL Instytut Informatyk Teoretycznej Stosowanej Polskej kadem auk dam JÓZEFIOK, Tomasz YCZ Poltechnka Śląska, Instytut Informatyk PORÓWIE

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

PRZENOŚNY ANALIZATOR DIAGNOSTYCZNY DO WYKRYWANIA USZKODZEŃ STOJANA I WIRNIKA W SILNIKACH INDUKCYJNYCH

PRZENOŚNY ANALIZATOR DIAGNOSTYCZNY DO WYKRYWANIA USZKODZEŃ STOJANA I WIRNIKA W SILNIKACH INDUKCYJNYCH Zeszyty problemowe Maszyny Elektryczne Nr 00/03 cz. I 77 Marcn Pawlak Poltechnka Wrocławska PRZENOŚNY ANALIZATOR DIAGNOSTYCZNY DO WYKRYWANIA USZKODZEŃ STOJANA I WIRNIKA W SILNIKACH INDUKCYJNYCH PORTABLE

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

ZAJĘCIA X. Zasada największej wiarygodności

ZAJĘCIA X. Zasada największej wiarygodności ZAJĘCIA X Zasada najwększej warygodnośc Funkcja warygodnośc Estymacja wg zasady maksymalzacj warygodnośc Rodzna estymatorów ML Przypadk szczególne WPROWADZEIE Komputerowa dentyfkacja obektów Przyjęce na

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Sprawozdanie powinno zawierać:

Sprawozdanie powinno zawierać: Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Nieparametryczne Testy Istotności

Nieparametryczne Testy Istotności Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM Zeszyty Problemowe Maszyny Elektryczne Nr 88/2010 13 Potr Bogusz Marusz Korkosz Jan Prokop POLITECHNIKA RZESZOWSKA Wydzał Elektrotechnk Informatyk BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM

Bardziej szczegółowo

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach Jacek Batóg Unwersytet Szczecńsk Analza dagnoza sytuacj fnansowej wybranych branż notowanych na Warszawskej Gełdze Paperów Wartoścowych w latach 997-998 W artykule podjęta została próba analzy dagnozy

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu

Karta (sylabus) modułu/przedmiotu Karta (sylabus) mułu/przedmotu Budownctwo (Nazwa kerunku studów) Studa I Stopna Przedmot: Materały budowlane II Constructon materals Rok: II Semestr: MK_26 Rzaje zajęć lczba gzn: Studa stacjonarne Studa

Bardziej szczegółowo

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO I PRACOWNIA FIZYCZNA, INSYU FIZYKI UMK, ORUŃ Instrukca do ćwczena nr WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO 1. Cel ćwczena Celem ćwczena est poznane ruchu harmonczneo eo praw,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna

Bardziej szczegółowo

Komputerowe generatory liczb losowych

Komputerowe generatory liczb losowych . Perwszy generator Komputerowe generatory lczb losowych 2. Przykłady zastosowań 3. Jak generuje sę lczby losowe przy pomocy komputera. Perwszy generator lczb losowych L. H. C. Tppet - 927 Ksąż ążka -

Bardziej szczegółowo

ANALIZA WŁASNOŚCI SILNIKA RELUKTANCYJNEGO METODAMI POLOWYMI

ANALIZA WŁASNOŚCI SILNIKA RELUKTANCYJNEGO METODAMI POLOWYMI Akadema Górnczo-Hutncza Wydzał Elektrotechnk, Automatyk, Informatyk Elektronk Koło naukowe MAGNEIK ANAIZA WŁANOŚCI INIKA EUKANCYJNEGO MEODAMI POOWYMI Marcn Welgus Wtold Zomek Opekun naukowy referatu: dr

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Alcja Wolny-Domnak Unwersytet Ekonomczny w Katowcach MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Wprowadzene

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Ile wynosi suma miar kątów wewnętrznych w pięciokącie?

Ile wynosi suma miar kątów wewnętrznych w pięciokącie? 1 Ile wynos suma mar kątów wewnętrznych w pęcokące? 1 Narysuj pęcokąt foremny 2 Połącz środek okręgu opsanego na tym pęcokące ze wszystkm werzchołkam pęcokąta 3 Oblcz kąty każdego z otrzymanych trójkątów

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB

Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB Julusz MDZELEWSK Wydzał Eletron Techn nformacyjnych, nstytut Radoeletron, oltechna Warszawsa do:0.599/48.05.09.36 dosonalona metoda oblczana mocy traconej w tranzystorach wzmacnacza lasy AB Streszczene.

Bardziej szczegółowo

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH Metrologa Wspomagana Komputerowo - Zegrze, 9-22 05.997 WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH dr nż. Jan Ryszard Jask, dr nż. Elgusz Pawłowsk POLITECHNIKA lubelska

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009.

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009. A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Unwersytet Mkołaja Kopernka w Torunu Katedra Ekonometr Statystyk Elżbeta

Bardziej szczegółowo

6. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO

6. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO Różnce mędzy obserwacjam statystycznym ruchu kolejowego a samochodowego 7. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO.. Obserwacje odstępów mędzy kolejnym wjazdam na stację

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Sygnały stochastyczne, parametry w dziedzinie

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

Wpływ modernizacji gospodarki w sferze działalności proekologicznej na jakość środowiska naturalnego w Polsce w układzie regionalnym

Wpływ modernizacji gospodarki w sferze działalności proekologicznej na jakość środowiska naturalnego w Polsce w układzie regionalnym 194 Dr Marcn Salamaga Katedra Statystyk Unwersytet Ekonomczny w Krakowe Wpływ modernzacj gospodark w sferze dzałalnośc proekologcznej na jakość środowska naturalnego w Polsce w układze regonalnym WPROWADZENIE

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Określanie zapasu wody pod stępką w porcie Ystad na podstawie badań symulacyjnych

Określanie zapasu wody pod stępką w porcie Ystad na podstawie badań symulacyjnych Scentfc Journals Martme Unversty of Szczecn Zeszyty Naukowe Akadema Morska w Szczecne 2008, 13(85) pp. 22 28 2008, 13(85) s. 22 28 Określane zapasu wody pod stępką w porce Ystad na podstawe badań symulacyjnych

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

Pomiar mocy i energii

Pomiar mocy i energii Zakład Napędów Weloźródłowych Instytut Maszyn Roboczych CęŜkch PW Laboratorum Elektrotechnk Elektronk Ćwczene P3 - protokół Pomar mocy energ Data wykonana ćwczena... Zespół wykonujący ćwczene: Nazwsko

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych Cetrala Izba Pomarów Telekomukacyjych (P-1) Komputerowe staowsko do wzorcowaa geeratorów podstawy czasu w częstoścomerzach cyrowych Praca r 1300045 Warszawa, grudzeń 005 Komputerowe staowsko do wzorcowaa

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

APROKSYMACJA QUASIJEDNOSTAJNA

APROKSYMACJA QUASIJEDNOSTAJNA POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrcal Engneerng 213 Jan PURCZYŃSKI* APROKSYMACJA QUASIJEDNOSTAJNA W pracy wykorzystano metodę aproksymacj średnokwadratowej welomanowej, przy

Bardziej szczegółowo

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów

Bardziej szczegółowo

ZESZYTY NAUKOWE NR x(xx) AKADEMII MORSKIEJ W SZCZECINIE. Metody wymiarowania obszaru manewrowego statku oparte na badaniach rzeczywistych

ZESZYTY NAUKOWE NR x(xx) AKADEMII MORSKIEJ W SZCZECINIE. Metody wymiarowania obszaru manewrowego statku oparte na badaniach rzeczywistych ISSN 009-069 ZESZYTY NUKOWE NR () KDEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNRODOW KONFERENCJ NUKOWO-TECHNICZN E X P L O - S H I P 0 0 6 Paweł Zalewsk, Jakub Montewka Metody wymarowana obszaru manewrowego

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.

Bardziej szczegółowo

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

Ćwiczenie 6. Analiza przetwornicy dławikowej obniŝającej napięcie PODSTAWY ENERGOELEKTRONIKI LABORATORIUM. Opracowanie: Łukasz Starzak.

Ćwiczenie 6. Analiza przetwornicy dławikowej obniŝającej napięcie PODSTAWY ENERGOELEKTRONIKI LABORATORIUM. Opracowanie: Łukasz Starzak. Poltechnka Łódzka Katedra Mkroelektronk Technk Informatycznych 90-924 Łódź, al. Poltechnk 11 tel. (0)4 26 31 26 45 faks (0)4 26 36 03 27 e-mal: secretary@dmcs.p.lodz.pl www: http://www.dmcs.p.lodz.pl PODSTAWY

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Komórkowy model sterowania ruchem pojazdów w sieci ulic.

Komórkowy model sterowania ruchem pojazdów w sieci ulic. Komórkowy model sterowana ruchem pojazdów w sec ulc. Autor: Macej Krysztofak Promotor: dr n ż. Marusz Kaczmarek 1 Plan prezentacj: 1. Wprowadzene 2. Cel pracy 3. Podsumowane 2 Wprowadzene Sygnalzacja śwetlna

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORJNE Z FIZKI trzec termn wpsu zalczena do USOSu upływa...prowadząca(y)... grupa... podgrupa... zespół... semestr roku akademckego... student(ka)... SPRAWOZDANIE

Bardziej szczegółowo

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki Welokategoralne systemy uząe sę h zastosowane w bonformatye Rafał Grodzk Welokategoralny system uząy sę (multlabel learnng system) Zbór danyh weśowyh: d X = R Zbór klas (kategor): { 2 } =...Q Zbór uząy:

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORJNE Z FIZKI trzec termn wpsu zalczena do USOSu upływa...prowadząc(a/y)... grupa... podgrupa... zespół... semestr... roku akademckego... student(ka)... SPRAWOZDANIE

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo

Urządzenia wejścia-wyjścia

Urządzenia wejścia-wyjścia Urządzena wejśca-wyjśca Klasyfkacja urządzeń wejśca-wyjśca. Struktura mechanzmu wejśca-wyjśca (sprzętu oprogramowana). Interakcja jednostk centralnej z urządzenam wejśca-wyjśca: odpytywane, sterowane przerwanam,

Bardziej szczegółowo

Statystyka. Zmienne losowe

Statystyka. Zmienne losowe Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12 Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w Metrologa... - "W y z n ac z an e d y s y p ac z p raw a -5 / " WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TRBLENCJI PRZY ŻYCI PRAWA -5/. WPROWADZENIE Energa przepływaącego płyn E c dem E p dem E c E k

Bardziej szczegółowo

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo