Stateczność skarp. Parametry gruntu: Φ c γ

Wielkość: px
Rozpocząć pokaz od strony:

Download "Stateczność skarp. Parametry gruntu: Φ c γ"

Transkrypt

1 Stateczność skarp N α Parametry gruntu: Φ c γ

2 Analza statecznośc skarpy w grunce nespostym I. Brak przepływu wody (brak fltracj) Równane równowag: Współczynnk statecznośc: S = T T tgφ n = = S tgα G N S T α :m Parametry gruntu: Φ > 0 c = 0 γ Analza statecznośc skarpy w grunce nespostym II. Uwzględnene sły fltracj P s G N S T L Równane równowag: S'+ Ps = T Współczynnk statecznośc: α :m Parametry gruntu: Φ > 0 c = 0 γ T tgφ n = S' + P γ ' + γ tgα γ w tgφ tgα s 2 w 2

3 Analza statecznośc skarpy w grunce spostym metoda Fellenusa I. Brak przepływu wody (brak fltracj) Środek obrotu α 6 R = 9. m =6.0 m n m ( G cosα tgφ + c l) = = m = G snα g = 9. kn/m 3 f = 9 o c = 0 kpa b l = cosα Podłoże Wyznaczene wartośc snα cosα (na przykładze paska nr 6) Środek obrotu α 6 R = 9. m snα 6 = x 6 /R cosα 6 = y 6 /R y =6.0 m x 6 g = 9. kn/m 3 f = 9 o c = 0 kpa Podłoże 3

4 Oblczene wartośc współczynnka statecznośc (przykład) Tabela. Oblczene cężaru bloków Nr bloku Szer. bloku b Średna wys. bloku h Cężar bloku G b h l Tabela 2. Oblczene współczynnka statecznośc Nr bloku G sna G sna cosa G cosa l =b /cosa tg n = = Analza statecznośc skarpy w grunce spostym metoda Fellenusa I. Uwzględnene sły fltracj Środek obrotu R = 9. m n R m ( G' cosα tgφ + cl) = = m R = G' snα + M w 2 R w = P s 6 L=7.9 Podłoże 7 9 g = 9. kn/m 3 f = 9 o c = 0 kpa Δ = 4.0 =6.0 m M w = R w P s P s = V w p s, p s = γ w = γ L 4.0 p s = 9. 8 = 4.97 kn/m w 4

5 Oblczene wartośc współczynnka statecznośc (przykład) Tabela 3. Oblczene cężaru bloków Nr bloku Szer. częśc bloku ponżej krzywej depresj - bw Średna wys. częśc bloku ponżej krzywej depresj - hw Objętość częśc bloku ponżej krzywej depresj Vw = bw hw V w = 9.0 m 3 Tabela 3. Oblczene cężaru bloków c.d. h w b w V p V w P s = = kn, M w = = knm Nr bloku Objętość bloku Objętość częśc bloku ponżej krzywej depresj Objętość częśc bloku powyżej krzywej depresj Cężar bloku V (m 3 ) Vw (m 3 ) Vp (m 3 ) G ' =Vp γ+vw γ ' Oblczene wartośc współczynnka statecznośc (przykład) c.d. Tabela 4. Oblczene współczynnka statecznośc Nr bloku G ' sna G ' sna cosa G ' cosa l =b /cosa ( 2.33 tg ) n = =

6 Różne powerzchne poślzgu O 2 O R R 2 O 4 O 3 R 4 R 3 W przypadku, gdy obekt budowlany wykonany jest z gruntów spostych projektowane bezpecznego ekonomcznego nachylena skarp odbywa sę w czterech etapach:. Założene nachylena skarpy. 2. Sprawdzene statecznośc skarpy (oblczene współczynnka statecznośc dla welu powerzchn poślzgu). 3. Wybrane z welu analzowanych powerzchn poślzgu najbardzej nebezpecznej powerzchn, która decyduje o statecznośc skarpy (określene n mn ). 4. Porównane wartośc współczynnka statecznośc(n mn ) z wartoścą wymaganą dla badanego obektu (n dop. ). W przypadku gdy: n mn > n dop, proces projektowana zostaje zakończony; n mn n dop, skarpa jest zaprojektowana ze zbyt dużym zapasem bezpeczeństwa. Należy zmnejszyć nachylene skarpy powrócć do punktu nr ; n mn < n dop, skarpa o założonym nachylenu ne jest stateczna. Należy zwększyć nachylene skarpy powrócć do punktu nr. 6

7 Różne powerzchne poślzgu O 2 O 4 O 3 R 4 R 2 R R 3 Nomogram Janbu do wyznaczana położena środka obrotu najnekorzystnejszej powerzchn poślzgu y o x o λ = 0 λ = λ = 2 λ = 4 λ = 4 λ = 2 λ = 0 λ = 6 λ = 8 λ = 8 λ = 6 tgφ λ = γ c 0..0 y = yo x = xo :m

8 W ostatnch czasach w celu przyspeszena oblczeń oraz zwększena ch dokładnośc opracowano szereg programów komputerowych, które z reguły umożlwają sprawdzene statecznośc skarp różnym metodam oblczenowym, uwzględnając bardzo skomplkowane warunk geotechnczne. Lderem w tej dzedzne jest kanadyjska frma GEO SLOPE z Calgary akademcke wersje swoch programów(student lcense), które posadają pewne ogranczena w stosunku do produktów komercyjnych frma udostępna bezpłatne Program SLOPE/W Przykład sprawdzena statecznośc Metoda Fellenusa 0 Upper Sol Layer SLOPE/W Example Problem Learn Example n Chapter 3 Fle Name: Example.slp Analyss Method: Ordnary Lower Sol Layer Dstance Slce 3 - Ordnary Method

9 Program SLOPE/W Przykład sprawdzena statecznośc Metoda Bshopa 0 Upper Sol Layer SLOPE/W Example Problem Learn Example n Chapter 3 Fle Name: Example.slp Analyss Method: Bshop Lower Sol Layer Dstance Slce 3 - Bshop Method Program SLOPE/W Przykład sprawdzena statecznośc Metoda Janbu 0 Upper Sol Layer SLOPE/W Example Problem Learn Example n Chapter 3 Fle Name: Example.slp Analyss Method: Janbu Lower Sol Layer Dstance Slce 3 - Janbu Method

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Wstępne przyjęcie wymiarów i głębokości posadowienia

Wstępne przyjęcie wymiarów i głębokości posadowienia MARCIN BRAS POSADOWIENIE SŁUPA 1 Dane do projektu: INSTYTUT GEOTECHNIKI Poltechnka Krakowska m. T. Koścuszk w Krakowe Wydzał Inżyner Środowska MECHANIKA GRUNTÓW I FUNDAMENTOWANIE P :=.0MN H := 10kN M :=

Bardziej szczegółowo

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem Kostrukcje budowle zeme OBLICZENIA WSPÓŁCZYNNIKA STATECZNOŚCI SKAPY ODWODNEJ METODĄ FELLENIUSA DLA ZAPOY ZIEMNEJ BEZ ELEMENTÓW USZCZELNIAJĄCYCH Z DENAŻEM Zapora zema posadowoa a podłożu przepuszczalym

Bardziej szczegółowo

WYZNACZANIE KSZTAŁTU PROFILU STATECZNEGO METODA MASŁOWA Fp

WYZNACZANIE KSZTAŁTU PROFILU STATECZNEGO METODA MASŁOWA Fp WYZNACZANIE KSZTAŁTU PROFILU STATECZNEGO METODA MASŁOWA Fp Metoda Masłowa Fp, zwana równieŝ metodą jednakowej stateczności słuŝy do wyznaczania kształtu profilu zboczy statecznych w gruntach spoistych.

Bardziej szczegółowo

Slope stability Stateczność zboczy Limit Equilibrium Methods Metody Równowagi Granicznej

Slope stability Stateczność zboczy Limit Equilibrium Methods Metody Równowagi Granicznej Slope stablty Stateczność zboczy Lmt Equlbrum Methods Metody Równowag Grancznej Marek Cała, Jerzy Flsak Kat. Geomechank, Budownctwa Geotechnk Slope Stablty przyczyny utraty statecznośc Analza statecznośc

Bardziej szczegółowo

Slope stability Stateczność zboczy Limit Equilibrium Methods Metody Równowagi Granicznej

Slope stability Stateczność zboczy Limit Equilibrium Methods Metody Równowagi Granicznej Slope stablty Stateczność zboczy Lmt Equlbrum Methods Metody Równowag Grancznej Marek Cała, Jerzy Flsak Kat. Geomechank, Budownctwa Geotechnk Slope Stablty przyczyny utraty statecznośc Analza statecznośc

Bardziej szczegółowo

Slope stability Stateczność zboczy Limit Equilibrium Methods Metody Równowagi Granicznej

Slope stability Stateczność zboczy Limit Equilibrium Methods Metody Równowagi Granicznej Slope stablty Stateczność zboczy Lmt Equlbrum Methods Metody Równowag Grancznej Marek Cała, Jerzy Flsak Katedra Geomechank, Budownctwa Geotechnk Wydzał Górnctwa Geonżyner Marek Cała, Jerzy Flsak Kat. Geomechank,

Bardziej szczegółowo

Kolokwium z mechaniki gruntów

Kolokwium z mechaniki gruntów Zestaw 1 Zadanie 1. (6 pkt.) Narysować wykres i obliczyć wypadkowe parcia czynnego wywieranego na idealnie gładką i sztywną ściankę. 30 kpa γ=17,5 kn/m 3 Zadanie 2. (6 pkt.) Obliczyć ile wynosi obciążenie

Bardziej szczegółowo

1 Geometria skarp i zboczy

1 Geometria skarp i zboczy Instrukcja do projektu Stateczność skarpy Wybrane zagadnienia do ćwiczenia projektowego ze stateczności skarp i zboczy. 1 Geometria skarp i zboczy Skarpa jest to nachylona powierzchnia terenu powstała

Bardziej szczegółowo

1. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH

1. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH Projekt z fundamentowana: MUR OPOROWY (tuda mgr) POSADOWIENIE NA PALACH WG PN-83/B-02482. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH grunt G π P d T/Nm P / P r grunt zayp. Tabl.II.. Zetawene parametrów geotechncznych.

Bardziej szczegółowo

Zakres wiadomości na II sprawdzian z mechaniki gruntów:

Zakres wiadomości na II sprawdzian z mechaniki gruntów: Zakres wiadomości na II sprawdzian z mechaniki gruntów: Wytrzymałość gruntów: równanie Coulomba, parametry wytrzymałościowe, zależność parametrów wytrzymałościowych od wiodących cech geotechnicznych gruntów

Bardziej szczegółowo

Uniwersytet Warmińsko-Mazurski w Olsztynie.

Uniwersytet Warmińsko-Mazurski w Olsztynie. Wydział Geodezji, Inżynierii Przestrzennej i Budownictwa Instytut Budownictwa Zakład Geotechniki i Budownictwa Drogowego Uniwersytet Warmińsko-Mazurski w Olsztynie Projektowanie geotechniczne na podstawie

Bardziej szczegółowo

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej Zastosowane technk sztucznej ntelgencj w analze odwrotnej Ł. Sztangret, D. Szelga, J. Kusak, M. Petrzyk Katedra Informatyk Stosowanej Modelowana Akadema Górnczo-Hutncza, Kraków Motywacja Dokładność symulacj

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

dr inż. Ireneusz Dyka pok [ul. Heweliusza 4]

dr inż. Ireneusz Dyka pok [ul. Heweliusza 4] Zagrożenia i ochrona przed powodzią ćwiczenia dr inż. Ireneusz Dyka pok. 3.34 [ul. Heweliusza 4] http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl Katedra Geotechniki i Budownictwa Drogowego

Bardziej szczegółowo

SKŁADOWISKA ODPADÓW STATECZNOŚĆ ZBOCZY WYSYPISK ODPADÓW KOMUNALNYCH

SKŁADOWISKA ODPADÓW STATECZNOŚĆ ZBOCZY WYSYPISK ODPADÓW KOMUNALNYCH XXIV OGÓLNOPOLSKIE WARSZTATY PRACY PROJEKTANTA KONSTRUKCJI BESKIDY WISŁA, 17 20 marca 2009 r. KRAKÓW Eugenusz KODA 1 SKŁADOWISKA ODPADÓW STATECZNOŚĆ ZBOCZY WYSYPISK ODPADÓW KOMUNALNYCH 1. Wprowadzene Stateczność

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

Ostrożne podejście do stosowania

Ostrożne podejście do stosowania Ostrożne podejście do stosowania Eurokodów przy modernizacji nasypów kolejowych Andrzej Batog, Maciej Hawrysz Artykuł dotyczy istotnego problemu zapewnienia bezpieczeństwa eksploatacji nasypów modernizowanych

Bardziej szczegółowo

1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m.

1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m. 1. Dane : DANE OGÓLNE PROJEKTU Poziom odniesienia: 0,00 m. 4 2 0-2 -4 0 2. Fundamenty Liczba fundamentów: 1 2.1. Fundament nr 1 Klasa fundamentu: ława, Typ konstrukcji: ściana, Położenie fundamentu względem

Bardziej szczegółowo

, u. sposób wyznaczania: x r = m. x n, Zgodnie z [1] stosuje się następujące metody ustalania parametrów geotechnicznych:

, u. sposób wyznaczania: x r = m. x n, Zgodnie z [1] stosuje się następujące metody ustalania parametrów geotechnicznych: Wybrane zagadnienia do projektu fundamentu bezpośredniego według PN-B-03020:1981 1. Wartości charakterystyczne i obliczeniowe parametrów geotechnicznych oraz obciążeń Wartości charakterystyczne średnie

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża

Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża D.1 e używane w załączniku D (1) Następujące symbole występują w Załączniku D: A' = B' L efektywne obliczeniowe pole powierzchni

Bardziej szczegółowo

STATECZNOŚĆ SKARP I ZBOCZY W UJĘCIU EUROKODU Wprowadzenie. 2. Charakterystyka Eurokodu 7. Halina Konderla*

STATECZNOŚĆ SKARP I ZBOCZY W UJĘCIU EUROKODU Wprowadzenie. 2. Charakterystyka Eurokodu 7. Halina Konderla* Górnictwo i Geoinżynieria Rok 32 Zeszyt 2 2008 Halina Konderla* STATECZNOŚĆ SKARP I ZBOCZY W UJĘCIU EUROKODU 7 1. Wprowadzenie Od wielu lat trwają w Polsce prace nad wdrożeniem europejskiej normy dotyczącej

Bardziej szczegółowo

Projekt głębokości wbicia ścianki szczelnej stalowej i doboru profilu stalowego typu U dla uzyskanego maksymalnego momentu zginającego

Projekt głębokości wbicia ścianki szczelnej stalowej i doboru profilu stalowego typu U dla uzyskanego maksymalnego momentu zginającego Projekt głębokości wbicia ścianki szczelnej stalowej i doboru profilu stalowego typu U dla uzyskanego maksymalnego momentu zginającego W projektowaniu zostanie wykorzystana analityczno-graficzna metoda

Bardziej szczegółowo

EKSPERTYZA BUDOWLANA BUDYNKU MIESZKALNEGO-Wrocław ul. Szczytnicka 29

EKSPERTYZA BUDOWLANA BUDYNKU MIESZKALNEGO-Wrocław ul. Szczytnicka 29 Załącznik... Fundament obliczenia kontrolne: uogólnione warunki gruntowe z badań geotechnicznych dla budynku Grunwaldzka 3/5-przyjeto jako parametr wiodący rodzaj gruntu i stopień zagęszczenia oraz plastyczności-natomiast

Bardziej szczegółowo

PROJEKT GEOTECHNICZNY

PROJEKT GEOTECHNICZNY Inwestor: Adres obektu budowlanego: Zarząd Województwa Małopolskego Mejscowość: Lmanowa ul. Basztowa 22 Powat: lmanowsk 31-156 Kraków Województwo: małopolske Rozbudowa drog wojewódzkej nr 965 odc. 240

Bardziej szczegółowo

Moment siły (z ang. torque, inna nazwa moment obrotowy)

Moment siły (z ang. torque, inna nazwa moment obrotowy) Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene

Bardziej szczegółowo

Projekt ciężkiego muru oporowego

Projekt ciężkiego muru oporowego Projekt ciężkiego muru oporowego Nazwa wydziału: Górnictwa i Geoinżynierii Nazwa katedry: Geomechaniki, Budownictwa i Geotechniki Zaprojektować ciężki pionowy mur oporowy oraz sprawdzić jego stateczność

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

13. OBLICZENIE STATECZNOŚCI SKARP I STATECZNOŚCI FILTRACYJNEJ

13. OBLICZENIE STATECZNOŚCI SKARP I STATECZNOŚCI FILTRACYJNEJ 3. OBLICZENIE STATECZNOŚCI SKARP I STATECZNOŚCI FILTRACYJNEJ Tomasz Strzeleck 3. Blokowe metody nżynerske określana statecznośc skarp w mechance gruntów. Lczne metody oblczeń przyblżonych stowanych w praktyce

Bardziej szczegółowo

Klasa betonu Klasa stali Otulina [cm] 3.00 Średnica prętów zbrojeniowych ściany φ 1. [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2

Klasa betonu Klasa stali Otulina [cm] 3.00 Średnica prętów zbrojeniowych ściany φ 1. [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2 Projekt: Wzmocnienie skarpy w Steklnie_09_08_2006_g Strona 1 Geometria Ściana oporowa posadowienie w glinie piaszczystej z domieszką Ŝwiru Wysokość ściany H [m] 3.07 Szerokość ściany B [m] 2.00 Długość

Bardziej szczegółowo

Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.

Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych. Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t

Bardziej szczegółowo

Wstęp do fizyki budowli

Wstęp do fizyki budowli Wstęp do fzyk budowl Xella Polska sp. z o.o. 0.06.200 Plan prezentacj Izolacyjność termczna Przenkane pary wodnej Podcągane kaplarne Wentylacja budynków Xella Polska sp. z o.o. 0.06.200 2 Współczynnk przewodzena

Bardziej szczegółowo

1/k Obliczenia statyczne.

1/k Obliczenia statyczne. /k Obliczenia statyczne. 48,0 8,7 94, 94, 94, A 0,0,4 4,9 4,9 4,9 78,7 798, B,0 0 7, 8,8 00,0 680,0 00,0 9,0 DANE: Szkic wiązaa A 0,0,4 48,0 8,7 94, 94, 94, 4,9 4,9 4,9 78,7 798, 00,0 680,0 00,0 9,0 B,0

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt.

ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt. PYTANIA I ZADANIA v.1.3 26.01.12 ZADANIA za 2pkt. ZADANIA Podać wartości zredukowanych wymiarów fundamentu dla następujących danych: B = 2,00 m, L = 2,40 m, e L = -0,31 m, e B = +0,11 m. Obliczyć wartość

Bardziej szczegółowo

ZADANIE PROJEKTOWE NR 3. Projekt muru oporowego

ZADANIE PROJEKTOWE NR 3. Projekt muru oporowego Rok III, sem. VI 1 ZADANIE PROJEKTOWE NR 3 Projekt muru oporowego Wg PN83/B03010 Ściany oporowe. Obliczenia statyczne i projektowanie. Ściany oporowe budowle utrzymujące w stanie statecznym uskok naziomu

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn Wyznaczane zastępczej sprężyn Ćwczene nr 10 Wprowadzene W przypadku klku sprężyn ze sobą połączonych, można mu przypsać tzw. współczynnk zastępczej k z. W skrajnych przypadkach sprężyny mogą być ze sobą

Bardziej szczegółowo

Lp Opis obciążenia Obc. char. kn/m 2 f

Lp Opis obciążenia Obc. char. kn/m 2 f 0,10 0,30 L = 0,50 0,10 H=0,40 OBLICZENIA 6 OBLICZENIA DO PROJEKTU BUDOWLANEGO PRZEBUDOWY SCHODÓW ZEWNĘTRZNYCH, DRZWI WEJŚCIOWYCH SZT. 2 I ZADASZENIA WEJŚCIA GŁÓWNEGO DO BUDYNKU NR 3 JW. 5338 przy ul.

Bardziej szczegółowo

Projekt muru oporowego

Projekt muru oporowego Rok III, sem. V 1 Projekt muru oporowego według PN-EN 1997-1:2008 Eurokod 7. Projektowanie geotechniczne. Część 1: Zasady ogólne wraz z poprawkami Projekt muru oporowego obejmuje: opis techniczny, obliczenia

Bardziej szczegółowo

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:

Bardziej szczegółowo

ZMIANA WARUNKÓW EKSPLOATACYJNYCH ŁOŻYSK ŚLIZGO- WYCH ROZRUSZNIKA PO PRZEPROWADZENIU NAPRAWY

ZMIANA WARUNKÓW EKSPLOATACYJNYCH ŁOŻYSK ŚLIZGO- WYCH ROZRUSZNIKA PO PRZEPROWADZENIU NAPRAWY PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, maja 999 r. Jan Burcan Krzysztof Sczek Poltechnka Łódzka ZMIANA WARUNKÓW EKSPLOATACYJNYCH ŁOŻYSK ŚLIZGO- WYCH ROZRUSZNIKA PO PRZEPROWADZENIU NAPRAWY

Bardziej szczegółowo

Stateczność czołowego obwałowania nasypu przeciwpowodziowego Jeziora Druzno

Stateczność czołowego obwałowania nasypu przeciwpowodziowego Jeziora Druzno Stateczność czołowego obwałowana nasypu przecwpowodzowego Jezora Druzno Dr hab. nż. Andrzej Olchawa Unwersytet Technologczno-Przyrodnczy w Bydgoszczy, Wydzał Archtektury, Budownctwa Inżyner środowska Prof.

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

Zapewnianie stateczności zbocza przy pomocy pali stabilizujących

Zapewnianie stateczności zbocza przy pomocy pali stabilizujących Przewodnik Inżyniera Nr 19 Aktualizacja: 06/2017 Zapewnianie stateczności zbocza przy pomocy pali stabilizujących Program powiązany: Stateczność zbocza, Pal stabilizujący Plik powiązany: Demo_manual_19.gst

Bardziej szczegółowo

Równoczesna wymiana ciepła przez konwekcję i promieniowanie

Równoczesna wymiana ciepła przez konwekcję i promieniowanie Równoczesna wymana cepła przez konwekcję promenowane W warunkach rzeczywstych wymana cepła droga konwekcj promenowana najczęścej zachodz równocześne. Zakłada sę zatem z reguły, że gęstość strumena ceplnego

Bardziej szczegółowo

ver ruch bryły

ver ruch bryły ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt

Bardziej szczegółowo

GeoStudio 2004 Slope/W Przykład 1. Michał Kowalski AGH - KGBiG

GeoStudio 2004 Slope/W Przykład 1. Michał Kowalski AGH - KGBiG GeoStudio 2004 Slope/W Przykład 1 Michał Kowalski AGH - KGBiG Zadanie Obliczyć metodami Ordinary, Bishopa i Janbu wskaźniki stateczności skarpy przedstawionej na poniŝszym rysunku. Następnie zadać obciąŝenie

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

Parasejsmiczne obciążenia vs. stateczność obiektów.

Parasejsmiczne obciążenia vs. stateczność obiektów. Piotr Jermołowicz Inżynieria Środowiska Szczecin Parasejsmiczne obciążenia vs. stateczność obiektów. W ujęciu fizycznym falami są rozprzestrzeniające się w ośrodku materialnym lub polu, zaburzenia pewnej

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk

Bardziej szczegółowo

Analiza fundamentu na mikropalach

Analiza fundamentu na mikropalach Przewodnik Inżyniera Nr 36 Aktualizacja: 09/2017 Analiza fundamentu na mikropalach Program: Plik powiązany: Grupa pali Demo_manual_en_36.gsp Celem niniejszego przewodnika jest przedstawienie wykorzystania

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy

Bardziej szczegółowo

Egzamin z MGIF, I termin, 2006 Imię i nazwisko

Egzamin z MGIF, I termin, 2006 Imię i nazwisko 1. Na podstawie poniższego wykresu uziarnienia proszę określić rodzaj gruntu, zawartość głównych frakcji oraz jego wskaźnik różnoziarnistości (U). Odpowiedzi zestawić w tabeli: Rodzaj gruntu Zawartość

Bardziej szczegółowo

Instrukcja użytkowania programu do obliczeń stateczności skarp zboczy ziemnych na poślizg

Instrukcja użytkowania programu do obliczeń stateczności skarp zboczy ziemnych na poślizg SKARPA dla Wndows 95/98/Me/NT 4/2000 Wersja 1.5 Instrukcja użytkowana programu do oblczeń statecznośc skarp zboczy zemnych na poślzg Przygotowal: Potr Bartkewcz Jacek Stasersk Warszawa 2001 Sps treśc Podstawowe

Bardziej szczegółowo

7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH

7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH WYKŁAD 7 7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH 7.8.. Ogólne równane rucu Rucem zmennym w korytac otwartyc nazywamy tak przepływ, w którym parametry rucu take jak prędkość średna w przekroju

Bardziej szczegółowo

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Sporządził: Bartosz Pregłowski Grupa : II Rok akadem: 2004/2005 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

Projektowanie nie kotwionej (wspornikowej) obudowy wykopu

Projektowanie nie kotwionej (wspornikowej) obudowy wykopu Przewodnik Inżyniera Nr 4 Akutalizacja: 1/2017 Projektowanie nie kotwionej (wspornikowej) obudowy wykopu Program powiązany: Ściana projekt Plik powiązany: Demo_manual_04.gp1 Niniejszy rozdział przedstawia

Bardziej szczegółowo

Obciążenia (wartości charakterystyczne): - pokrycie dachu (wg PN-82/B-02001: ): Garaż 8/K Obliczenia statyczne. garaż Dach, DANE: Szkic wiązara

Obciążenia (wartości charakterystyczne): - pokrycie dachu (wg PN-82/B-02001: ): Garaż 8/K Obliczenia statyczne. garaż Dach, DANE: Szkic wiązara Garaż 8/K Obliczenia statyczne. garaż Dach, DNE: Szkic wiązara 571,8 396,1 42,0 781,7 10,0 20 51,0 14 690,0 14 51,0 820,0 Geometria ustroju: Kąt nachylenia połaci dachowej α = 42,0 o Rozpiętość wiązara

Bardziej szczegółowo

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO I PRACOWNIA FIZYCZNA, INSYU FIZYKI UMK, ORUŃ Instrukca do ćwczena nr WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO 1. Cel ćwczena Celem ćwczena est poznane ruchu harmonczneo eo praw,

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Projektowanie umocnienia brzegowego.

Projektowanie umocnienia brzegowego. Piotr Jermołowicz - Inżynieria Środowiska Szczecin Projektowanie umocnienia brzegowego. Przedstawiony sposób projektowania odnosi się zasadniczo do gruntów podłoża najbardziej wrażliwych na erozję piasków

Bardziej szczegółowo

Analiza obudowy wykopu z jednym poziomem kotwienia

Analiza obudowy wykopu z jednym poziomem kotwienia Przewodnik Inżyniera Nr 6 Aktualizacja: 02/2016 Analiza obudowy wykopu z jednym poziomem kotwienia Program powiązany: Ściana analiza Plik powiązany: Demo_manual_06.gp2 Niniejszy rozdział przedstawia problematykę

Bardziej szczegółowo

Projekt muru oporowego

Projekt muru oporowego Rok III, sem. VI 1 Projekt muru oporowego według PN-83/B-03010 Ściany oporowe. Obliczenia statyczne i projektowanie. W projektowaniu ściany oporowe traktuje się wraz z fundamentem jako całość. Projekt

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

Analiza obudowy wykopu z pięcioma poziomami kotwienia

Analiza obudowy wykopu z pięcioma poziomami kotwienia Przewodnik Inżyniera Nr 7 Aktualizacja: 02/2016 Analiza obudowy wykopu z pięcioma poziomami kotwienia Program powiązany: Ściana analiza Plik powiązany: Demo_manual_07.gp2 Niniejszy rozdział przedstawia

Bardziej szczegółowo

Rozwiązanie stateczności ramy MES

Rozwiązanie stateczności ramy MES Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek

Bardziej szczegółowo

Slajd 1. Slajd 2. Slajd 3. Slajd 4. Slajd 5. Wykład 2. Transport rumowiska wleczonego i unoszonego:

Slajd 1. Slajd 2. Slajd 3. Slajd 4. Slajd 5. Wykład 2. Transport rumowiska wleczonego i unoszonego: Slajd 1 Slajd Slajd Slajd 4 Slajd 5 Akadema Rolncza w Krakowe WIŚG Katedra Inżyner Wodnej Dr nż. Leszek Ksążek : wzór Meyera-Petera Müllera, wzór USLE SMU Inżynera Środowska 009/010 Rodzaje transportu

Bardziej szczegółowo

Analiza ściany oporowej

Analiza ściany oporowej Przewodnik Inżyniera Nr 3 Aktualizacja: 02/2016 Analiza ściany oporowej Program powiązany: Plik powiązany: Ściana oporowa Demo_manual_03.gtz Niniejszy rozdział przedstawia przykład obliczania istniejącej

Bardziej szczegółowo

Zastosowanie metody Westergaarda do oceny oddziaływania samolotu HERCULES C-130 na nawierzchnie lotniskowe

Zastosowanie metody Westergaarda do oceny oddziaływania samolotu HERCULES C-130 na nawierzchnie lotniskowe B u l e t y n WAT Vo l. LXIV, Nr 3, 2015 Zastosowane metody Westergaarda do oceny oddzaływana samolotu HERCULES C-130 na nawerzchne lotnskowe Karolna Gulańczyk, Jan Marszałek 1 Wojskowa Akadema Technczna,

Bardziej szczegółowo

ROZKŁAD NAPRĘśEŃ POD FUNDAMENTEM W KOLEJNYCH FAZACH REALIZACJI INWESTYCJI. σ ρ [kpa]

ROZKŁAD NAPRĘśEŃ POD FUNDAMENTEM W KOLEJNYCH FAZACH REALIZACJI INWESTYCJI. σ ρ [kpa] ROZKŁAD NAPRĘśEŃ POD FUNDAMENTEM W KOLEJNYCH FAZACH REALIZACJI INWESTYCJI 1. NapręŜenia pierwotne z ρ napręŝenia od obciąŝenia nadległymi warstwami gdzie: z = ( ρ h ) g = ( γ h ) i i i i ρ ρ i gęstość

Bardziej szczegółowo

Sprawozdanie powinno zawierać:

Sprawozdanie powinno zawierać: Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,

Bardziej szczegółowo

OPIS TECHNICZNY KONSTRUKCJI 1. Przedmiot opracowania. 2. Rozwi zania konstrukcyjno-materiałowe

OPIS TECHNICZNY KONSTRUKCJI 1. Przedmiot opracowania. 2. Rozwi zania konstrukcyjno-materiałowe OPIS TECHNICZNY KONSTRUKCJI 1. Przedmiot opracowania 2. Rozwi zania konstrukcjno-materiałowe 2.1 Stop fundamentowe F φ 2.2 Słup stalow S φ 2.3 Rama stalowa R 2.4 Płatew stalowa P 2.5 Krokiew stalowa K

Bardziej szczegółowo

Raport obliczeń ścianki szczelnej

Raport obliczeń ścianki szczelnej Wrocław, dn.: 5.4.23 Raport obliczeń ścianki szczelnej Zadanie: "Przykład obliczeniowy z książki akademickiej "Fundamentowanie - O.Puła, Cz. Rybak, W.Sarniak". Profil geologiczny. Piasek pylasty - Piasek

Bardziej szczegółowo

mr1 Klasa betonu Klasa stali Otulina [cm] 4.00 Średnica prętów zbrojeniowych ściany φ 1 [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2

mr1 Klasa betonu Klasa stali Otulina [cm] 4.00 Średnica prętów zbrojeniowych ściany φ 1 [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2 4. mur oporowy Geometria mr1 Wysokość ściany H [m] 2.50 Szerokość ściany B [m] 2.00 Długość ściany L [m] 10.00 Grubość górna ściany B 5 [m] 0.20 Grubość dolna ściany B 2 [m] 0.24 Minimalna głębokość posadowienia

Bardziej szczegółowo

Awarie skarp nasypów i wykopów.

Awarie skarp nasypów i wykopów. Piotr Jermołowicz Inżynieria Środowiska Awarie skarp nasypów i wykopów. Samoczynne ruchy mas gruntu na zboczach i skarpach zwane osuwiskami uważa się za jeden z istotnych procesów w inżynierii geotechnicznej.

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu Poltechnka Wrocławska nstytut Maszyn, Napędów Pomarów Elektrycznych A KŁ A D M A S Z YN E EK T Materał lustracyjny do przedmotu EEKTOTEHNKA Y Z N Y Z H Prowadzący: * (z. ) * M N Dr nż. Potr Zelńsk (-9,

Bardziej szczegółowo

EGZAMIN Z FUNDAMENTOWANIA, Wydział BLiW IIIr.

EGZAMIN Z FUNDAMENTOWANIA, Wydział BLiW IIIr. EGZAMIN Z FUNDAMENTOWANIA, Wydział BLiW IIIr. Pyt. 1 (ok. 5min, max. 4p.) Pyt. 2 (ok. 5min, max. 4p.) Pyt. 3 (ok. 5min, max. 4p.) Pyt. 4 (ok. 5min, max. 4p.) Pyt. 5 (ok. 5min, max. 4p.) Zad. 1. (ok. 15min,

Bardziej szczegółowo

- Celem pracy jest określenie, czy istnieje zależność pomiędzy nośnością pali fundamentowych, a temperaturą ośrodka gruntowego.

- Celem pracy jest określenie, czy istnieje zależność pomiędzy nośnością pali fundamentowych, a temperaturą ośrodka gruntowego. Cel pracy - Celem pracy jest określenie, czy istnieje zależność pomiędzy nośnością pali fundamentowych, a temperaturą ośrodka gruntowego. Teza pracy - Zmiana temperatury gruntu wokół pala fundamentowego

Bardziej szczegółowo

PROJEKT STOPY FUNDAMENTOWEJ

PROJEKT STOPY FUNDAMENTOWEJ TOK POSTĘPOWANIA PRZY PROJEKTOWANIU STOPY FUNDAMENTOWEJ OBCIĄŻONEJ MIMOŚRODOWO WEDŁUG WYTYCZNYCH PN-EN 1997-1 Eurokod 7 Przyjęte do obliczeń dane i założenia: V, H, M wartości charakterystyczne obciążeń

Bardziej szczegółowo

WADY W PROCEDURZE OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA DEFECT IN PROCEDURE OF CALCULATION OF COEFFICIENT OF PENETRATION OF WARMTH

WADY W PROCEDURZE OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA DEFECT IN PROCEDURE OF CALCULATION OF COEFFICIENT OF PENETRATION OF WARMTH ANDRZEJ DYLLA, KRZYSZTOF PAWŁOWSKI WADY W PROCEDURZE OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA DEFECT IN PROCEDURE OF CALCULATION OF COEFFICIENT OF PENETRATION OF WARMTH Streszczene Głównym celem nnejszego

Bardziej szczegółowo

MODELOWANIE SIŁ SKRAWANIA PODCZAS OBWIEDNIOWO-PODZIAŁOWEGO SZLIFOWANIA KÓŁ ZĘBATYCH

MODELOWANIE SIŁ SKRAWANIA PODCZAS OBWIEDNIOWO-PODZIAŁOWEGO SZLIFOWANIA KÓŁ ZĘBATYCH KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 26 nr 2 Archwum Technolog Maszyn Automatyzacj 2006 STANISŁAW MIDERA * MODELOWANIE SIŁ SKRAWANIA PODCZAS OBWIEDNIOWO-PODZIAŁOWEGO SZLIFOWANIA KÓŁ ZĘBATYCH

Bardziej szczegółowo

Grupy nośności vs obliczanie nośności podłoża.

Grupy nośności vs obliczanie nośności podłoża. Piotr Jermołowicz Inżynieria Środowiska Szczecin Grupy nośności vs obliczanie nośności podłoża. Nadrzędnym celem wzmacniania podłoża jest dostosowanie jego parametrów do wymogów eksploatacyjnych posadawianych

Bardziej szczegółowo

OKREŚLANIE EFEKTYWNOŚCI ENERGETYCZNEJ KOLEKTORÓW SŁONECZNYCH

OKREŚLANIE EFEKTYWNOŚCI ENERGETYCZNEJ KOLEKTORÓW SŁONECZNYCH Adran TRZĄSKI Aleksander PANEK Poltechnka Warszawska OKREŚLANIE EFEKTYWNOŚCI ENERGETYCZNEJ KOLEKTORÓW SŁONECZNYCH Powszechność stosowana kolektorów słonecznych wymaga dostarczena projektantom opsów metod

Bardziej szczegółowo

ANALYSIS OF ROAD EMBANKMENT STABILITY IN THE CONDITIONS OF FLOOD WATER ATTACK ANALIZA STATECZNOSCI NASYPU DROGOWEGO W WARUNKACH ATAKU WODY POWODZIOWEJ

ANALYSIS OF ROAD EMBANKMENT STABILITY IN THE CONDITIONS OF FLOOD WATER ATTACK ANALIZA STATECZNOSCI NASYPU DROGOWEGO W WARUNKACH ATAKU WODY POWODZIOWEJ 15. medzinárodná vedecká konferencia Riešenie krízových situácií v špecifickom prostredí, Fakulta špeciálneho inžinierstva ŽU, Žilina, 2. - 3. jún 2010 ANALYSIS OF ROAD EMBANKMENT STABILITY IN THE CONDITIONS

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

KONSTRUKCJE METALOWE 1 Przykład 4 Projektowanie prętów ściskanych

KONSTRUKCJE METALOWE 1 Przykład 4 Projektowanie prętów ściskanych KONSTRUKCJE METALOWE Przykład 4 Projektowanie prętów ściskanych 4.Projektowanie prętów ściskanych Siły ściskające w prętach kratownicy przyjęto z tablicy, przykładu oraz na rysunku 3a. 4. Projektowanie

Bardziej szczegółowo

(r) (n) C u. γ (n) kn/ m 3 [ ] kpa. 1 Pπ 0.34 mw ,5 14,85 11,8 23,13 12,6 4,32

(r) (n) C u. γ (n) kn/ m 3 [ ] kpa. 1 Pπ 0.34 mw ,5 14,85 11,8 23,13 12,6 4,32 N r Rodzaj gruntu I /I L Stan gr. K l. Ф u (n) [ ] Ф u (r) [ ] C u (n) kpa γ (n) kn/ m γ (r) kn/m γ' (n) kn/ m N C N N 1 Pπ 0.4 mw - 9.6 6.64-16,5 14,85 11,8,1 1,6 4, Пp 0.19 mw C 15.1 1.59 16 1,0 18,9

Bardziej szczegółowo

Analiza stateczności stoku w Ropie

Analiza stateczności stoku w Ropie Zał. 9 Analiza stateczności stoku w Ropie Wykonał: dr inż. Włodzimierz Grzywacz... Kraków, listopad 2012 2 Obliczenia przeprowadzono przy pomocy programu numerycznego PROGEO opracowanego w Instytucie Techniki

Bardziej szczegółowo