KONCEPCJA I ZASTOSOWANIE SPECJALNYCH JEDNOWYMIAROWYCH ELEMENTÓW SKOŃCZONYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "KONCEPCJA I ZASTOSOWANIE SPECJALNYCH JEDNOWYMIAROWYCH ELEMENTÓW SKOŃCZONYCH"

Transkrypt

1 ONCEPCJA I ZASTOSOWANIE SPECJANYCH JEDNOWYMIAROWYCH EEMENTÓW SOŃCZONYCH Tadusz CHYŻY, Moa MACIEWICZ Wydzał Budowctwa Iżyr Środowsa, Poltcha Bałostoca, ul. Wsa 45 E, 5-5 Bałysto Strszcz: W artyul została zaprztowaa ocpca spcalych ltów sończoych służących do aalzy ostruc zawraących obszary o z sztywośc. Elty t orśla są ao wlopolow, a w rfrac przdstawoo ch pltacę w postac aprostszych ltów dowyarowych. Zastosowa spcalych ltów wlopolowych przyczya sę do zsza lczby wadoych, a ty say przyspsza czasu oblczń w porówau do stadardowgo rozwązaa MES. Podstawowy założ ocpc ltów wlopolowych st ożlwość opsaa fragtów ostruc o różących sę paratrach gotryczych lub atrałowych dy lt. Macrz sztywośc tago ltu wyzaczaa st w sposób awy poprzz suowa acrzy sztywośc sładowych podobszarów wchodzących w sład ltu sończogo. Obszar ltu sończogo st węc dzloy a poszczgól podobszary, tór ogą posadać róż paratry gotryczo-sztywoścow. W clu potwrdza poprawośc przyętych założń wyoao aalzy porówawcz oraz wsazao potcaly obszar zastosowań dowyarowych ltów spcalych w aalz osadaa podłoża grutowgo. Słowa luczow: MES, lty wlopolow, całowa w podprzstrzach.. Wprowadz W pratyc odlowaa ostruc Mtodą Eltów Sończoych MES (Bath, 996; Zwcz., 5) dorot zachodz oczość dfowaa obszarów o zacz różąc sę charatrystyc sztywoścow (różc w paratrach atrałowych lub wyarowych). Stadardowo różąc sę podobszary są wydzla opsywa oddzl odpowd lta sończoy. Ta podśc o, ż st atural dla MES, często oż być da oblczowo osztow (duża lczba ltów sończoych), szczgól dla atrałów o duż dorodośc. Dlatgo stwrdzoo, ż w uzasadoych przypadach oblczowych bardz ftywy rozwąza oż być zastosowa ltów sończoych, tór ogą opsywać różąc sę podobszary aalzowago cotuu. Opsyway probl przdstawoo a rysuu, gdz poędzy podobszara E E zastosowao stadardową dla MES-u dysrtyzacę, atoast poędzy podobszara E E zastosowao lty wlopolow obuąc różąc sę podobszary. PODZIAŁ STANDARDOWY STRUTURA WIEOOBSZAROWA E E E EEMENTY WIEOPOOWE Rys.. Ilustraca ocpc ltów wlopolowych ocpca ltów wlopolowych załada, ż obszar ostruc o różych paratrach sztywoścowo-gotryczych opsu sę podyczy lt. W zwązu z ty, lty t ogą być przydat w aalzach wyagaących zaodlowaa ostruc wyoaych z atrałów dorodych, gąbczastych, spoych czy przwarstwoych, atrałów z luza, dosza lub z uszodza wwętrzy, a taż atrałów prforowaych, tp. Szczgól dotyczy to odl trówyarowych D, gdz stadardow podśc prowadz do duż lczby ltów sończoych. Elty wlopolow poagaą wlorot zszyć lczbę wadoych, bz zacząc utraty doładośc rozwązaa. Autor odpowdzaly za orspodcę. E-al:.acwcz@pb.du.pl 5

2 Cvl ad Evrotal Egrg / Budowctwo Iżyra Środowsa 7 (6) 5-4 Poadto zastosowa spcalych ltów wlopolowych oż być przydat w oblczach ostruc wyagaących uwzględa losowośc (przypadowośc) w zars loalzac sc potcalgo uszodza, osłaba, wzoca czy luz, a rówż zarsu lub rodzau tych za. W tach przypadach często używa sę osztowych oblczowo procdur poowgo odlowaa (rarażac) sat podzału. Elty wlopolow ogą sutcz lować taą potrzbę.. Podstawy tortycz dowyarowy lt wlopolowy ocpca podstawow założa tody ltów wlopolowych zostaą zaprztowa oraz zwryfowa a przyładz ltu prętowgo. Dla porówaa stadardow wyprowadz acrzy sztywośc podyczgo ltu dowyarowgo oża zalźć w pracy Łodygows ąol (99). Ilustracę ocpc ltów wlopolowych w odsu do ltów dowyarowych staow rysu, a tóry poazao pręt o węzłach - sładaący sę z trzch pól sładowych,,. Wyzacz acrzy sztywośc ltu sończogo wyou sę poprzz całowa w podprzdzałach (podobszarach), a astęp suowa częścowych acrzy sztywośc z ażdgo podobszaru, co wyrażo st wzor:... 4 ξ ξ ξ... () Stadardowo przyu sę, ż fuc ształtu ulgaą za, czyl pozostaą low (rys. a). Jst to da uzasado tylo przy ałych różcach sztywośc w poszczgólych podobszarach ltu sończogo, gdyż wpływ zay pola przszczń a rozwąza st wl. Przy dużych różcach atoast ta podśc prowadz do dużych błędów oblczowych odyfaca pola przszczń odształcń wwątrz ltu sończogo st zbęda (Macwcz, ). Modyfacę pola przszczń wdług ocpc ltów wlopolowych przprowadza sę poprzz zastosowa tzw. fuc łaa, orślo przz paratry, +,, rozua ao wartośc fuc ształtu N a gracach poszczgólych pól sładowych ltu wlopolowgo (rys. b). Macrz sztywośc prętowgo ltu wlopolowgo st wyzaczaa w aw postac, co zwęsza ftywość oblczową w stosuu do całowaa uryczgo. Wyraż () lustru fat, ż acrz ltu wlopolowgo st suą acrzy sładowych. Optyaly rozwąza st węc wyzacz acrzy sztywośc podobszaru w postac sparatryzowa, ożlw do powtórza zastosowaa w wszystch podobszarach ltu. Uzysu sę to poprzz przyęc ogólych grac całowaa w postac od ξ do ξ + oraz wartośc fuc ształtu a początu ońcu podobszaru, odpowdo + (rys. b). Macrz sztywośc podyczgo pola sładowgo (podobszaru) wyzaczaa st z astępuącgo rówaa: T B D B dv V () a) Rozwąza stadardow b) Jdowyarowy lt wlopolowy gdz: D st acrzą atrałową podobszaru, D = [E ], a B st acrzą odształcń podobszaru, = x, =+ = x, =+ l l l l l l N + + N + + N + N + Rys.. Elt prętowy o zych paratrach sztywoścowo-gotryczych 6

3 B N ( ( d N d, N ), ) ( ( ) ) gdz: st acrzą opratorów różczowych, a N st acrzą fuc ształtu wyrażoą w uogóloych współrzędych bzwyarowych ξ, N N, N,, x, N Po podstawu wyoau przształcń, z rówaa () st uzyswaa acrz sztywośc podyczgo pola sładowgo (podobszaru). Ostatcza postać acrzy sztywośc podyczgo pola sładowgo wyzaczoa dla ξ <-,> zapsaa z użyc paratrów: ξ, ξ +, + st astępuąca:,,, EA ( ) EA ( EA ( ) EA ( ) ), () (4) ( ) ( ), ( ) (5) ( ) gdz: A st pol przrou poprzczgo podobszaru, a st długoścą całgo ltu. Wartośc współczyów łaaych fuc ształtu, (rys. b) dopasowuących rozład pola odształcń wwątrz ltu wlopolowgo do za sztywośc, wyprowadzoo przy założu, ż podobszary tworzą uład szrgowo połączoych spręży (rys. ) o sztywoścach, =,,, ( st lczbą pól sładowych). = = = = =4 + = = Rys.. Gotrycza trprtaca wyzaczaa wartośc łaa l fuc ształtu Wartośc współczyów łaaych fuc ształtu, wyzacza sę wdług astępuącgo wzoru: (6) Tadusz CHYŻY, Moa MACIEWICZ gdz st sztywoścą wypadową całgo zspołu spręży opsaą wzor: E A l gdz st sztywoścą wypadową częśc uładu spręży do putu, w tóry oblczaa st wartość ; wartość wyzaczaa st z wzoru: E A l. Wy aalzy przyładowych zastosowań wlopolowych ltów sończoych. Pręt rozcągay z cztra obszara o zróżcowa sztywośc W przyładz oblczowy wyzaczoo przszcz rozcągago fragtu ostruc zaprztowago a rysuu 4. Przprowadzoo oblcza bz odyfac pola przszczń (low fuc ształtu) oraz z zastosowa łaaych fuc ształtu. Jao rozwąza oczwa (rfrcy) przyęto wy z oblczń MES przprowadzoych przy stadardowy podzal rozcągago fragtu ostruc a 4 oddzl lty sończo o stałych sztywoścach E A. P= N = E A E A E A,,5, Nur pola sładowgo 4 = 4 E 4 A 4, 4 5 = 5 = (7) (8) P= N Rys. 4. Rozcągay podyczy lt sończoy o z sztywośc Do oblczń przyęto, ż oduł Youga st stały w wszystch podobszarach wyos E = GPa = N/c. Pol przrou poprzczgo ltu st z w poszczgólych podobszarach wyos odpowdo: A = c, A = 5 c, A = 8 c A 4 = 4 c. Długośc podobszarów wdług rysuu 4. Wartośc współczyów łaaych fuc ształtu ( do 4) wyzaczoo wdług wzorów (6), (7) (8). W awasach podao wartośc fuc ształtu przy rozładz lowy. 7

4 =, począt fuc ształtu, 4, 8 (bz odyfac 75 5, 5 (bz odyfac 6 4, 5 (bz odyfac =, oc fuc ształtu, gdz: Cvl ad Evrotal Egrg / Budowctwo Iżyra Środowsa 7 (6) ), ), 4 ), 4 4 N c c c N c 5c N c 8c 5c c N c 4c c N c 75 N c 4 4 N c 5c N c 8c N c 4c 5c c c 6 N c 4 4 N c 8c N c 4c c c 4 N c N c 4c c Tab.. Wartośc paratrów dla poszczgólych pól sładowych 4 E = N/c E = N/c E = N/c E = N/c A = c A = 5 c A = 8 c A4 = 4 c ξ =, ξ = 5/ ξ = +/ ξ4 = +9/ ξ = 5/ ξ = +/ ξ4 = +9/ ξ5 = +. Wartośc fuc ształtu z odyfacą pola odształcń łaa fuc ształtu =, = 4/5 = / 4 = /4 = 4/5 = / 4 = /4 5 =, Wartośc fuc ształtu bz odyfac pola odształcń low fuc ształtu =, = 9/ = 6/ 4 = / = 9/ = 6/ 4 = / 5 =, Tab.. Porówa wartośc przszczń rozcągago ltu poazago a rysuu 4 Mtoda rozwązaa Wartość przszcza [c] czba zastosowaych ltów Rozwąza doład MES, 4 Elty wlopolow z odyfacą pola odształcń, Elty wlopolow bz odyfac pola odształcń,9649 8

5 Tadusz CHYŻY, Moa MACIEWICZ Wartośc przyętych założń wyzaczo wartośc współczyów dla poszczgólych pól sładowych zstawoo w tabl. Natoast w tabl zaprztowao otrzya wy przszczń dla rozcągago fragtu ostruc.. Oblcz wartośc osadaa uwarstwogo podłoża grutowgo Mtoda dowyarowych spcalych ltów sończoych została zapltowaa w oblczach osadaa podłoża grutowgo (Chyży Macwcz, a, b). Dotyczy to przd wszyst oblczń zwązaych z podłoż uwarstwoy, gdz poszczgól warstwy różą sę od sb ąższoścą sztywoścą. Jdy z przyładów oż być aalza podłoża warstwowgo zalgaącgo pod budy, dla tórgo oblczoo wartośc osadań. Przyęto do oblczń ławę fudatową o wyarach,6,5, oraz opartą a ścaę żlbtową o wyarach 9,6 4,5 (rys. 5). Wartość obcąża q staow obcąż stropów poszczgólych odygac, z uwzględ cężaru własgo ścay ławy fudatow. Pas droby Grut orgaczy Żwr E = 7Pa E = Pa E = Pa, 9,6, Rys. 5. Modl oblczowy osadaa grutu 4,,5,,,, W warac I oblczń przyęto odl podłoża sprężystgo wdług hpotzy Wlra (Włu, 5) w odsu do podłoża warstwowgo. Założoo, ż osada podłoża s st proporcoal do dzałaącgo obcąża q, wdług zalżośc: q s (9) z gdz: q st obcąż, a z współczy podatośc. Wartość współczya podatośc z grutu dorodgo do głęboośc z wyzaczaa st wdług wzoru: E B z () Współczy z w przypadu podłoża warstwowgo st suą współczyów podatośc poszczgólych warstw grutu z. W odsu do podycz warstwy współczy t wyzacza sę z zalżośc: E z B ;. () gdz: E st oduł odształca grutu, E st oduł odształca poszczgólych warstw grutu, B st szrooścą obcążogo obszaru, ν st współczy bocz rozszrzalośc grutu, a Δω (ω ) st współczy wpływu, zalży od ształtu obcążogo obszaru (fudatu), dobray z tablc oograów (Włu, 5). Wyzaczoa wartość osadaa podłoża uwarstwogo pod ławą fudatową st suą osadań wszystch warstw: q Δω B ν s E s s 89,9 N, 86, 7 Pa q B E 89,9 N,7, Pa q B E 89,9 N,59, Pa,,5,,94, 4,76 osada s = s + s + s =,44 = 4,4. W warac II atoast wyoao oblcza z zastosowa opracowaych dowyarowych wlopolowych ltów sończoych wyorzystaych w autors syst aalzy ostruc ORCAN ( (Chyży., 4). Aby wyzaczyć wartość osadaa alży zastosować zastępczy oduł sprężystośc E z poszczgólych warstw dostosoway do odlu Wlra wdług wzoru: Eh E z B ;. () gdz: h st gruboścą (ąższoścą) poszczgólych warstw, zaś pozostał ozacza a w wzorach () 9

6 Cvl ad Evrotal Egrg / Budowctwo Iżyra Środowsa 7 (6) 5-4 (). Oblczo wartośc zastępczgo odułu sprężystośc oraz suarycza wartość osadaa są astępuąc: E z E h B 7 Pa,86, E h E z B Pa,7, E h E z B Pa,59, 7889,88 Pa 9565,5 Pa 886,7Pa osada s =,44 = 4,4. 4. Podsuowa Na podstaw uzysaych wyów oża stwrdzć, ż zastosowa spcalych dowyarowych ltów sończoych w oblczach uładów ostrucyych o zych paratrach sztywoścowo-gotryczych pozwala uzysać wy, tór są zgod z rozwąza oczway. W prwszy przdstawoy przyładz ao rozwąza oczwa przyęto rozwąza wdług stadardowgo podzału MES a 4 oddzl lty o róż sztywośc. Wy zaprztowa w tabl potwrdzaą fat, ż stosowa ltów całowaych w podobszarach bz odyfac pola odształcń wwątrz ltu prowadz do błędych wyów. Natoast dopasowa pola odształcń poprzz zastosowa łaaych fuc ształtu uożlwa uzysa rozwązaa oczwago przy doczsy zastosowau sz lczby ltów sończoych. W drug przyładz ao rozwąza oczwa przyęto wy osadaa oblczo wdług odlu Wlra. Uzysaa wartość osadaa podłoża grutowgo z zastosowa dowyarowych ltów wlopolowych st z zgoda. Modl Wlra został uzay ao abardz zblżoy do dowyarowgo ltu wlopolowgo, staowącgo sprężyę o soowo z sztywośc dopasowuący sę polu odształcń wwątrz tgo ltu. Oca przydatośc pratycz odlu Wlra oraz ogracza go stosowaa były przdot tgo artyułu. Zaprztowa wy osadaa podłoża warstwowgo potwrdzaą ożlwość wyzaczaa wartośc osadaa podłoża grutowgo z zastosowa dowyarowych ltów wlopolowych. tratura Bath.J. (996). Ft Elt Procdurs. Prtc Hall, Eglwood Clffs, Nw Jor. Chyży T., Macwcz M. (a). ow lty sończo o z sztywośc w odlowau podłoża grutowgo pod budy. Budowctwo Iżyra Środowsa, Vol. 4, r, 7-. Chyży T., Macwcz M. (b). Mthod of bat odlg usg o-dsoal layrd ft lts. W: Buldg Structurs Thory ad Practc, Bała Podlasa, Chyży T., Macwcz M., Matulwcz S. (4). Podręcz Użytowa Systu ORCAN. Nowoczsy Grafczy Języ Opsu ostruc Budowlaych ORCAN v. 9. Słada Zastosowaa. Ofcya Wydawcza Poltch Bałostoc, Bałysto. Łodygows T., ąol W. (99). Mtoda Eltów Sończoych w Wybraych Zagadach Mcha ostruc Iżyrsch. Wydawctwo Poltch Pozańs, Pozań. Macwcz M. (). ocpca lowych ltów sończoych do aalzy ostruc o dużych zaach gotryczo-sztywoścowych. W: Badaa Dośwadczal Tortycz w Budowctw: Prac Nauow Dotoratów, Glwc, 7-8. Włu Z. (5). Zarys Gotch. Wydawctwa ouac Łączośc, Warszawa. Zwcz O.C., Taylor R.., Zhu J.Z. (5). Th Ft Elt Mthod: ts Bass ad Fudatals. Elsvr, Buttrworth-Ha, Astrda. CONCEPTION AND APPICATION OF SPECIA ONE- DIMENSIONA FINITE EEMENTS Abstract: Th cocpto of spcal ft lts for aalyss of structurs wth varabl stffss aras s prstd th papr. Th lts ar calld as a ult-ara lts ad thr pltato for of spl o-dsoal lts s prstd. Th applcato of ths spcal lts hlps to rduc th ubr of ft lts (uows) ad thrby to rduc th coputatoal calculato t, copard wth stadard FEM soluto. Th cocpto s basd o th assupto that ara of th structur wth dffrt stffss ad gotrcal paratrs dscrbd by a sgl lt. Th stffss atrx for ult-ara lt s dtrd xplct for by th suato of th stffss atrcs of copot sub-aras cludd th ft lt. Thrfor th ara of th ft lt s dvdd to rctagular sub-aras wth varous gotrc ad stffss paratrs. I ordr to cofr th accuracy of th prstd cocpto assuptos, coparatv aalyss was ad ad pottal ara of applcato for o-dsoal spcal lts wr dcatd. Badaa zostały zralzowa w raach pracy ur MB/WBIŚ/6/4 sfasowa z środów a auę MNSW. 4

KONCEPCJA ELEMENTÓW SKOŃCZONYCH W OBLICZENIACH KONSTRUKCJI O DUŻYCH ZMIANACH SZTYWNOŚCI

KONCEPCJA ELEMENTÓW SKOŃCZONYCH W OBLICZENIACH KONSTRUKCJI O DUŻYCH ZMIANACH SZTYWNOŚCI KOCECJA EEMETÓW SKOŃCZOYCH W OBICZEIACH KOSTRUKCJI O DUŻYCH ZMIAACH SZTYWOŚCI Tadusz CHYŻY, Moa MACKIEWICZ Wydzał Budowctwa Iżyr Środowsa, otcha Bałostoca, u. Wsa 45 A, 5-35 Bałysto Strszcz: W rfrac zaprztowao

Bardziej szczegółowo

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych ora Sygałów III ro Ioray Sosowaj Wyła Rozważy sończoy sygał () spróboway z częsolwoścą : Aalza częsolwoścowa ysrych sygałów cyrowych p óra js wa razy węsza o częsolwośc asyalj a. Oblczy jgo rasorację Fourra.

Bardziej szczegółowo

L.Kowalski Systemy obsługi SMO

L.Kowalski Systemy obsługi SMO SMO Systy asow obsługi zastosowai procsu urodzń i śirci - przyłady: - ctrala tlfoicza, - staca bzyowa, - asa biltowa, - syst iforatyczy. Założia: - liczba staowis obsługi, - liczba isc w poczali. - struiń

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

WZORY: V ZK N. V asp. Zad.1 Metodami graficznymi przeprowadź analizę kompleksową rozkładu: x

WZORY: V ZK N. V asp. Zad.1 Metodami graficznymi przeprowadź analizę kompleksową rozkładu: x I IMIĘ I AZWISKO R IDEKSU D D D D ( D D ( ) h ) Q Q3 Q ( ) Var 00% M Za. Mtoa grafczy przprowaź aalzę oplsową rozłau: 3-8 45 8-5 45 5-30 49 30-35 59 35-4 45 4-50 5 348 Za. Dz wartośc sprzaży pzzy w pwy

Bardziej szczegółowo

Testy oparte na ilorazie wiarygodności

Testy oparte na ilorazie wiarygodności Ts opar a loraz wargodośc Probl sowaa hpoz Nch B P=P będz przsrzą sasczą prz cz = =. Probl. Na podsaw prób wu spru zwrfować hpozę wobc alraw. Rozwąza powższgo problu s fuca [] zwaa s sascz zradozowa lub

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY SKOKOWE

PODSTAWOWE ROZKŁADY SKOKOWE ODSTAWOWE ROZKŁADY SKOKOWE Rozatruy dowyarow rozłady soow. rzyo. Za losowa a rozład soowy dysrty gdy a sończoy lub rzlczaly zbór wartośc. Rozłady soow aczęśc orślay rzz oda fuc rawdoodobństwa. arostsza

Bardziej szczegółowo

Ćwiczenia 11_12 KLASYCZNY MODEL REGRESJI LINIOWEJ

Ćwiczenia 11_12 KLASYCZNY MODEL REGRESJI LINIOWEJ Ćwcza _ KLACZN MOL RGRJI LINIOWJ Zada. W tabl przdstawoo wysokość stawk clj X oraz udzał w ryku a pw towar mportoway spoza U. 5 5 0 0 8 0 y 5 6 3 7 0 Nalży w oparcu o poda formacj: a. Zapsać rówa fukcj

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

ZASTOSOWANIE ZMODYFIKOWANEGO ROZMYTEGO FILTRU KALMANA W STEROWANIU ADAPTACYJNYM UKŁADU DWUMASOWEGO

ZASTOSOWANIE ZMODYFIKOWANEGO ROZMYTEGO FILTRU KALMANA W STEROWANIU ADAPTACYJNYM UKŁADU DWUMASOWEGO POZNAN UNIVE RSIY OF E CHNOLOGY ACADE MIC JOURNALS No 84 Elctrcal Egrg 05 Krzysztof DRÓŻDŻ* ZASOSOWANIE ZMODYFIKOWANEGO ROZMYEGO FILRU KALMANA W SEROWANIU ADAPACYJNYM UKŁADU DWUMASOWEGO W pracy przdstawoo

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; }

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; } Idea: Wyzaczamy ameszy elemet w cągu tablcy zameamy go mescam z elemetem perwszym, astępe z pozostałego cągu wyberamy elemet ameszy ustawamy go a druge mesce tablcy zmeamy, td. Realzaca w C++ vod seleca

Bardziej szczegółowo

CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (c.d.) MIARY ZMIENNOŚCI

CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (c.d.) MIARY ZMIENNOŚCI D. zczyńa,.zczyń, atrały do wyładu 3 z Statyty, 009/0 [] CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (c.d.). mary połoŝa - wyład. mary zmośc (dyprj, rozproza) 3. mary aymtr (ośośc) 4. mary octracj IARY

Bardziej szczegółowo

LINIOWE ELEMENTY SKOŃCZONE O ZMIENNEJ SZTYWNOŚCI W MODELOWANIU PODŁOŻA GRUNTOWEGO POD BUDYNKIEM

LINIOWE ELEMENTY SKOŃCZONE O ZMIENNEJ SZTYWNOŚCI W MODELOWANIU PODŁOŻA GRUNTOWEGO POD BUDYNKIEM LINIOW LMNTY SKOŃCZON O ZMINNJ SZTYWNOŚCI W MODLOWANIU PODŁOŻA GRUNTOWGO POD BUDYNKIM Tadeusz CHYŻY, Monia MACKIWICZ Wydział Budownictwa i Inżynierii Środowisa, Politechnia Białostoca, ul. Wiejsa 45 A,

Bardziej szczegółowo

1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy

1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy .7 Zagadnna zczgółow zwązan z równan ruchu.7. ont bzwładnośc ont zaachowy Równan równowag ł dzałających na lnt ay d poazany na ry..8 będz ało potać: df a tąd lntarny ont dynaczny: d d ϑ d r * d d ϑ r d

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA

SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA Załączk r do Regulamu I kokursu GIS PROGRAM PRIORYTETOWY: SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA. Cel opracowaa Celem opracowaa jest spója metodyka oblczaa efektu ograczaa emsj gazów ceplaraych,

Bardziej szczegółowo

16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H

16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H Zada Zakładając, ż zm losow,,, 6 są zalż mają rozkłady ormal ~ N( m, ),,, 6, zbudowao tst jdostaj ajmocjszy dla wryfkacj hpotzy H 0 : m 0 przy altratyw H : m 0 a pozom stotośc 0,05 W rzczywstośc okazało

Bardziej szczegółowo

Hipotezy ortogonalne

Hipotezy ortogonalne Sttytyk Wykłd d Ćl -4 cl@gh.du.pl Hpotzy otogol ozwży odl lowy: Xϕ gdz X jt wkto obwcj ϕ Ω jt wkto śdch (wtośc oczkwych) o któy wdoo lży w pwj włścwj podpztz lowj Ω pztz tz. Ω d(ω)< jt loowy wkto błędów

Bardziej szczegółowo

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i ZAJĘCIA NR Dzsaj omówmy o etro, redudacj, średej długośc słowa odowego o algorytme Huffmaa zajdowaa odu otymalego (od ewym względam; aby dowedzeć sę jam doczeaj do ońca). etro JeŜel źródło moŝe adawać

Bardziej szczegółowo

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego Kyongju, Kora, April 999 W-4 (Jaroszwicz) slajdy Na podstawi przntacji prof. J. Rutowsigo Fizya wantowa 3 Cząsta w studni potncjału sończona studnia potncjału barira potncjału barira potncjału o sończonj

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera)

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera) Wyład 4 Blas rówań teor srężystośc Dooamy zestawea wszystch rówań teor srężystośc Gra rówań. Różczowe rówaa rówowag (war Navera Lczba rówań Lczba ewadomych X 6 (. Zwąz geometrycze (rówaa Cachy ego ( 6

Bardziej szczegółowo

VI. MATEMATYCZNE PODSTAWY MES

VI. MATEMATYCZNE PODSTAWY MES Kurs na Studac Dotorancc Poltcn Wrocławsj (wrsja: luty 007) 40 I. MATEMATYCZE PODSTAWY MES. Problm abstracyjny Rozwązujmy problm lptyczny np. przstrznn zagadnn tor sprężystośc. Poszuujmy rozwązana u( nmatyczn

Bardziej szczegółowo

Projekt 3 Analiza masowa

Projekt 3 Analiza masowa Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga

Bardziej szczegółowo

WYZNACZANIE STAŁ YCH MATERIAŁ OWYCH DREWNA METODĄ HOMOGENIZACJI

WYZNACZANIE STAŁ YCH MATERIAŁ OWYCH DREWNA METODĄ HOMOGENIZACJI ZSZYTY NOW DMII MRYNRI WOJNNJ RO XLVII NR Lsł aw zoł adma Marar Wojj WYZNZNI STŁ YH MTRIŁ OWYH DRWN MTODĄ HOMOGNIZJI STRSZZNI Podao mtodę, za pomocą tórj możlw jst dduowa z opsu mrosopowgo odpowadającgo

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

Zmęczenie Materiałów pod Kontrolą

Zmęczenie Materiałów pod Kontrolą Zmęczi Matriałów pod Kotrolą Wyład Nr 6 ANALIZA SPRĘŻYSTO PLASTYCZNYCH STANÓW NAPRĘŻŃ i ODKSZTAŁCŃ Wydział Iżyirii Mcaiczj i Robotyi Katdra Wytrzymałości, Zmęczia Matriałów i Kostrucji ttp://zwmi.imir.ag.du.pl

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Statystyka Wykład 9 Adam Ćmiel A3-A4 311a

Statystyka Wykład 9 Adam Ćmiel A3-A4 311a st hpotzy owj opaty a oaz waygodośc ozważay popzdo pob tstowaa hpotzy o ówośc watośc oczwaych w popuacjach o ozładach N =... jst szczgóy pzypad pwgo ogójszgo pobu tstowaa: od: =+ gdz jst wto obswacj Uwaga:

Bardziej szczegółowo

Przyjmijmy, że moment obciążenia jest równy zeru, otrzymamy:

Przyjmijmy, że moment obciążenia jest równy zeru, otrzymamy: aszyy prąy sałgo yaka Dla aszyy prą sałgo, ykorzysyaj jako l aoayk, yzaczy ybra rasacj. Sygał jścoy oż być p. apęc orka (la aszyy obcozbj) a sygał yjścoy prękość obrooa. óa Krchhoffa la obo orka oży apsać

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze

Bardziej szczegółowo

Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak

Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak Mtod numrczn Wład nr 6 Różnczowan dr ab. Potr Froncza Różnczowan numrczn Wzor różnczowana numrczngo znajdują zastosowan wtd, gd trzba wznaczć pocodn odpowdngo rzędu uncj, tóra orślona jst tablcą lub ma

Bardziej szczegółowo

Podstawy matematyki finansowej i ubezpieczeniowej

Podstawy matematyki finansowej i ubezpieczeniowej Podstawy matematy fasowej ubezpeczeowej oreślea, wzory, przyłady, zadaa z rozwązaam KIELCE 2 SPIS TREŚCI WSTEP... 7 STOPA ZWROTU...... 9 2 RACHUNEK CZASU W MATEMATYCE FINANSOWEJ. 0 2. DOKŁADNA LICZBA DNI

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

ROZDZIAŁ I. WPROWADZENIE DO METODY ELEMENTÓW SKOŃCZONYCH

ROZDZIAŁ I. WPROWADZENIE DO METODY ELEMENTÓW SKOŃCZONYCH ROZDZIAŁ I. WPROWADZENIE DO MEODY ELEMENÓW SKOŃCZONYCH W rozdzal tym omówmy podstawow kocpcj algorytm mtody lmtów skończoych. Podamy tż zbęd formacj dotycząc mchak cała stałgo. Jak jż psalśmy w wstęp zakładamy,

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

T G Y ODNIK I PILSKI WTOREK PREZENTACJE 21 WTOREK PREZENTACJE 2 WAK W AC A J C E J Z REMON MO TE T M

T G Y ODNIK I PILSKI WTOREK PREZENTACJE 21 WTOREK PREZENTACJE 2 WAK W AC A J C E J Z REMON MO TE T M P R E Z E N T A C J E 1 9 2 0 P R E Z E N T A C J E T y g o d n i k r a d z i S p r a w d z o n y p r z e z d i a g n o s t ę s t a n s a m o c h o d u j e s t r ó w n i e w a n y, j a k d o b r a k o

Bardziej szczegółowo

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1 1.4. Srawdzn moŝlwośc kondnsacj ary wodnj wwnątrz ścany zwnętrznj dla orawngo oraz dla odwrócongo układu warstw. Oblczn zawlgocna wysychana wlgoc. Srawdzn wykonujmy na odstaw skrytu Matrały do ćwczń z

Bardziej szczegółowo

INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY. Zakład Teletransmisji i Technik Optycznych (Z-14)

INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY. Zakład Teletransmisji i Technik Optycznych (Z-14) INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY Załad Teletrasmsj Tech Optyczych (Z-4) Aalza badaa efetów zachodzących w śwatłowodowym medum trasmsyjym degradujących jaość trasmsj w systemach DWDM o dużej

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

IV. WPROWADZENIE DO MES

IV. WPROWADZENIE DO MES Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g

Bardziej szczegółowo

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

σ r z wektorem n r wynika

σ r z wektorem n r wynika Wyład Napęża głów Pozuamy płazczyzy dowol achylo do o uładu wpółzędych o t właośc by wto apęża a t płazczyź był wpółoowy z wtom wtom tóy otu tę płazczyzę w pztz (wtom do omalym). a) pzypad ogóly b) płazczyza

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

LABORATORIUM DYNAMIKI MASZYN

LABORATORIUM DYNAMIKI MASZYN LABORATORIUM DYNAMII MASZYN Ćwcz 5 IDENTYFIACJA OBIETU DYNAMICZNEO NA PODSTAWIE JEO LOARYTMICZNYCH CHARATERYSTY CZĘSTOTLIWOŚCIOWYCH. Cl ćwcz Orśl rów ruchu obtu dyczgo podtw go logrytczych chrtryty czętotlwoścowych,

Bardziej szczegółowo

Schematy zastępcze tranzystorów

Schematy zastępcze tranzystorów haty zastępz tanzystoów kst tn pztawa kótko zasady spoządzana odl zastępzyh dla tanzystoów bpolanyh oaz unpolanyh Nalży paętać, ż są to odl ałosynałow, a wę słuszn tylko wyłązn pzy założnu, ż dany lnt

Bardziej szczegółowo

WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP

WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP KATARZYNA BŁASZCZYK BOGDAN RUSZCZAK Poltecha Opolsa WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP Wstęp Esploraca daych (ag. data g) zaue sę efetywy zadowae ezaych dotychczas

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

Układy liniowosprężyste Clapeyrona

Układy liniowosprężyste Clapeyrona Układy liiowosprężyste Clapeyroa Liiowosprężysty układ Clapeyroa zbiór połączoych ze sobą ciał odkształcalych, w których przemieszczeia są liiowymi fukcjami sił Układ rzeczywisty może być traktoway jako

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Niech Φ oznacza funkcję zmiennej x zależną od n + 1 parametrów a 0, a 1, K, a n, tj.

Niech Φ oznacza funkcję zmiennej x zależną od n + 1 parametrów a 0, a 1, K, a n, tj. III. INTERPOLACJA 3.. Ogóe zadae terpoac Nech Φ ozacza fucę zmee x zaeżą od + parametrów a 0, a, K, a, t. Defca 3.. Zadae terpoac poega a oreśeu parametrów a ta, żeby da + da- ych par ( x, f ( x ( 0,,...,

Bardziej szczegółowo

teorii optymalizacji

teorii optymalizacji Poltechka Gdańska Wydzał Oceaotechk Okrętowctwa St. II stop. se. I Podstawy teor optyalzac wykład 7 M. H. Ghae Ma 5 Podstawy teor optyalzac Oceaotechka II stop. se. I 5 Podstawy teor optyalzac Oceaotechka

Bardziej szczegółowo

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó ż Ó ż ó ą ą Ą ś ą ż ó ó ż ę Ć ż ż ż Ó ó ó ó ę ż ę Ó ż ę ż Ó Ę Ó ó Óś Ś ść ę ć Ś ę ąć śó ą ę ęż ó ó ż Ś ż

ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó ż Ó ż ó ą ą Ą ś ą ż ó ó ż ę Ć ż ż ż Ó ó ó ó ę ż ę Ó ż ę ż Ó Ę Ó ó Óś Ś ść ę ć Ś ę ąć śó ą ę ęż ó ó ż Ś ż Ó śó ą ę Ę śćś ść ę ą ś ó ą ó Ł Ó ż Ś ą ś Ó ą ć ó ż ść śó ą Óść ó ż ż ą Ś Ś ż Ó ą Ó ą Ć Ś ż ó ż ę ąś ó ć Ś Ó ó ś ś ś ó Ó ś Ź ż ą ó ą żą śó Ś Ó Ś ó Ś Ś ąś Ó ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó

Bardziej szczegółowo

SPOŁECZNA AKDAEMIA NAUK W ŁODZI

SPOŁECZNA AKDAEMIA NAUK W ŁODZI SPOŁECZNA AKDAEMIA NAUK W ŁODZI KIERUNEK STUDIÓW: ZARZĄDZANIE PRZEDMIOT: METODY ILOŚCIOWE W ZARZĄDZANIU (MATERIAŁ POMOCNICZY PRZEDMIOT PODSTAWOWY ) Łódź Sps treśc Moduł Wprowadzee do metod loścowych w

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

ROZKŁAD OBJĘTOŚCI SUMARYCZNEJ W SYSTEMIE M/M/n/m

ROZKŁAD OBJĘTOŚCI SUMARYCZNEJ W SYSTEMIE M/M/n/m ROZKŁAD OBJĘTOŚC SUMARYCZNEJ W SYSTEME M/M// Wtę Wy ż badzo zadko oży uzykać wzoy aw a dytybuatę obętośc uaycz zgłozń zaduących ę w tacoay yt obług chocaż w otatch latach udało ę coś zobć w ty kuku Chodz

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

ó ó ć Ż Ł Ą Ż ó ż ć Ż ó Ą ó ó Ą ć ó ó Ł Ł ó ć ó ż ć ż Śó ó ó ó ć ó ż ć Ą ż ĘĄ ó Ś Ż óź Ż ć ó Ż Ż Ż ć ń Ą ó Ą ż ó Ż ó Ł ó ó Ż ó ó ó ź Ś ó Ą ć Ś ó ó ż ó ż Ł ńę ó ń ó ń ż ć ó Ż Ż ż ć Ż ć ć ć ż ó ń óź ó ć

Bardziej szczegółowo

Wykład 6. Klasyczny model regresji liniowej

Wykład 6. Klasyczny model regresji liniowej Wkład 6 Klacz modl rgrj lowj Rgrja I rodzaju pokazuj jak zmają ę warukow wartośc oczkwa zmj zalżj w zalżośc od wartośc zmj zalżj. E X m Obraz gomtrcz tj fukcj to krzwa rgrj I rodzaju czl zbór puktów płazczz,

Bardziej szczegółowo

Ł Ą ż ż Ę ż Ó Ł ź ż ż Ś ż Ę Ę Ś Ą ć ż Ź Ś Ę Ś ĄÓ Ę Ź ż Ń ć ć ć ć ż ć ć Ę Ś ż ż ć ć ć Ę ć ż Ć Ś ć ć Ś ć ć ż ż ż Ź Ś ż ć ć ć ć ć ć Ś ć Ę ż Ę ć Ó ć ć ć ć Ę ć ć ć Ę Ś ż ć Ę Ź ć Ę Ć Ź ż ż Ś Ę ź ć Ź ż ć Ą ć

Bardziej szczegółowo

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

, , , , 0

, , , , 0 S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę

Bardziej szczegółowo

Weryfikacja modelu. ( ) Założenia Gaussa-Markowa. Związek pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi ma charakter liniowy

Weryfikacja modelu. ( ) Założenia Gaussa-Markowa. Związek pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi ma charakter liniowy Wryfkacja modlu. Założa Gaussa-Markowa Zwązk pomędzy zmą objaśaą a zmym objaśającym ma charaktr lowy x, x,, K x k Wartośc zmych objaśających są ustalo ( są losow ε. Składk losow dla poszczgólych wartośc

Bardziej szczegółowo

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1. MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz

Bardziej szczegółowo

LABORATORIUM SYMSE Układy liniowe

LABORATORIUM SYMSE Układy liniowe Tomasz Czarck, Warszawa, 2017 LABORATORIUM SYMSE Układy low Dyskrt systmy low, zm względm przsuęca Wśród systmów prztwarzaa sygałów ważą rolę odgrywają systmy low, zm względm przsuęca. Dcyduj o tym ch

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 26 listopada 2015

Lista 6. Kamil Matuszewski 26 listopada 2015 Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMINIE NA STUDIACH LICENCJACKICH

STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMINIE NA STUDIACH LICENCJACKICH STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMNE NA STUDACH LCENCJACKCH Oacoa zgooa zz d Maę Wczo a oda:. P. Kuz, J. Podgó: Saa. Wzo ablc. SGH, Wazaa, 8. M. Wczo: Saa. Lubę o! Zbó zadań. SGH, Wazaa 6 .

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Aradusz Atcza Poltecha Pozańsa Wydzał Budowy Maszy Zarządzaa N u m e r y c z e w e r y f o w a e r o z w ą - z a e r ó w a a r u c h u o j e d y m s t o p u s w o b o d y Autor: Aradusz Atcza Promotor:

Bardziej szczegółowo

DZIA INFORMATYCZNEGO DO PROGNOZOWANIA ZASI

DZIA INFORMATYCZNEGO DO PROGNOZOWANIA ZASI Załad Kopatyblnośc Eltroagntycznj ul. Sojczyca 38 5-50 Wrocła T:[7] 36 99 803 F:[7] 37 8 8788.tl.a.pl srtarat@l.roc.pl Załad Systó Radoych ul. Szachoa 04-894 Warszaa T:[] 5 8 358 F:[] 5 8 80.tl.a.pl z@l.roc.pl

Bardziej szczegółowo

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem

Bardziej szczegółowo

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.

Bardziej szczegółowo