Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak"

Transkrypt

1 Mtod numrczn Wład nr 6 Różnczowan dr ab. Potr Froncza

2 Różnczowan numrczn Wzor różnczowana numrczngo znajdują zastosowan wtd, gd trzba wznaczć pocodn odpowdngo rzędu uncj, tóra orślona jst tablcą lub ma somplowaną postać analtczną. wa podstawow sposob różnczowana numrczngo:. Mtoda różnc sończonc mtoda polgająca na przblżnu pocodnj uncj poprzz sończon różnc, w zdsrtzowanj przstrzn. Można ją wprowadzć wprost z lorazu różncowgo, bądź z rozwnęca w szrg Talora.. Różnczowan uncj aprosmującj aprosmujm punt wrażnm, tór moż bć łatwo różnczowaln, np. wlomanm, uncją władnczą, tp.

3 Różnczowan numrczn Wzor różnczowana numrczngo znajdują zastosowan wtd, gd trzba wznaczć pocodn odpowdngo rzędu uncj, tóra orślona jst tablcą lub ma somplowaną postać analtczną. wa podstawow sposob różnczowana numrczngo:. Mtoda różnc sończonc mtoda polgająca na przblżnu pocodnj uncj poprzz sończon różnc, w zdsrtzowanj przstrzn. Można ją wprowadzć wprost z lorazu różncowgo, bądź z rozwnęca w szrg Talora.. Różnczowan uncj aprosmującj aprosmujm punt wrażnm, tór moż bć łatwo różnczowaln, np. wlomanm, uncją władnczą, tp. W przpadu sln zaszumonc danc różnczowan mtodą różnc sończonc moż dać ataln t.

4 Wprowadzn mtod różnc sończonc z wzoru Talora Rozwnęc uncj analtcznj w otocznu puntu w szrg Talora można wrazć w postac!!! Zdnujm oprator różnczowana Zatm!! Zdnujm oprator różnc zwłj, wstcznj : Czl Z porównana zalżnośc uzsujm wzór na równość opratorów

5 Logartmując obustronn otrzmam ln ln Podnosząc obustronn do potęg -tj, uzsam Ponważ ln ln

6 Możm zatm wprowadzć wzor na dowoln pocodn uncj wrażon za pomocą różnc zwłc: = = 5 =

7 Sprawdź, ż 5 '' '' ' '

8 Zróbm to samo za pomocą różnc wstcznc. Zauważm, ż Zatm Wstawając powższ wzór do wzoru ln, otrzmujm Ponważ ln ln ln

9 = = = Możm zatm wprowadzć wzor na dowoln pocodn uncj wrażon za pomocą różnc wstcznc:

10 Różnc cntraln Wprowadzon wczśnj wzor różnczowana numrczngo uncj w punc = mają tę wadę, ż worzstuj sę w nc jdn wartośc uncj dla argumntów lżącc z jdnj stron. Wad tj n posadają wzor worzstując wartośc uncj po prawj po lwj stron puntu =. Są to wzor smtrczn, opart na różncac cntralnc.

11 !!!! Zdnujm oprator różnc cntralnj

12 Zatm sn arcsn arcsn Rozwjając w szrg Talora:

13

14 oprator uśrdnana

15 szacowan błędów! W szczgólnośc:. równ z. równ z. równ z

16 8 8 ' ' ' ' ' ' 6 6 '' '' '' '' Podsumowan wupuntow różnc zwł Trzpuntow różnc zwł wupuntow różnc wstczn Trzpuntow różnc wstczn wupuntow różnc cntraln Cztropuntow różnc cntraln Trzpuntow różnc zwł Trzpuntow różnc wstczn Trzpuntow różnc cntraln Pęcopuntow różnc cntraln Prwsz pocodn rug pocodn

17 Różnczowan za pomocą wlomanów Lagrang a Zapszm wloman przcodząc przz trz punt,, +, +, +, + ' Różnczując Podstawm = + '

18 ' Uwag:. Gd punt są równomrn rozłożon, czl = + - = ' ' Wzór dla różnc cntralnc. Zalta nr : punt n muszą bć równomrn rozłożon. Zalta nr : możm polczć pocodną w dowolnm punc mędz a +.

19 Rozważm uncję = Polczm pocodną w punc = orzstając z dwupuntowc różnc cntralnc. ' oraz gdz ' Podczas oblczń omputr wprowadza błąd zaorąglna R R Wartośc doładn ' R R R R Błąd obcęca Błąd zaorąglna Gd zmnjszam, błąd obcęca malj, al błąd zaorąglna rośn. całowt błąd Błąd w różnczowanu numrcznm

20 Pocodn cząstow Prost rozszrzn mtod dla pocodnc zupłnc jdnowmarowc, j+ -, j+, j+ +, j+ -, j -, j, j +, j +, j -, j-, j- +, j-, j-

21 prator Laplac a j+ j j- + j+ j j = - + j+ j j-

22 Pocodn mszan - + j+ j j- - = - + j+ j j- =

23 Blaplasjan oprator b-armonczn - + j+ j j- - + j- j

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych. MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko

Bardziej szczegółowo

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor

Bardziej szczegółowo

VI. MATEMATYCZNE PODSTAWY MES

VI. MATEMATYCZNE PODSTAWY MES Kurs na Studac Dotorancc Poltcn Wrocławsj (wrsja: luty 007) 40 I. MATEMATYCZE PODSTAWY MES. Problm abstracyjny Rozwązujmy problm lptyczny np. przstrznn zagadnn tor sprężystośc. Poszuujmy rozwązana u( nmatyczn

Bardziej szczegółowo

Metody numeryczne. Wykład nr 2. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 2. dr hab. Piotr Fronczak Metod numerczne Wład nr dr hab. Piotr Froncza Przbliżone rozwiązwanie równań nieliniowch Jedno równanie z jedną niewiadomą Szuam pierwiastów rzeczwistch równania =. zwle jest uncją nieliniową zatem orzstam

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym . Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego

Bardziej szczegółowo

Temat: Wyznaczanie odległości ogniskowej i powiększenia cienkich soczewek.

Temat: Wyznaczanie odległości ogniskowej i powiększenia cienkich soczewek. Ćwiczni Nr 0 Tmat: Wznaczani odlgłości ognikowj i owiękznia cinkich oczwk. I. LITERTUR:. D. Hallida, R. Rnick, Fizka t. II, PWN, Warzawa.. J.R. Mr-rndt. Wtę do otki, PWN, Warzawa 977.. Ćwicznia laboratorjn

Bardziej szczegółowo

Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć

Bardziej szczegółowo

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła

Bardziej szczegółowo

x y x y y 2 1-1

x y x y y 2 1-1 Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ó ć ć ć Ą Ć ć ć Ł Ś Ą Ó Ń Ą ź ź ź Ń ć ć Ł ć Ł Ł Ł Ś Ó Ń ć ć Ł ć Ł ć ć Ś Ł ć Ą Ą ź ź ź ć ć ć Ńć ć Ś Ś Ś Ń Ą ć ć ć ć ć Ń Ą Ł ź ź Ą ź ź ć ć ź ć Ą ć ć ć ź ź ź Ą ź ź ź ź ź ź ć ć ć ć ć ć ć Ą ć ć ź ć ć

Bardziej szczegółowo

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) Transformacja Hilberta. sgn( + = + = + lim.

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) Transformacja Hilberta. sgn( + = + = + lim. Tora Synałów II rok Gozyk III rok Inormatyk Stosowanj Wykład 5 ) sn( d d d F Najprw nzbędny rzltat. Transormacja Forra (w sns rancznym) nkcj sn() F lm π sn Z twrdzna o dalnośc wynka, ż π sn Transormacja

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zaadninia. Matmatczn podtaw mtod odowlanc. Wartość cc ilościow i dfinic paramtrów ntcznc. Mtod zacowania paramtrów ntcznc 4. Wartość odowlana cc ilościow (ocna wartości

Bardziej szczegółowo

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Smlaca Andrze POWNUK Katedra Mecan Teoretczne Wdzał Bdownctwa Poltecna Śląsa w Glwcac MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Streszczene. Wszste parametr ładów mecancznc są znane z

Bardziej szczegółowo

Metoda różnic skończonych i metoda elementów skończonych w zagadnieniach mechaniki konstrukcji i podłoża

Metoda różnic skończonych i metoda elementów skończonych w zagadnieniach mechaniki konstrukcji i podłoża Studa Monogra z. 58 Lanna Sadca Mtoda różnc sończonch mtoda mntó sończonch zagadnnach mchan onstrucj podłoża SPIS TREŚCI Przdmoa. 5. Wstęp 7. Mtoda różnc sończonch..... Wproadzn..... Oprator różnco....

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

ZASTOSOWANIA POCHODNEJ

ZASTOSOWANIA POCHODNEJ ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [ ] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale spełna je także unkcja [ ] Q. Dokłaając warunek cąłośc unkcj [ ]

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Rozpraszania twardych kul

Rozpraszania twardych kul Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także

Bardziej szczegółowo

MMF ćwiczenia nr 1 - Równania różnicowe

MMF ćwiczenia nr 1 - Równania różnicowe MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg

Bardziej szczegółowo

Ś ć Ś Ę Ś Ś Ś Ś Ę Ę

Ś ć Ś Ę Ś Ś Ś Ś Ę Ę Ł Ś Ę ź Ż Ż ź ź Ż Ś Ż Ś Ł Ś ć Ś Ę Ś Ś Ś Ś Ę Ę Ś Ę Ń Ę ć ć Ę Ś Ę Ś Ę Ś Ś Ś ŚĘ ć Ś Ś Ś Ś ŚĘ Ł Ś Ł ź Ę ź ź ź ź Ń Ś Ś Ń ź ć ź ź ź ź ź ź Ś ź Ż ź Ń ź Ś ź ź ć Ę ź Ę Ę Ś Ę Ę Ł ź ź Ę ć Ś Ś Ł Ś Ę Ś Ł Ł Ś ć Ł ź Ł

Bardziej szczegółowo

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH ANAZA OBWODÓW DA PZBGÓW SNUSODANYH MTODĄ ZB ZSPOONYH. Wprowadzn. Wprowadź fnkcję zspoloną znnj rzczwstj (czas) o następjącj postac: F( t) F F j t j jt t+ Fnkcj tj przporządkj na płaszczźn zspolonj wktor

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 +

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 + Różnczkowalność pocodne Ćwczene. Znaleźć pocodne cz astkowe funkcj f(x, y) = arctg x y. Rozw azane: Wdać, że funkcj f można napsać jako f(u(x, y)) gdze f(u) = arctg(u), u(x, y) = x y. Korzystaj ac z reg

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

E2. BADANIE OBWODÓW PRĄDU PRZEMIENNEGO

E2. BADANIE OBWODÓW PRĄDU PRZEMIENNEGO E. BADANE OBWODÓW PĄDU PZEMENNEGO ks opracowały: Jadwga Szydłowska Bożna Janowska-Dmoch Badać będzmy charakrysyk obwodów zawrających różn układy lmnów akch jak: opornk, cwka kondnsaor, połączonych z sobą

Bardziej szczegółowo

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU PROJEKT DOCELOWEJ ORGANIZACJI RUCHU po modrnizacji torowiska na odcinku Katowic Rynk Zajzdnia (linia 6/41) w Katowicach Projktował i opracował: mgr inż. Mark Puchała mgr inż. Krzysztof Szydłowski 2009r.

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami) List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f

Bardziej szczegółowo

LISTA OBECNOŚCI EGZAMINY USTNE JĘZYK WŁOSKI B2/C1 9.03.2015 R. PWP Kształcenie zawodowe na neofilologiach KUL na potrzeby rynku pracy

LISTA OBECNOŚCI EGZAMINY USTNE JĘZYK WŁOSKI B2/C1 9.03.2015 R. PWP Kształcenie zawodowe na neofilologiach KUL na potrzeby rynku pracy JĘZYK WŁOSKI B2/C1 9.03.2015 R. 8 14.00-14.50 9 14.30-15.20 10 15.00-15.50 JĘZYK WŁOSKI B2/C1 10.03.2015 R. 8 14.00-14.50 9 14.30-15.20 10 15.00-15.50 JĘZYK WŁOSKI B2/C1 14.03.2015 R. 1 8.30-9.20 2 9.00-9.50

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

Półprzewodniki (ang. semiconductors).

Półprzewodniki (ang. semiconductors). Półprzwodn an. smondutors. Ja.Szzyto@fuw.du.pl ttp://www.fuw.du.pl/~szzyto/ Unwrsytt Warszaws ora pasmowa ał stały. pasmo pust RGIA LKROÓW pasmo pust pasmo płn pasmo pust pasmo płn pasmo płn mtal półprzwodn

Bardziej szczegółowo

ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń

ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń Ź Ź Ó Ń Ó ź ć Ź ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń Ź ć Ź Ę Ę ć ć ź Ę Ę Ź ć Ó Ó Ś Ó Ń ŚĆ Ę Ś Ó ćć Ó Ś Ę Ś Ę Ę Ś Ś ć Ę Ó Ę Ó Ę Ń Ć Ś Ś Ś Ś Ó ŚĆ Ó ć Ń Ń Ó Ę Ó Ó Ó Ś Ę Ć Ó ć ć Ó ź Ę ć ć Ź ć ć ć ć ć ź ć Ź ć Ć ć ć Ś

Bardziej szczegółowo

Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś

Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś Ł ń ść ś Ż ś ś ć ś ś Ż ż ś ś ść ś śń ż Ż ć ś ń Ś ż ć ż ść Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś Ą Ż Ą ś ż ż ż ż ż ż ż ż ć ż ż ś ć ż ż ź ź ń ś ć ż ć ć ż ż ć ż ż ż ś ć ż ż źć ż ż ż ż Ż ż ń ż ż

Bardziej szczegółowo

Prognozowanie- wiadomoci wstpne

Prognozowanie- wiadomoci wstpne Progozowa- wadomoc wtp Progozowa to racjoal woowa o zdarzach zach a podtaw zdarz zach. Clm progoz jt dotarcz otwch formacj potrzch do podjmowaa dczj. Progoz a mulacj. Progoza co dz w momc t Smulacja co

Bardziej szczegółowo

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

Ą Ł ń Ł ś ś Ą ś Ę Ś ś ź Ę ń Ę Ę ń ź Ę ź ś ń ś ś Ś ś ń Ó Ó ś ś ś Ę ś ń Ę Ó Ę ś ś Ą Ź Ę ń ś ś Ó ść ś ś ń Ę Ł Ą ź Ę ś Ś ś Ą Ą Ó ń ś ś Ę Ź ń Ę Ó Ę Ź ź ś ś ś śń ś ń Ó Ł Ł Ą ś ś Ę ś Ę Ę Ó ś ś Ę Ł ń Ó ś ś Ę Ó

Bardziej szczegółowo

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

wydanie 3 / listopad 2015 znaków ewakuacji i ochrony przeciwpożarowej PN-EN ISO 7010 certyfikowanych pr zez C N B O P www.znaki-tdc.

wydanie 3 / listopad 2015 znaków ewakuacji i ochrony przeciwpożarowej PN-EN ISO 7010 certyfikowanych pr zez C N B O P www.znaki-tdc. Stosowani znaków wakuacji i ochron przciwpożarowj crtfikowanch pr zz C N B O P www.znaki-tdc.com wdani 3 / listopad 2015 AA 001 Wjści wakuacjn AA 010 Drzwi wakuacjn AA 009 Drzwi wakuacjn AA E001 E001 AA

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.

Bardziej szczegółowo

FINAŁ 10 marca 2007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut. x +

FINAŁ 10 marca 2007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut. x + FINAŁ 0 marca 007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut ZADANIE Największ wspóln dzielnik dwóch liczb naturalnch wnosi 6, a ich najmniejsza wspólna wielokrotność tch liczb równa jest

Bardziej szczegółowo

ROZDZIAŁ VI. STATYKA TARCZ

ROZDZIAŁ VI. STATYKA TARCZ ROZDZIAŁ I. STATYKA TARCZ Omawan w poprzdnch rozdzałach onstrc lmnt słżąc do ch modlowana n wnosł poza pwnm porządowanm nc nowgo do mtod oblczń statcznch onstrc prętowch. Mtoda lmntów sończonch st t dn

Bardziej szczegółowo

Ć w i c z e n i e K 2 b

Ć w i c z e n i e K 2 b Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:

Bardziej szczegółowo

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :

Bardziej szczegółowo

BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH

BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTOICZYCH ISTYTUT SYSTEMÓW ELEKTOICZYCH WYDZIAŁ ELEKTOIKI WOJSKOWA AKADEMIA TECHICZA ---------------------------------------------------------------------------------------------------------------

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej

Rachunek różniczkowy funkcji jednej zmiennej Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej Politchnika Białotocka Wydział Elktryczny Katdra Tlkomunikacji i Aparatury Elktronicznj Intrukcja do pracowni pcjalitycznj Tmat ćwicznia: Dokładność ciągłych i dykrtnych układów rgulacji Numr ćwicznia:

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2 1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca Wstęp do Opty Fzy Matr Sondnsowan Matusz Goryca mgoryca@fuw.du.pl Unwrsytt Warszaws 05 Krystalografa Kryształy Struturę rystalczną badamy za pomocą dyfrac fotonów, nutronów, ltronów lub nnych lch cząstcz

Bardziej szczegółowo

Ł Ę Ę ż ń ć ż ń ż ć Ą ć ń ż Ę ń ć ż ń ż ć ć ż ńć ż ć ć ć ń Ę Ł ż ż ń ż ż ć ż

Ł Ę Ę ż ń ć ż ń ż ć Ą ć ń ż Ę ń ć ż ń ż ć ć ż ńć ż ć ć ć ń Ę Ł ż ż ń ż ż ć ż Ł ż ć żń Ę ń żń Ę żń ż Ń Ą Ę ć ń ż Ł ń ć ź Ę ć ć ć ż ć ć ć Ę ń Ź ń Ę Ę Ę ń ń ż ż źń Ź ć Ł Ę Ę ż ń ć ż ń ż ć Ą ć ń ż Ę ń ć ż ń ż ć ć ż ńć ż ć ć ć ń Ę Ł ż ż ń ż ż ć ż Ł ń ć żń żń ń ń ń ż Ł ć Ą ć ń ż ń ć

Bardziej szczegółowo

Granice ciągów liczbowych

Granice ciągów liczbowych Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi

Bardziej szczegółowo

IV. WPROWADZENIE DO MES

IV. WPROWADZENIE DO MES Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Ą Ą Ż Ż ś Ś ś ń ń Ę Ż Ę ś Ż ś Ę ś ź ń ź ś ś Ó ś ś Ż Ś ń Ę Ę Ą Ż Ę ś ś Ę ś Ę ś ść Ż Ć ź Ę ń Ć Ż Ę ź ś Ź Ż ź ś Ę ś śń Ż ś ń Ż ń Ą Ż Ż Ę ś ź ŻŻ ś ś ń Ż ń Ó ś Ż ń Ż ś Ę ń Ż Ż Ę ń Ż Ę Ż ź ś ń ś Ę ś ś Ż ń Ś

Bardziej szczegółowo

Zadania do rozdziału 10.

Zadania do rozdziału 10. Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać

Bardziej szczegółowo

ń ń ś ń ń ś ść ś ś ń ś ś ć ć ć ś ś ś ś ś ść ść ź ść ś ś ś ś ś ś ś ń ść ć ść ść ś ń ź ń ń ś ś ń ś Ś ś ść ś ś ś ś ź ć ź ś ź ś ń ś ść ć ń ś ś ć ś ń ś ź ń ń ś ś ś ś ź ś ź ść ń ś ś ś ć ś ć ś ś ć ś ć ć ś ś ć

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

± - małe odchylenie od osi. ± - duże odchylenie od osi

± - małe odchylenie od osi. ± - duże odchylenie od osi TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń

Bardziej szczegółowo

19. Wybrane układy regulacji Korekcja nieliniowa układów. Przykład K s 2. Rys Schemat blokowy układu oryginalnego

19. Wybrane układy regulacji Korekcja nieliniowa układów. Przykład K s 2. Rys Schemat blokowy układu oryginalnego 19. Wbrane układ regulacji Przkład 19.1 19.1. Korekcja nieliniowa układów w K s 2 Rs. 19.1. Schemat blokow układu orginalnego 1 Zbadać możliwość stabilizacji układu za pomocą nieliniowego prędkościowego

Bardziej szczegółowo

Ekscytony Wanniera Motta

Ekscytony Wanniera Motta ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo