Spacery losowe w R d
|
|
- Mikołaj Świderski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Wrocławska 6 lipca 2010
2 Błądzenia po kracie Z d Błądzenie losowe (spacer losowy) to podstawowy przykład łańcucha Markowa, obowiązkowo pojawiający się na jednym z pierwszych wykładów o procesach stochastycznych. Przypuśćmy, że cząstka błądzi losowo w R d po kracie punktów o wszystkich współrzędnych całkowitych. Błądzenie jest symetryczne, gdy z danego punktu cząstka może skoczyć do jednego z 2d najbliższych punktów tej kraty, do każdego z nich z prawdopodobieństwem 1 2d. W szczególności na prostej (błądzenie po Z) cząstka z punktu k skacze z prawdopodobieństwem 1 2 do jednego z punktów sąsiednich: k 1 albo k + 1.
3 Błądzenia po kracie Z d W roku 1921 G. Polya wykazał, że w takim błądzeniu cząstka wróci z prawdopodobieństwem jeden do punktu wyjścia w przypadku prostej i płaszczyzny tzn. dla wymiarów d = 1 oraz d = 2. Polya żartobliwie skwitował to twierdzenie uwagą na płaszczyźnie wszystkie drogi prowadzą do Rzymu.
4 Błądzenia po kracie Z d W roku 1921 G. Polya wykazał, że w takim błądzeniu cząstka wróci z prawdopodobieństwem jeden do punktu wyjścia w przypadku prostej i płaszczyzny tzn. dla wymiarów d = 1 oraz d = 2. Polya żartobliwie skwitował to twierdzenie uwagą, że na płaszczyźnie wszystkie drogi prowadzą do Rzymu. W wyższych wymiarach (d 3) z dodatnim prawdopodobieństwem cząstka nigdy nie wróci do punktu wyjścia, a jej odległość od punktu wyjścia z prawdopodobieństwem jeden zmierza wraz z liczbą kroków do nieskończoności.
5 Sformułowanie problemu 27 lipca 1905 roku w 72. numerze Nature ukazał się następujący list Karla Pearsona:
6 Ogólne matematyczne sformułowanie problemu Niech X 1, X 2,..., X n,... będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie, jednostajnym na sferze o promieniu l w R d. Znaleźć rozkład normy sumy S n = X X n.
7 Przypadek d = 2 Załóżmy l = 1 i obliczmy dystrybuantę rozkładu normy X 1 + X 2, gdzie oba wektory są niezależne i mają jednakowy rozkład, jednostajny na okręgu jednostkowym. Korzystamy ze wzoru cosinusów: P( X 1 +X 2 2 < t 2 ) = P( X X X 1 X 2 cos (X 1, X 2 ) < t 2 ) = P(2 + 2 cos (X 1, X 2 ) < t 2 ), skąd dla 0 < t < 2 otrzymujemy P( S 2 < t) = 1 ( ) π arc cos 1 t2. 2
8 Przypadek d = 2 Stąd rozkład S 2 = X 1 + X 2 ma gęstość względem płaskiej miary Lebesgue a, gęstość ta dana wzorem: dla r = x 2 + y 2 < 2 f 2 (r) = 1 π 2 r 4 r 2. Zauważmy, że gęstość dąży do niekończoności, gdy r 0 + lub r 2.
9 Odpowiedź Rayleigha W następnym (!) zeszycie tego samego numeru Nature (z dnia 3 sierpnia 1905) ukazała się odpowiedź:
10 Kolejny list Pearsona W następnym tygodniu w kolejnym zeszycie Nature (z dnia 10 sierpnia 1905) ukazał się kolejny list Pearsona:
11 Skąd takie pytanie? Brytyjski lekarz sir Ronald Ross ( ) zajmował się malarią. Wykazał, że malarię roznoszą komary, miedzy innymi za to w roku 1902 otrzymał Nagrodę Nobla z medycyny. Szczególnie malaria zaczęła się rozprzestrzeniach na półwyspie Malajskim (wówczas brytyjskim) po wycieciu dużych połaci tamtejszej dżungli. Notabene dżunglę wycięto, by sadzić drzewa kauczukowe, nasiona ktorych wykradziono z Brazylii, co przyczyniło się do upadku części gospodarki brazylijskiej (np. miasta Manaus).
12 Skąd takie pytanie? W liście do Pearsona z dnia 24 lipca 1905 roku Ross pytał: if mosquitoes could wander in all directions, what would be the mathematical function of the numbers who died at a distance from the point? Stąd list Pearsona opublikowany w Nature, który to list ukazał się drukiem 27 lipca 1905.
13 Tempo druku w początku XX wieku Kolejne listy datowane są następująco: Ross do Pearsona 24 lipca 1905
14 Tempo druku w początku XX wieku Kolejne listy datowane są następująco: Ross do Pearsona 24 lipca 1905 Pierwszy list Pearsona ukazał się w Nature 27 lipca 1905
15 Tempo druku w początku XX wieku Kolejne listy datowane są następująco: Ross do Pearsona 24 lipca 1905 Pierwszy list Pearsona ukazał się w Nature 27 lipca 1905 Odpowiedź Rayleigha w Nature 3 sierpnia 1905
16 Tempo druku w początku XX wieku Kolejne listy datowane są następująco: Ross do Pearsona 24 lipca 1905 Pierwszy list Pearsona ukazał się w Nature 27 lipca 1905 Odpowiedź Rayleigha w Nature 3 sierpnia 1905 Drugi list Pearsona w Nature 10 sierpnia 1905
17 Błądzenie po Z na prostej Niech X 1, X 2,... będą niezależnymi zmiennymi losowymi, przyjmującymi tylko dwie wartości P(X n = ±1) = 1 2. Suma S n = X X n ma przesunięty rozkład Bernoulliego, tzn. ( ) (1 ) n n P(S n = 2k n) =, k = 0, 1,...n 1, n. k 2 Badanie subtelnych własności takich rozkładów doprowadziło do odkrycia Prawa Wielkich Liczb, Centralnego Twierdzenia Granicznego, Prawa Iterowanego Logarytmu oraz Prawa Arcusa Sinusa czterech najważniejszych twierdzeń klasycznego rachunku prawdopodobieństwa.
18 CTG Na przykład twierdzenie de Moivre a Laplace a mówi, że dystrybuanty zmiennych Sn n dążą do Φ dystrybuanty rozkładu N(0, 1), tzn. gdy n t R P ( ) Sn < t n Φ(t) = 1 2π t e x2 /2 dx.
19 Nierówności Jak szybko te dystrybuanty dążą do Φ? Nierówność Hoeffdinga (1948) mówi, że dla wszystkich n N oraz t > 0 ( ) Sn P > t e t2 /2. n W roku 1994 J. Pinelis udowodnił, że dla takiego błądzenia zachodzi lepsze oszacowanie P ( ) Sn > t C(1 Φ(t)), t > 0. n Lepsze, gdyż dla t zachodzi 1 Φ(t) C 1 t e t2 /2.
20 Nierówności Z kolei S.V. Fomin w pracy z 1982 roku wykazał, że jeśli X i mają rozkłady jednostajne na odcinku [ 3, 3], to gęstości f n zmiennych X X n n są wspólnie ograniczone przez pewną wielokrotność granicznej gęstości gaussowskiej: istnieje stała C > 0 taka, że dla wszystkich x R oraz n N zachodzi nierówność f n (x) Ce x2 /2.
21 Założenia upraszczające w R d Badamy w R d błądzenie Pearsona, gdzie każdy krok jest wektorem losowym o rozkładzie jednostajnym na sferze jednostkowej. Dla uproszczenia rachunków zakładamy, że błądzenie startuje z początku układu współrzędnych.
22 Sploty miary jednostajnej na sferze Niech X 1,... mają jednakowy rozkład, jednostajny na sferze w R d. Oznaczmy ten rozkład przez σ d. Jest to miara unormowana, na przykład na okręgu jednostkowym dσ 2 (θ) = 1 2π dθ. Rozkład sumy S n = X X n dany jest przez splot σ n d. Dla wszystkich n jest to miara niezmiennicza na obroty, zatem wygodnie rozważać ją we współrzędnych sferycznych (r, s), gdzie 0 < r <, a s S d 1 1.
23 Transformata Fouriera miary σ d Niech t R d. Przechodząc do współrzędnych sferycznych, otrzymujemy σ d (t) = e i t,x dσ d (x) = e i t,s dσ d (s) = R d gdzie S d 1 1 S d 1 1 ( ) ( ) e i t t t,s d 2 d/2 1 dσ d (s) =... = Γ J 2 t d/2 1( t ), ( ) z ν ( z2 4 J ν (z) = )k 2 k!γ(ν + k + 1). k=0 jest funkcją Bessela pierwszego rodzaju.
24 Absolutna ciągłość splotów Ponieważ ( ) ( ) d 2 d/2 1 σ d (t) = Γ J 2 t d/2 1( t ), a dla t znane jest asymptotyczne zachowanie funkcji Bessela: J ν ( t ) 2 π t cos ( t 1 2 νπ 1 4 π ), więc dla n > d + 2 funkcja ( σ d (t)) n jest całkowalna. Stąd wynika, że sploty σd n są absolutnie ciągłe. Niech f n (x) oznacza gęstość miary σd n w R d, tzn. rozkład X X n. względem miary Lebesgue a
25 Rachunki dokładne Oczywiście, na mocy odwrotnej transformaty Fouriera, mamy wzór f n (x) = 1 ( ) ( ) d 2 d/2 1 (2π) d e i x,t Γ J R d 2 t d/2 1( t ) dt. Jeszcze w roku 1905 G.J. Bennett wykazał, że dla d = 2 i n = 3 to jest pewna funkcja nieelementarna (całka eliptyczna). Prawdopodobnie tak jest dla większości par d, n. Ponieważ funkcje Bessela oscylują, więc trudno z tego wzoru otrzymać dokładne oszacowania funkcji f n. A chcielibyśmy sprawdzić, czy tak, jak na prostej (wspomniany wynik Fomina), gęstości f n (x) są wspólnie ograniczone przez pewną wielokrotność granicznej gęstości gaussowskiej.
26 Graniczna gęstość gaussowska Łatwo obliczyć, ze macierz kowariancji K miary σ d jest równa 1 d Id. Stąd wynika, że graniczną gęstością gaussowską w R d jest g d (x) = i pytamy, czy zachodzi oszacowanie ( d 2π ) d/2 e d x 2 2. ( n) d f n ( n x) C d ( d 2π ) d/2 e d x 2 2.
27 Odpowiedź Twierdzenie (P. Graczyk, J-J. Loeb, TŻ, TPRF, 2010) Ustalmy d. Istnieje stała C d zależna tylko od wymiaru przestrzeni, taka, że dla wszystkich n d + 2 i x R d zachodzi oszacowanie ( ) d d/2 f n (x) C d e d x 2 2n. 2πn Analogiczne twierdzenie jest prawdziwe w przypadku, gdy poszczególne kroki błądzenia mają rozkłady jednostajne na kuli jednostkowej.
28 Nierówność dla części radialnych Ponieważ zarówno miara gaussowska o macierzy kowariancji K, jak i wszystkie rozkłady σd n są niezmiennicze na obroty, więc wystarczy wykazać nierówność dla części radialnych: f n (r) C d n dr 2 e 2n d/2.
29 Główny pomysł Zauważmy, że f n+1 (x) = S d 1 1 f n (x u) dσ d (u). A gdyby zastosować indukcję matematyczną?
30 Oszacowanie dla f d+2 Ponieważ w d + 2 krokach o długości jeden można oddalić się od punktu startu co najwyżej o d + 2, więc dla x > d + 2 mamy f d+2 (x) = 0. Stąd istnieje stała c taka, że dla wszystkich x R d zachodzi nierówność f d+2 (x) < cg d+2 (x), gdzie g d+2 oznacza odpowiednio unormowaną gęstość gaussowską.
31 Krok indukcyjny Zamiast f n (x) po prawej stronie wzoru f n+1 (x) = S d 1 1 f n (x u) dσ d (u). wstawiamy założenie indukcyjne (sprawdzone już dla n = d + 2): f n (r) C d n dr 2 e 2n d/2,
32 Krok indukcyjny otrzymując nierówność gdzie f n+1 (r) C d d(r 2 +1) Γ(d/2)e 2n nd/2 ( ) 2n d/2 1 I dr d/2 1 I α (x) (x/2) α = (x/2) 2k k!γ(α + k + 1) k=0 jest zmodyfikowaną funkcją Bessela rzędu α. ( ) dr, n
33 Krok indukcyjny Wystarczy teraz sprawdzić, czy zachodzi nierówność Γ(d/2) ( ) 2n d/2 1 I dr d/2 1 ( ) ( ) dr n d/2 e d(r2 +1) d(r2 +1) 2n 2n, n n + 1 co po kilku stronach rachunków (dokładnej analizy zachowania funkcji Bessela) udało się zrobić. Podobne, choć dłuższe rachunki, pozwalają udowodnić analogiczne twierdzenie, gdy kroki błądzenia mają rozkłady jednostajne na kuli jednostkowej w R d.
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Zad. 1. Korzystając z podanych poniżej mini-tablic, oblicz pierwszy, drugi i trzeci kwartyl rozkładu N(10, 2 ). Rozwiązanie. Najpierw ogólny komentarz
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Zadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Równanie przewodnictwa cieplnego (II)
Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
III. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Lista zagadnień omawianych na wykładzie w dn r. :
Lista zagadnień omawianych na wykładzie w dn. 29.0.208r. : Granica funkcji Definicja sąsiedztwa punktu. Sąsiedztwo 0 R o promieniu r > 0: S 0, r = 0 r, 0 + r\{ 0 } 2. Sąsiedztwo lewostronne 0 R o promieniu
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Lista 1. Procesy o przyrostach niezależnych.
Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji
Lista 6. Kamil Matuszewski 13 kwietnia D n =
Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam
Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści
Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie
Wykład 2: Szeregi Fouriera
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową
Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania
Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego
6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX
Szkice do zajęć z Przedmiotu Wyrównawczego
Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Geometria. Rozwiązania niektórych zadań z listy 2
Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na
Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.
Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe
5 Przegląd najważniejszych rozkładów
5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,
Izoperymetria gaussowska
Politechnika Wrocławska 6 lipca 2010 Klasyczny problem izoperymetryczny Spośród wszystkich ograniczonych płaskich figur o zadanym obwodzie znaleźć tę, która ma największe pole. Klasyczny problem izoperymetryczny
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Wykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
2. Definicja pochodnej w R n
2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.
Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
Statystyka i eksploracja danych
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA 1 Hipoteza jednorodnej populacji Rozważmy pewną populację osób w różnym wieku i załóżmy, że każda z tych osób
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Jednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
jest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Prawdopodobieństwo i statystyka
Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości
Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
Seria 1. Zbieżność rozkładów
Seria Zbieżność rozkładów We wszystkich poniższych zadaniach (E, ρ) jest przestrzenią metryczną Wykazać, że dla dowolnych x, x n, δ xn δ x wtedy i tylko wtedy, gdy x n x Sprawdzić, że n nk= δ k n λ, gdzie