Fluktuacje procesów Lévy ego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fluktuacje procesów Lévy ego"

Transkrypt

1 Fluktuacje procesów Lévy ego Mateusz Kwaśnicki (Politechnika Wrocławska) 5 Forum Matematyków Polskich Poznań, 16 maja 2014 r.

2 Błądzenie losowe X n = X n X n 1 i.i.d. (niezależne, o jednakowym rozkładzie) X n = X X n charakteryzacja: X0 = 0 (Xn ) ma niezależne i stacjonarne przyrosty

3 X n = ±1 z pr. 1 2

4 X n [ 1, 1] jednostajnie

5 arc tg( Xn ) [ π2, π2 ] jednostajnie

6 X n = 1 z pr. 5 6, X n = 1 Z n z pr. 1 6, e Z n [0, 1] jednostajnie

7 Procesy Lévy ego charakteryzacja: X0 = 0 (Xt ) ma niezależne i stacjonarne przyrosty (Xt ) ma granice jednostronne i jest prawostronnie ciągły (càdlàg) X t = X t X t X t = a W t + b t + s [0,t] W t proces Wienera X t punktowy proces Poissona X s (rozkład Lévy ego Itō)

8 proces Wienera

9 proces Cauchy ego

10 klasyczny proces ryzyka

11 proces o jednostronnych skokach

12 Supremum i infimum (X t ) błądzenie losowe lub proces Lévy ego X t = sup X s T t : X t = X Tt s [0,t] X t = inf s [0,t] X s T t : X t = X Tt

13 X A T A A

14 Odwracanie X t = X A t X t = X A X t (X ) jest takim samym błądzeniem losowym lub t procesem Lévy ego X A = X A X A T A = A T A (A, X A ) = (T A, X A ) + (T A, X A )

15 X A X A T A T A A

16 Proces drabinowy Twierdzenie Zbiór (T t, X t ) jest zbiorem wartości pewnego dwuwym. błądzenia losowego lub procesu Lévy ego (τ u, ξ u ) jest to tzw. proces drabinowy

17 X A (τ u, ξ u ) T A A

18 Rozbicie na wycieczki trajektorię (t, X t ) można rozbić na wycieczki, tj. odcinki pomiędzy kolejnymi (τ u, ξ u ) dla błądzenia losowego: ciąg i.i.d. wycieczek dla procesu Lévy ego: punktowy proces Poissona wycieczek

19 XA TA A

20 Niezależność wycieczek przyjmujemy, że A jest losowe, niezależne od (X t ) i wybrane z rozkładu o własności braku pamięci: geometrycznego lub wykładniczego Twierdzenie (1) U = max{u : τ u < A} ma rozkład geometryczny lub wykładniczy (2) Wycieczka o numerze U jest niezależna od poprzednich

21 XA (τu, ξu ) wycieczki o numerach < U wycieczka o numerze U TA A

22 Niezależność Wniosek Wektory (T A, X A ) oraz (A T A, X A X A ) są niezależne zatem we wzorze (A, X A ) = (T A, X A ) + (T A, X A ) sumowane są niezależne wektory losowe

23 Wzór Spitzera Twierdzenie (Spitzer, 1956) Dla błądzeń losowych i P(A = n) = (1 q)q n : q n (1 Ee z max(xn,0) ) Ee zx A = exp n n=1 Twierdzenie (Rogozin, 1966) Dla procesów Lévy ego i P(A > t) = e qt : e qt (1 Ee z max(xt,0) ) Ee zx A = exp dt t 0

24 Wzór Baxtera Donskera Twierdzenie (Baxter, Donsker, 1957) Dla procesów Lévy ego i P(A > t) = e qt : Ee zx A = q exp 1 z log(1 + Ψ(s)/q) ds 2π s(s iz) tutaj Ψ(s) to wykładnik Lévy ego Chinczyna: Ee isx t = e tψ(s) gdy X t jest symetryczny: Ee zx A = q exp 1 π 0 z log(1 + Ψ(u)/q) du z 2 + u 2

25 Teoria fluktuacji we Wrocławiu Uniwersytet Ekonomiczny we Wrocławiu: Zbigniew Michna Uniwersytet Wrocławski: Krzysztof Dębicki Zbigniew Palmowski Tomasz Rolski Politechnika Wrocławska: Tomasz Jakubowski Jacek Małecki Michał Ryznar K.

26 Oszacowanie (1/2) Twierdzenie (K., Małecki, Ryznar, 2013) (1) P(M t < x) min 1, 2κ( 1 t, 0)V(x) (2) Gdy ϵ P(X s > 0) 1 ϵ dla s > 0: P(M t < x) min 1 100, c(ϵ)κ( 1 t, 0)V(x) w skrócie: P(M t < x) min 1, κ( 1 t, 0)V(x) Ee zτ u = e uκ(z,0) E inf{u : ξ u > x} = V(x) (τ u, ξ u ) proces drabinowy

27 Miara Lévy ego N t (E) = #{s [0, t] : X s E} EN t (E) = tν(e) ν to miara Lévy ego (X t ) jest scharakteryzowane przez a, b i ν: X t = a W t + b t + X s s [0,t] X t ma całkowicie monotoniczne skoki, jeśli ν(dx) = ν(x)dx oraz ( 1) n ν (n) (x) 0 dla x > 0 ν (n) (x) 0 dla x < 0

28 Oszacowanie (2/2) Twierdzenie (K., Małecki, Ryznar, 2013) Gdy X t jest symetr. i ma całkowicie monotoniczne skoki: P(M t < x) 10 1 min 1, tψ(1/x) można istotnie osłabić założenia przy nieco mocniejszych założeniach można różniczkować względem t

29 Dokładniejsze oszacowanie Twierdzenie (K., Małecki, Ryznar, 2013) Gdy X t jest symetr., ma całkowicie monotoniczne skoki oraz ν(x) jest regularnie zmieniająca się w 0 i z dodatnimi indeksami: c 1 (n) dn t n+1/2 ( 1)n Ψ(1/x) dt P(τ c 2 (n) n x > t) t n+1/2 Ψ(1/x) dla t c 0(n, α) Ψ(1/ x) nieco słabszy wynik gdy Ψ jest wolno zmieniająca się

30 Przestrzenna transformata Laplace a Ee zx A = q 0 e qt Ee zx t dt Twierdzenie (K., Małecki, Ryznar, 2013) Gdy X t jest symetryczny i Ψ (s) > 0 dla s > 0: Ee zx t = 0 Ψ (λ)e tψ(λ) Ψ(λ) exp 1 π z λ 2 + z 2 0 z log λ2 s 2 Ψ(λ) Ψ(s) z 2 + s 2 ds dλ uogólnienie dla procesów niesymetrycznych o całkowicie monotonicznych skokach

31 Jawne wzory (11/11) Twierdzenie (K., Małecki, Ryznar, 2013) Gdy X t jest symetryczny, ma całkowicie monotoniczne skoki i spełnia techniczny warunek: P(X t < x) = 2 Ψ (λ) π 2λΨ(λ) e tψ(λ) F λ (x)dλ gdzie 0 F λ (x) = sin(λx + ϑ λ ) e xs γ λ (ds) oraz ϑ λ [0, π 2 ) i γ λ 0 są dane (pół)jawnie 0

32 Jawne wzory (1/11) Twierdzenie (Lévy, 1937; Hunt, 1956; Dynkin, 1957) Dla procesu Wienera: Dowód: Jeśli to P(W t x) = 2P(W t x) τ x = inf{t : W t x} P(W t x) = P(τ x t) = 2P(τ x t; W t W τx ) = 2P(τ x t; W t x) = 2P(W t x) P. Lévy Théorie de l addition des variables aléatoires Gauthier Villars, Paris, 1937

33 Jawne wzory (2/11) Twierdzenie (Schrödinger, 1915; Smoluchowski, 1915; Cameron, Martin, 1944) Dla procesu Wienera z dryfem, X t = W t + bt: P(X t x) = P(X t x) + e 2bx P( X t x) E. Schrödinger Zur Theorie der Fall und Steigversuche an... Physik. Zeit. 16 (1915) M. Smoluchowski Notiz über die Berechning der Brownsche... Physik. Zeit. 16 (1915) R.H. Cameron, W.T. Martin Transformation of Wiener integrals under... Ann. Math. 45 (1944)

34 Jawne wzory (3/11) Twierdzenie (Darling, 1956) Dla procesu Cauchy ego (ν(x) = 1 π P(X t < x) = 1 x π t λ 2 + x 2 1 exp π 0 1 x 2 ): log(λ/x + s) ds dλ. 1 + s 2 D.A. Darling The maximum of sums of stable random variables Trans. Amer. Math. Soc. 83 (1956)

35 Jawne wzory (4/11) Twierdzenie (Baxter, Donsker, 1957) Dla symetrycznego procesu Poissona (ν = 1 2 δ δ 1): P(X t n) = n gdzie I n to funkcja Bessela t 0 I n (u) u e u du G. Baxter, M. D. Donsker On the distribution of the supremum functional... Trans. Amer. Math. Soc. 85 (1957)

36 Jawne wzory (5/11) Twierdzenie (Gani, Prabhu, 1959; Pyke, 1959) Dla procesu Poissona z dryfem (b < 0, ν = δ 1 ): b t+x b t + x n P(X t x) = e t n=0 b n n! x n (j x) j ( b t + x j) n j 1 j j=0 J. Gani, N.J. Prabhu The time-dependent solution for a storage model... J. Math. Mech. 8 (1959) R. Pyke The supremum and infimum of the Poisson process Ann. Math. Stat. 30(2) (1959)

37 Jawne wzory (6/11) Twierdzenie (Pyke, 1959) Dla odwróconego procesu Poissona z dryfem (b > 0, ν = δ 1 ): bt x (n + x)n 1 (n+x)/b P(X t x) = x e b n n! n=0 R. Pyke The supremum and infimum of the Poisson process Ann. Math. Stat. 30(2) (1959)

38 Jawne wzory (7/11) Tw. (Cramér; Prabhu, 1961; Takács, 1965; Michna, 2011) Dla procesu o dodatnich skokach: P(X t < x)dx = P(X t < x)dx t 0 P(X s dx) E( X t s) + t s N.U. Prabhu On the ruin problem of collective risk theory Ann. Math. Stat. 32(3) (1961) L. Takács On the distribution of the supremum for stochastic... Trans. Amer. Math. Soc 119 (1965) Z. Michna Formula for the supremum distribution of a... arxiv: (2011) ds

39 Procesy stabilne X t stabilny, jeśli X t ma ten sam rozkład, co t 1/α X 1 równoważnie c x 1 α (x < 0) ν(x) = c + x 1 α (x > 0) jest to proces o całkowicie monotonicznych skokach

40 Jawne wzory (8/11) Tw. (Skorochod, 1964; Heyde, 1969; Bingham, 1973) Dla procesu α-stabilnego o ujemnych skokach (α > 1): P(X t x) = F 1/α (t/x 1/α ) gdzie F β to dystrybuanta rozkł. β-stabilnego na (0, ) A.V. Skorokhod Random Processes with Independent Increments Izdat. Nauka, Moscow, 1964 C.C. Heyde On the Maximum of Sums of Random Variables... J. Appl. Probab. 6 (1969) N.H. Bingham Maxima of sums of random variables and suprema... Z. Wahrscheinlichkeit. Verw. Gebiete 26 (1973) Uwaga: P(X t x) = αp(x t x) z zasady odbicia

41 Jawne wzory (9/11) Twierdzenie (Bernyk, Dalang, Peskir, 2008) Dla procesu α-stabilnego o dodatnich skokach (α > 1): 1 P(X t < x) = Γ(αn)Γ( n /α) xαn 1 n=1 V. Bernyk, R.C. Dalang, G. Peskir The law of the supremum of a stable Lévy process... Ann. Probab. 36 (2008) R.A. Doney On Wiener-Hopf factorization and the distribution... Ann. Probab. 15 (1987) P. Graczyk, T. Jakubowski On exit time of stable processes Stoch. Process. Appl. 122(1) (2012)

42 Jawne wzory (10/11) Twierdzenie (Hubalek, Kuznetsov, 2011) Dla prawie wszystkich procesów α-stabilnych: a n,m x m+αn+αϱ (α > 1) n=0 m=0 P(X t < x) = a n,m x m αn (α < 1) n=1 m=0 gdzie ϱ = P(X t > 0) oraz ±1 a n,m = Γ(...)Γ(...) m sin(...) i=1 sin(...) n sin(...) j=1 sin(...) F. Hubalek, A. Kuznetsov A convergent series representation for the density... Elect. Comm. Probab. 16 (2011)

43 Książki E. Spitzer Principles of random walk Van Nostrand, 1964 W. Feller An introduction to probability theory and... (tom II) Wiley, 1971 J. Bertoin Lévy processes Cambridge University Press, 1996 K.-I. Sato Lévy processes and infinitely divisible distributions Cambridge University Press, 1999

44 Wzór Spitzera E. Spitzer A combinatorical lemma and its application to... Trans. AMS 82 (1956) E. Spitzer The Wiener-Hopf equation whose kernel is a... Duke Math. J. 24 (1957)

45 Wzór Fristedta Peczerskiego Rogozina B.A. Rogozin Distribution of certain functionals related to... Teor. Veroyatnost. i Primenen. 11 (1966) E.A. Percheskii, B.A. Rogozin On the joint distribution of random variables... Teor. Veroyatnost. i Primenen. 14 (1969) B.E. Fristedt Sample functions of stochastic processes... Adv. Probab. Rel. Top. 3, Dekker, New York, 1974

46 Wzór Baxtera Donskera G. Baxter, M. D. Donsker On the distribution of the supremum functional... Trans. Amer. Math. Soc. 85 (1957)

47 Wrocław K., T. Kulczycki, J. Małecki, A. Stós Spectral properties of the Cauchy process on... Proc. LMS 101(2) (2010) K. Spectral analysis of subordinate Brownian motions... Studia Math. 206(3) (2011) K., J. Małecki, M. Ryznar Suprema of Lévy processes Ann. Probab. 41(3B) (2013) K., J. Małecki, M. Ryznar First passage times for subordinate Brownian... Stoch. Proc. Appl 123 (2013) K. Rogers functions and fluctuation theory arxiv:

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Problem wyboru optymalnej dywidendy z paryskim opóźnieniem dla spektralnie ujemnych procesów Lévy ego

Problem wyboru optymalnej dywidendy z paryskim opóźnieniem dla spektralnie ujemnych procesów Lévy ego Problem wyboru optymalnej dywidendy z paryskim opóźnieniem dla spektralnie ujemnych procesów Lévy ego Zbigniew Palmowski Wspólna praca z I. Czarna Zagadnienia aktuarialne: teoria i praktyka, Wrocław Ekonomiczny

Bardziej szczegółowo

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o

Bardziej szczegółowo

Mateusz Kwaśnicki ur. 2 września 1983 ul. Lekcyjna 7B-2/6, 51-169 Wrocław e-mail: mateusz.kwasnicki@pwr.wroc.pl http://www.im.pwr.wroc.

Mateusz Kwaśnicki ur. 2 września 1983 ul. Lekcyjna 7B-2/6, 51-169 Wrocław e-mail: mateusz.kwasnicki@pwr.wroc.pl http://www.im.pwr.wroc. Curriculum vitae Informacje osobiste Mateusz Kwaśnicki ur. 2 września 1983 ul. Lekcyjna 7B-2/6, 51-169 Wrocław e-mail: mateusz.kwasnicki@pwr.wroc.pl tel. 71 372-62-02, 607-679-765 http://www.im.pwr.wroc.pl/~kwasnicki

Bardziej szczegółowo

Model Pasywnego Trasera w Lokalnie Ergodycznym Środowisku

Model Pasywnego Trasera w Lokalnie Ergodycznym Środowisku w Lokalnie Ergodycznym Środowisku Tymoteusz Chojecki UMCS, Lublin Tomasz Komorowski IMPAN, Warszawa Kościelisko, 10 września 2016, XLV Konferencja Zastosowań Matematyki T. Komorowski, T. Chojecki w Lokalnie

Bardziej szczegółowo

Afiniczne rekursje stochastyczne z macierzami trójkatnymi

Afiniczne rekursje stochastyczne z macierzami trójkatnymi Afiniczne rekursje stochastyczne z macierzami trójkatnymi Ewa Damek (Uniwersytet Wrocławski ) (wyniki wspólne z Witoldem Światkowskim, Jackiem Zienkiewiczem - Uniwersytet Wrocławski, Muneya Matsui - Nanzan

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Numeryczne aproksymacje prawdopodobieństwa ruiny

Numeryczne aproksymacje prawdopodobieństwa ruiny Numeryczne aproksymacje prawdopodobieństwa ruiny Krzysztof Burnecki Aleksander Weron Centrum Metod Stochastycznych im. Hugona Steinhausa Instytut Matematyki i Informatyki Politechnika Wrocławska www.im.pwr.wroc.pl/

Bardziej szczegółowo

Zadania z Procesów Stochastycznych 1

Zadania z Procesów Stochastycznych 1 Zadania z Procesów Stochastycznych 1 Definicja Procesem Poissona z parametrem (intensywnością) λ > 0 nazywamy proces stochastyczny N = (N t ) t 0 taki, że N 0 = 0; (P0) N ma przyrosty niezależne; (P1)

Bardziej szczegółowo

Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2013/14

Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2013/14 ZESTAW A IMIȨ I NAZWISKO: Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2/4 Data: 224 Egzaminar: Ryszard Szekli INSTRUKCJE: Rozwiązując test zakreślamy literką X POPRAWNE ODPOWIEDZI W TABELCE

Bardziej szczegółowo

Teoria ze Wstępu do analizy stochastycznej

Teoria ze Wstępu do analizy stochastycznej eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.

Bardziej szczegółowo

Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych

Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Publiczna obrona rozprawy doktorskiej Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Piotr Miłoś Instytut Matematyczny Polskiej Akademii Nauk 23.10.2008 Warszawa Plan 1 Układy

Bardziej szczegółowo

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik. Historia

Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik. Historia 1 Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik Całka stochastyczna ( t ) H s dx s = H X. t Historia K. Itô (1944) konstrukcja całki stochastycznej

Bardziej szczegółowo

Algorytmy MCMC i ich zastosowania statystyczne

Algorytmy MCMC i ich zastosowania statystyczne Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 3 1 Łańcuchy Markowa Oznaczenia

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne

Bardziej szczegółowo

Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n.

Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n. Zadania ze Wstępu do Analizy Stochastycznej 1 1. Znajdź rozkład zmiennej 5W 1 W 3 + W 7. 2. Dla jakich parametrów a i b, zmienne aw 1 W 2 oraz W 3 + bw 5 są niezależne? 3. Znajdź rozkład wektora losowego

Bardziej szczegółowo

PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH

PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH WŁADYSŁAW KIERAT Oliver Heaviside w latach 1893-1899 opublikował trzytomową monografię: Elektromagnetic Theory,

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 1. Oblicz funkcję tworzącą momenty zmiennych o następujących rozkładach: a) symetryczny dwupunktowy; b) dwumianowy z parametrami n, p; c) Poissona z parametrem

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Geometryczna zbieżność algorytmu Gibbsa

Geometryczna zbieżność algorytmu Gibbsa Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności

Bardziej szczegółowo

O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna

O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Ruch 1 {X t } jest martyngałem dokładnie wtedy, gdy E(X t F s ) = X s, s, t T, s t. Jeżeli EX 2 (t) < +, to E(X t F s ) jest rzutem ortogonalnym zmiennej

Bardziej szczegółowo

Własności porządkowe w modelu proporcjonalnych szans

Własności porządkowe w modelu proporcjonalnych szans Własności porządkowe w modelu proporcjonalnych szans Wisła, 8 grudnia 2009 Oznaczenia Wprowadzenie Oznaczenia Porządki stochastyczne Klasy rozkładów czasu życia X F, Y G zmienne losowe o gęstościach f

Bardziej szczegółowo

Krzysztof Kępczyński Zagadnienie paryskiej ruiny w gaussowskim modelu ryzyka

Krzysztof Kępczyński Zagadnienie paryskiej ruiny w gaussowskim modelu ryzyka Uniwersytet Wrocław Wydział Matematyki i Informatyki Instytut matematyczny specjalność: zastosowania rachunku prawdopodobieństwa i statystyki Krzysztof Kępczyński Zagadnienie paryskiej ruiny w gaussowskim

Bardziej szczegółowo

Funkcja tworząca momenty (transformata Laplace a)

Funkcja tworząca momenty (transformata Laplace a) Dodatek E Funkcja tworząca momenty transformata Laplace a) E.1. Definicja i przykłady Zamieszczamy tu podstawowe informacje o funkcjach tworzących momenty, które stosuje się w wielu zagadnieniach praktycznych,

Bardziej szczegółowo

Nieregularne ścieżki - między determinizmem a losowością

Nieregularne ścieżki - między determinizmem a losowością Nieregularne ścieżki - między determinizmem a losowością Rafał Łochowski SGH 6. Forum Matematyków Rafał Łochowski (SGH) Nieregularne ścieżki 6. Forum Matematyków 1 / 21 Problem z nieskończonym wahaniem

Bardziej szczegółowo

Procesy stochastyczne 2.

Procesy stochastyczne 2. Procesy stochastyczne 2. Listy zadań 1-3. Autor: dr hab.a. Jurlewicz WPPT Matematyka, studia drugiego stopnia, I rok, rok akad. 211/12 1 Lista 1: Własność braku pamięci. Procesy o przyrostach niezależnych,

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Wariacje na temat Twierdzenia Banacha o Indykatrysie i ich zastosowanie

Wariacje na temat Twierdzenia Banacha o Indykatrysie i ich zastosowanie Wariacje na temat Twierdzenia Banacha o Indykatrysie i ich zastosowanie Rafał M. Łochowski Wrocław 2015 Rafał M. Łochowski Twierdzenie o indykatrysie Wrocław 2015 1 / 42 Plan odczytu 1 Twierdzenie Banacha

Bardziej szczegółowo

Modelowanie ryzyka kredytowego: MODEL BLACK-COX A

Modelowanie ryzyka kredytowego: MODEL BLACK-COX A Modelowanie ryzyka kredytowego: MODEL BLACK-COX A Mariusz Niewęgłowski Wydział Matematyki i Nauk Informacyjnych, Politechniki Warszawskiej Warszawa 2014 Niewęgłowski MiNI PW Modele wartości firmy Warszawa

Bardziej szczegółowo

Recenzja rozprawy doktorskiej mgra Piotra Dyszewskiego Asymptotyczne własności modeli bazujących na transformacie gładzącej

Recenzja rozprawy doktorskiej mgra Piotra Dyszewskiego Asymptotyczne własności modeli bazujących na transformacie gładzącej prof. dr hab. Rafał Latała Instytut Matematyki Uniwersytet Warszawski ul. Banacha 2 02-097 Warszawa Warszawa, 25 czerwca 2018 Recenzja rozprawy doktorskiej mgra Piotra Dyszewskiego Asymptotyczne własności

Bardziej szczegółowo

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w

Bardziej szczegółowo

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie

Bardziej szczegółowo

Własności eksploatacyjne i eksploracyjne algorytmów ewolucyjnych z mutacja. α stabilna. Andrzej Obuchowicz i Przemysław Prętki

Własności eksploatacyjne i eksploracyjne algorytmów ewolucyjnych z mutacja. α stabilna. Andrzej Obuchowicz i Przemysław Prętki Własności eksploatacyjne i eksploracyjne algorytmów ewolucyjnych z mutacja α stabilna Andrzej Obuchowicz i Przemysław Prętki Uniwersytet Zielonogórski IEEE CIS seminarium, Zielona Góra 9.12.2005 1/38 motywacja;

Bardziej szczegółowo

Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009

Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Rafał M. Łochowski Szkoła Główna Handlowa w Warszawie O pewnym modelu pojawiania się szkód Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Modele pojawiania

Bardziej szczegółowo

1 Warunkowe wartości oczekiwane

1 Warunkowe wartości oczekiwane Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna

Bardziej szczegółowo

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.

Bardziej szczegółowo

Bładzenie przypadkowe i lokalizacja

Bładzenie przypadkowe i lokalizacja Bładzenie przypadkowe i lokalizacja Zdzisław Burda Jarosław Duda, Jean-Marc Luck, Bartłomiej Wacław Seminarium Wydziałowe WFiIS AGH, 07/11/2014 Plan referatu Wprowadzenie Zwykłe bładzenie przypadkowe (GRW)

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Spacery losowe w R d

Spacery losowe w R d Politechnika Wrocławska 6 lipca 2010 Błądzenia po kracie Z d Błądzenie losowe (spacer losowy) to podstawowy przykład łańcucha Markowa, obowiązkowo pojawiający się na jednym z pierwszych wykładów o procesach

Bardziej szczegółowo

Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej

Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Co to jest entropia nadwyżkowa? Niech (X i ) i Z będzie procesem

Bardziej szczegółowo

XI Konferencja Metody Ilościowe w Badaniach Ekonomicznych

XI Konferencja Metody Ilościowe w Badaniach Ekonomicznych Rafał M. Łochowski Szkoła Główna Handlowa w Warszawie O górnym ograniczeniu zysku ze strategii handlowej opartej na kointegracji XI Konferencja Metody Ilościowe w Badaniach Ekonomicznych Zależność kointegracyjna

Bardziej szczegółowo

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Stochastyczne równania różniczkowe, studia II stopnia

Stochastyczne równania różniczkowe, studia II stopnia Stochastyczne równania różniczkowe, studia II stopnia Niech W t (ewentualnie W, W (t)), t oznacza proces Wienera oraz niech W = Niech W = (W, W 2,, W n ) oznacza n-wymiarowy proces Wienera Pokazać, że

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty momenty Oprócz omówionych już do tej pory charakterystyk rozkładów bardzo wygodnym i skutecznym narzędziem badanie zmiennej losowej są tzw. transformaty jej rozkładu: funkcje tworzące i funkcje charakterystyczne.

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Najczęściej spotykane rozkłady dyskretne:

Najczęściej spotykane rozkłady dyskretne: I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =

Bardziej szczegółowo

Odporność statystyk według Ryszarda Zielińskiego a porządki stochastyczne

Odporność statystyk według Ryszarda Zielińskiego a porządki stochastyczne Odporność statystyk według Ryszarda Zielińskiego a porządki stochastyczne Jarosław Bartoszewicz Uniwersytet Wrocławski Zieliński (1977) wprowadził następującą definicję odporności statystycznej. M 0 =

Bardziej szczegółowo

}, gdzie a = t (n) )(f(t(n) k. ) f(t(n) k 1 ) 1+δ = 0,

}, gdzie a = t (n) )(f(t(n) k. ) f(t(n) k 1 ) 1+δ = 0, Zadania z Procesów Stochastycznych II - 1 1. Niech π n = {t (n), t(n) 1,..., t(n) k n }, gdzie a = t (n) < t (n) 1

Bardziej szczegółowo

MIARY ZALEŻNOŚCI OPARTE NA KOPULACH

MIARY ZALEŻNOŚCI OPARTE NA KOPULACH Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 246 2015 Współczesne Finanse 3 Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Wydział Matematyczno-Przyrodniczy.

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Sekantooptyki owali i ich własności

Sekantooptyki owali i ich własności Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Jądrowe klasyfikatory liniowe

Jądrowe klasyfikatory liniowe Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie

Bardziej szczegółowo

RÓWNANIE LOGISTYCZNE A BŁĄDZENIE LOSOWE NA PROSTEJ I PRAWO ARCUSA SINUSA

RÓWNANIE LOGISTYCZNE A BŁĄDZENIE LOSOWE NA PROSTEJ I PRAWO ARCUSA SINUSA Henryk Zawadzki RÓWNANIE LOGISTYCZNE A BŁĄDZENIE LOSOWE NA PROSTEJ I PRAWO ARCUSA SINUSA Wstęp Obserwując typowe trajektorie generowane przez chaotyczne systemy dynamiczne, nawet te teoretycznie najprostsze

Bardziej szczegółowo

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

5 Przegląd najważniejszych rozkładów

5 Przegląd najważniejszych rozkładów 5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,

Bardziej szczegółowo

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach. Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych

Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych Iwona Malinowska Politechnika Lubelska Dominik Szynal UMCS, Lublin XXXIII Konferencja "STATYSTYKA MATEMATYCZNA

Bardziej szczegółowo

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym

Bardziej szczegółowo

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y) Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i

Bardziej szczegółowo

poprzez reasekurację proporcjonalną w modelu Jan Matuszewski Uniwersytet Warszawski

poprzez reasekurację proporcjonalną w modelu Jan Matuszewski Uniwersytet Warszawski Minimalizacja prawdopodobieństwa ruiny poprzez reasekurację proporcjonalną w modelu Sparre Andersena Jan Matuszewski Uniwersytet Warszawski Prezentacja powstała w oparciu o wyniki uzyskane w pracy magisterskiej

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Maszyny wektorów podpierajacych w regresji rangowej

Maszyny wektorów podpierajacych w regresji rangowej Maszyny wektorów podpierajacych w regresji rangowej Uniwersytet Mikołaja Kopernika Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie X X R d, Y R Z = (X, Y ), Z = (X, Y ) - niezależne

Bardziej szczegółowo

Własności estymatorów regresji porządkowej z karą LASSO

Własności estymatorów regresji porządkowej z karą LASSO Własności estymatorów regresji porządkowej z karą LASSO Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Warszawski Badania sfinansowane ze środków Narodowego Centrum Nauki przyznanych w ramach finansowania

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku

Bardziej szczegółowo

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych) (niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Estymatory regresji rangowej oparte na metodzie LASSO

Estymatory regresji rangowej oparte na metodzie LASSO Estymatory regresji rangowej oparte na metodzie LASSO Wojciech Rejchel UMK Toruń Wisła 2013 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie P X, X X R m, Y, Y R Z = (X, Y ),

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky ego Marek Kałuszka Michał Krzeszowiec Ogólnopolska Konferencja Naukowa Zagadnienia

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

WYBUCHY ROZWIA ZAŃ NIELINIOWYCH RÓWNAŃ PARABOLICZNYCH: nieliniowe równanie ciep la, model Keller Segela chemotaksji

WYBUCHY ROZWIA ZAŃ NIELINIOWYCH RÓWNAŃ PARABOLICZNYCH: nieliniowe równanie ciep la, model Keller Segela chemotaksji WYBUCHY ROZWIA ZAŃ NIELINIOWYCH RÓWNAŃ PARABOLICZNYCH: nieliniowe równanie ciep la, model Keller Segela chemotaksji Piotr BILER Instytut Matematyczny, Uniwersytet Wroc lawski, pl. Grunwaldzki 2/4, 50 384

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7 Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 6 6.04.08 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 07/08 Własności rozkładu normalnego Centralne twierdzenie graniczne Funkcja charakterystyczna

Bardziej szczegółowo

/ / * ** ***

/ / * ** *** 91 / / * ** *** 93/3/31 : 9/11/0 :. 1385. 1390... :.P51 C61 G1:JEL 139 / 51 Email: kiaee@isu.ac.ir. Email: abrihami@u.ac.ir. Email: sobhanihs@u.ac.ir..7.*..**..*** 136. 1363 30.... Dynamic Sochasic ) (Opimizaion....

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

ODWZOROWANIA JEDNO- I WIELOWARTOŚCIOWE. PODOBIEŃSTWA, RÓŻNICE I PROBLEMY Z TEGO WYNIKAJĄCE.

ODWZOROWANIA JEDNO- I WIELOWARTOŚCIOWE. PODOBIEŃSTWA, RÓŻNICE I PROBLEMY Z TEGO WYNIKAJĄCE. Wydział Matematyki, Informatyki i Ekonometrii Uniwersytet Zielonogórski ODWZOROWANIA JEDNO- I WIELOWARTOŚCIOWE. PODOBIEŃSTWA, RÓŻNICE I PROBLEMY Z TEGO WYNIKAJĄCE. Joachim Syga III Konferencja Zastosowań

Bardziej szczegółowo