Recenzja rozprawy doktorskiej mgra Piotra Dyszewskiego Asymptotyczne własności modeli bazujących na transformacie gładzącej
|
|
- Dagmara Sobolewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 prof. dr hab. Rafał Latała Instytut Matematyki Uniwersytet Warszawski ul. Banacha Warszawa Warszawa, 25 czerwca 2018 Recenzja rozprawy doktorskiej mgra Piotra Dyszewskiego Asymptotyczne własności modeli bazujących na transformacie gładzącej Omawiana rozprawa doktorska składa się ze wstępu i 4 prac: [1] Ewa Damek, Piotr Dyszewski, Iterated random functions and regularly varying tails, arxiv: , [2] Gerold Alsmeyer, Piotr Dyszewski, Thin tails of the nonhomogeneous smoothing transform, Stochastic Processes and their Applications 127 (2017), , [3] Dariusz Buraczewski, Piotr Dyszewski, Precise large deviation estimates for branching processes in random enviroment, arxiv: , [4] Dariusz Buraczewski, Piotr Dyszewski, Precise large deviations for random walk in random enviroment, arxiv: Zgodnie z tytułem rozprawy, prace dotyczą analizy modeli probabilistycznych związanych z transformatą gładzącą, tzn. operatorem S na przestrzeni miar probabilistycznych na R, określonym wzorem ( N ) Sµ := L A k X k + B, gdzie X 1, X 2,... są niezależnymi zmiennymi o rozkładzie µ, niezależnymi od wektora losowego (B, N, A 1, A 2,... ). Punkty stałe tego odwzorowania, czyli miary probabilistyczne takie, że Sµ = µ, to rozkłady zmiennych spełniających afiniczne równanie stochastyczne X d = N A k X k + B, (1) gdzie X 1, X 2,... są niezależnymi kopiami zmiennej X, niezależnymi od innych zmiennych w tym równaniu. 1
2 Pierwsze dwie prace [1] i [2] analizują asymptotykę rozwiązań (1), natomiast kolejne dwie [3] i [4] dotyczą pewnych modeli procesów gałązkowych i błądzeń losowych w losowym środowisku, przy badaniu których w naturalny sposób pojawiają się zmienne związane z transformatą S dla N = 1. Pokrótce omówię wyniki rozprawy. Praca [1] zajmuje się problemem wyznaczenia dokładnej asymptotyki ogonów zmiennych X spełniających równanie rekursji losowej X d = AX + B oraz jego uogólnienie postaci X d = Ψ(X), gdzie Ψ jest funkcją losową niezależną od X, która się dobrze aproksymuje przez losową funkcję afiniczną AX +B. Skoncentrowano się na przypadku, gdy zmienne A i B mają porównywalne ogony - jak pokazano w Example 2, wtedy kluczowe dla asymptotyki X staje się badanie zależności między A i B. Theorem 1 podaje asymptotykę ogona rozwiązania rekursji losowej przy odpowiednich założeniach na regularność rozkładu A i zależność między ogonami Ay + B oraz A (w Corollary 3 podano dość przyjemny warunek z którego można wywnioskować te zależności). Theorem 2 dotyczy ogólniejszej sytuacji, gdy zamiast AX +B w równaniu jest funkcja losowa Ψ. W pracy [2] pokazano wpierw (opierając się na prostym rozumowaniu z użyciem martyngałów), że jeśli EB = 0, E B p < oraz E N A k p < 1 dla pewnego p [1, 2], to (1) ma jednoznaczne tzw. kanoniczne rozwiązanie W zadane przez odpowiedni nieskończony szereg. Dodając pewne naturalne założenia podano w Theorem 1 (i nieco bardziej szczegółowym Theorem 5) warunki równoważne istnieniu nietrywialnego momentu wykładniczego W. Następnie, zakładając dodatkowo, że sup k A k 1 p.n. scharakteryzowano w Theorem 2 i 3 obszar skończoności transformaty Laplace a W. Najciekawszy i najbardziej delikatny w mojej opinii wynik tej pracy to Theorem 4, gdzie podano warunki (w terminach zachowania rozkładu sup A k w otoczeniu 1) gwarantujące poissonowskie ogony zmiennej W. Wcześniej podobne wyniki dla rekursji losowych uzyskali Goldie i Grübel oraz Hitczenko i Wesołowski. Motywacją dla wyników tej pracy jest badanie asymptotyki ogona tzw. rozkładu Quicksort, który pojawia się jako granica odpowiednio znormalizowanego czasu działania algorytmu sortowania n-liczb. Asymptotykę rozkładu Quicksort wcześniej wyprowadził Janson, ale wyniki uzyskane przez autorów działają w większej ogólności, obejmując szerszą klasę równań (1). W pracy [3] bada się procesy gałązkowe w losowym środowisku (PGLŚ), 2
3 tzn. procesy (Z n ) n 0 określone wzorem Z n Z 0 = 1, Z n+1 = ξk n, n = 0, 1,... gdzie dla każdego n 0 zmienne (ξk n) k 0 mają wartości naturalne, są niezależne i mają jednakowy rozkład Q n. Losowe środowisko Q = (Q n ) n 0 to ciąg niezależnych, jednakowo rozłożonych miar losowych na liczbach naturalnych. PGLŚ można uważać za uogólnienie klasycznego modelu Galtona-Watsona odpowiadającego przypadkowi jednopunktowego rozkładu miar Q i. PGLŚ zostały wprowadzone przez Smitha i Wilkinsona w 1969 roku i były od tej pory badane przez wielu probabilistów. Główne wyniki pracy, sformułowane w Theorem 1 i 3 dotyczą precyzyjnej asymptotyki wielkich odchyleń dla Z n oraz W n := n k=0 Z n, tzn. dokładnych oszacowań prawdopodobieństw P(Z n e ρn ) i P(W n e ρn ) przy n. Asymptotyka ta zależy od zachowania zmiennej A := E[Z 1 Q 1 ] = j=0 jq 1 (j). Warto dodać, że zarówno Theorem 1 jak i Theorem 3 mają zaskakująco proste założenia. Ponadto autorzy rozważają też w przypadku podkrycznym E log A < 0 (implikującym lim Z n = 0 p.n.) wielkie odchylenia dla pierwszego osiągnięcia przez procesy Z = (Z n ) i W = (W n ) poziomu t (Theorem 2 i 4). W badaniu procesów kluczowe role odgrywają zmienne Π n = n k=0 A k i R n = n k=0 Π k 1 oczywiśćie Π n = A n Π n 1, zaś zmienne R n mają ten sam rozkład co zmienne Rn spełniąjące rekursje losową Rn = A n Rn Ponadto do zmiennych Π n można stosować klasyczne oszacowania wielkich odchyleń Bahadura-Rao i Pietrowa. W [4] analizowane są błądzenia losowe w losowym środowisku (BLLŚ). W tym modelu, najpierw losowo wybieramy środowisko, czyli ciąg ω = (ω n ) n Z, gdzie ω n są niezależnymi zmiennymi losowych o jednakowym rozkładzie i wartościach w (0, 1). Przy ustalonym środowisku ω, ciąg (X n ) n 0 jest błądzeniem losowym po Z, startującym z 0 i przechodzącym ze stanu i do i + 1 bądź i 1 z prawdopodobieństwami odpowiednio ω i oraz 1 ω i. Przy analizie BLLŚ kluczową rolę odgrywają zmienne losowe A n = 1 ωn ω n które mają oczywiście jednakowy rozkład. Jeśli E log A n < 0, to zmienne X n uciekają p.n. do nieskończoności, oraz jak wykazał Solomon (Annals of Probability 1975) spełnione jest mocne prawo wielkich liczb lim n X n /n = v p.n. Kesten, Kozlov i Spitzer (Compositio Math. 1975) wykazali Centralne Twierdzenie Graniczne dla odpowiednio znormalizowanego X n vn. Następnie szereg autorów (Dembo, Peres, Pisztora, Povel, Varadhan, Zeitouni) dowodziło logarytmiczne szacowania wielkich odchyleń. W [4] udowodniono asymptotyczne dokładne oszacowania prawdopodobieństw wielkich odchyleń, zarówno w 3
4 przypadku balistycznym, gdy v > 0 (Theorem 1) jak i podbalistycznym, gdy v = 0 (Theorem 2). Założenia obu twierdzeń dotyczą regularności rozkładu zmiennych A n i są zaskakująco mało techniczne jak na tak dokładne szacowania. Dowody oparte są na analizie procesu gałązkowego z imigracją w losowym środowisku, który można stowarzyszyć z BLLŚ. Jak już było widać w [3] procesy takie są ściśle związane z rekursjami losowymi, a do badania ich precyzyjnej asymptotyki przydają się twierdzenia typu Bahadura-Rao. Wszystkie prace są bardzo ładnie napisane, przedstawione problemy są naturalne i dobrze umotywowane. Uzyskane wyniki mają precyzyjne i całkiem eleganckie sformułowania (choć oczywiście w przypadku dokładnych oszacowań ogonów pewna techniczność założeń jest nie do uniknięcia). Szczegółowe dowody odłożono do dalszych części artykułów, a w pierwszych ich częściach skupiono się na przedyskutowaniu wyników, najważniejszych idei dowodów i podaniu przykładów, co znakomicie ułatwia lekturę. Mimo, że moja tematyka badawcza jest dość odległa od prac zebranych w rozprawie, czytałem je z zaciekawieniem i przyjemnością. Należy też wspomnieć, że podobną tematyką zajmuje się wielu probabilistów, a wyniki rozprawy często uogólniają rezultaty uzyskane wcześniej przez znakomitych matematyków. Rozprawa jest bardzo obszerna, ma dobrze ponad sto, gęsto zadrukowanych, stron, zawiera wiele delikatnych rachunków i zróżnicowanych rozumowań. Nie miałem niestety czasu sprawdzić wszystkich dowodów, ze wszystkimi szczegółami przeczytałem pracę [2]. W [2] kluczowe jest szacowanie z góry transformaty Laplace a Ψ zmiennej W. Równanie (1) implikuje, że funkcja Ψ spełnia równanie Ψ(θ) = E [ e θb N Ψ(A k θ) ]. (2) Proste, ale bardzo użyteczne spostrzeżenie, zawarte w Lemma 2, pokazuje, że jeśli pewna inna funkcja Φ jest tzw. superrozwiązaniem (2) na pewnym przedziale I zawierającym 0, to Ψ Φ na I. Przy dowodzeniu poszczególnych twierdzeń trzeba oczywiście zgadnąć odpowiednio prostą funkcję Φ. Sformułowanie Lemma 2 jest odrobinę nieprecyzyjne, brakuje w nim założenia (potrzebnego, gdy T k ma wartości poza [0, 1]), że T k I I p.n. W [2] znalazłem też nieco innych usterek, nie mających jednak większego wpływu na poprawność dowodów. W Example 3 źle jest policzone P(U 1 U 2 1 δ), choć rząd wielkości się zgadza. W Example 4 nie rozumiem dlaczego w linii -6 str. 41 oszacowano o(1)θ α(n 1) 0 przez o(1) przy θ 0 0. Na stronie 45 źle policzono trzecią pochodną funkcji G (co ułatwiło dalsze szacowania). Nierówność z linii -13 str. 46 wykorzystuje założenie, że 4
5 nie zachodzi zdegenerowana sytuacja N = 1 i T 1 = 1 p.n.. Na dole strony 48 w warunkach na ξ suprema powinny być brane po przedziale [θ, θ ]. W szacowaniu (41) powinno być w dwóch miejscach ζθ 2 Σ 2 zamiast ζσ 2, co wymusza nieco delikatniejsze dalsze szacowania (szczęśliwie czynnik ξθ q e bθ jest większy niż ζθ 2 Σ 2 dla θ > 1 i odpowiednio dużego ξ). Ogólnie jednak moje drobne zastrzeżenia nie wpływają na bardzo wysoką ocenę rozprawy. Szczególnie wartościowe wydają mi się wyniki [4] błądzeniami losowymi w losowym środowisku zajmuje się wielu matematyków, Doktorantowi i jego Promotorowi udało się uzyskać bardzo głęboki i dalece nieoczywisty w mojej opinii rezultat. Nie mam żadnych wątpliwości, że przedstawiona rozprawa spełnia z dużym naddatkiem wszelkie ustawowe i zwyczajowe wymagania stawiane rozprawom doktorskim. Wnoszę o jej przyjęcie i dopuszczenie magistra Piotra Dyszewskiego do dalszej części przewodu doktorskiego. Na koniec chciałbym się odnieść do pytania o możliwość wyróżnienia recenzowanej rozprawy. Odpowiedź nieco utrudnia fakt, że wszystkie prace wchodzące w skład doktoratu są współautorskie, a wszyscy współautorzy są doświadczonymi matematykami, o uznanym w świecie dorobku. Z drugiej strony, nie często się zdarza, by doktorant, miał na etapie składania rozprawy, publikacje z poważanym matematykiem z ośrodka zagranicznego. Z dostarczonych mi wraz z rozprawą oświadczeń wnoszę też, że wkład mgra Dyszewskiego w powstanie w każdej z publikacji był bardzo znaczący, zdecydowanie przekraczający 50%. Biorąc pod uwagę wysoki matematyczny poziom, oraz różnorodność uzyskanych wyników i stosowanych technik, z pełnym przekonaniem, wnioskuję o wyróżnienie tej rozprawy. 5
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Afiniczne rekursje stochastyczne z macierzami trójkatnymi
Afiniczne rekursje stochastyczne z macierzami trójkatnymi Ewa Damek (Uniwersytet Wrocławski ) (wyniki wspólne z Witoldem Światkowskim, Jackiem Zienkiewiczem - Uniwersytet Wrocławski, Muneya Matsui - Nanzan
Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,
Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Wykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy
Zadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są
Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.
Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na
Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga
RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w
Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Zad. 1. Korzystając z podanych poniżej mini-tablic, oblicz pierwszy, drugi i trzeci kwartyl rozkładu N(10, 2 ). Rozwiązanie. Najpierw ogólny komentarz
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
8 Całka stochastyczna względem semimartyngałów
M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,
Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką
z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów
Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie
Nieregularne ścieżki - między determinizmem a losowością
Nieregularne ścieżki - między determinizmem a losowością Rafał Łochowski SGH 6. Forum Matematyków Rafał Łochowski (SGH) Nieregularne ścieżki 6. Forum Matematyków 1 / 21 Problem z nieskończonym wahaniem
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści
Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo
1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1.1 Rodzaje zbieżności ciagów zmiennych losowych Niech (Ω, F, P ) będzie przestrzenia probabilistyczna na której określony jest ciag {X
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula
Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty
momenty Oprócz omówionych już do tej pory charakterystyk rozkładów bardzo wygodnym i skutecznym narzędziem badanie zmiennej losowej są tzw. transformaty jej rozkładu: funkcje tworzące i funkcje charakterystyczne.
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)
(niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Generowanie liczb o zadanym rozkładzie. ln(1 F (y) λ
Wprowadzenie Generowanie liczb o zadanym rozkładzie Generowanie liczb o zadanym rozkładzie wejście X U(0, 1) wyjście Y z zadanego rozkładu F (y) = 1 e λy y = ln(1 F (y) λ = ln(1 0,1563 0, 5 0,34 Wprowadzenie
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Geometryczna zbieżność algorytmu Gibbsa
Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 2/14 Funkcji podłogi z logarytmu można użyć do wyliczenia liczby cyfr liczby naturalnej k (k>0): w układzie dziesiętnym log 10 (k)
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Wykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
UPORZĄDKOWANIE STOCHASTYCZNE ESTYMATORÓW ŚREDNIEGO CZASU ŻYCIA. Piotr Nowak Uniwersytet Wrocławski
UPORZĄDKOWANIE STOCHASTYCZNE ESTYMATORÓW ŚREDNIEGO CZASU ŻYCIA Piotr Nowak Uniwersytet Wrocławski Wprowadzenie X = (X 1,..., X n ) próba z rozkładu wykładniczego Ex(θ). f (x; θ) = 1 θ e x/θ, x > 0, θ >
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Matematyka ubezpieczeń majątkowych r.
Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują
poprzez reasekurację proporcjonalną w modelu Jan Matuszewski Uniwersytet Warszawski
Minimalizacja prawdopodobieństwa ruiny poprzez reasekurację proporcjonalną w modelu Sparre Andersena Jan Matuszewski Uniwersytet Warszawski Prezentacja powstała w oparciu o wyniki uzyskane w pracy magisterskiej
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Rachunek prawdopodobieństwa Probability theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia
Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego
Weronika Łabaj Geometria Bolyaia-Łobaczewskiego Tematem mojej pracy jest geometria hiperboliczna, od nazwisk jej twórców nazywana też geometrią Bolyaia-Łobaczewskiego. Mimo, że odkryto ją dopiero w XIX
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
jest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Wokół nierówności Dooba
Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Tomasz Tkocz Nr albumu: 24957 Wokół nierówności Dooba Praca licencjacka na kierunku MATEMATYKA w ramach Międzywydziałowych Indywidualnych
Modele zapisane w przestrzeni stanów
Modele zapisane w przestrzeni stanów Modele Przestrzeni Stanów (State Space Models) sa to modele, w których część parametrów jest nieobserwowalna i losowa. Zachowanie wielowymiarowej zmiennej y t zależy
Aproksymacja diofantyczna
Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Rozkłady prawdopodobieństwa
Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego
6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX
Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum
Szczegółowy rozkład materiału dla klasy b poziom rozszerzny cz. - liceum WYDAWNICTWO PAZDRO GODZINY Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna. Potęga o wykładniku
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
Spacery losowe w R d
Politechnika Wrocławska 6 lipca 2010 Błądzenia po kracie Z d Błądzenie losowe (spacer losowy) to podstawowy przykład łańcucha Markowa, obowiązkowo pojawiający się na jednym z pierwszych wykładów o procesach
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X
1. Granice funkcji - wstępne definicje i obliczanie prostych granic
1. Granice funkcji - wstępne definicje i obliczanie prostych granic Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 1. Granice w Krakowie) funkcji -
Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych
Publiczna obrona rozprawy doktorskiej Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Piotr Miłoś Instytut Matematyczny Polskiej Akademii Nauk 23.10.2008 Warszawa Plan 1 Układy
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 56//0 5 tygodni godzin = 75 godzin Lp. Tematyka zajęć I. Kombinatoryka i rachunek prawdopodobieństwa. Reguła
Prawdopodobieństwo i statystyka
Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:
prof. dr hab. Zbigniew Czarnocki Warszawa, 3 lipca 2015 Uniwersytet Warszawski Wydział Chemii
prof. dr hab. Zbigniew Czarnocki Warszawa, 3 lipca 2015 Uniwersytet Warszawski Wydział Chemii Recenzja pracy doktorskiej Pana mgr Michała Smolenia, zatytułowanej Modyfikacja N-heterocyklicznych karbenów
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie