poprzez reasekurację proporcjonalną w modelu Jan Matuszewski Uniwersytet Warszawski

Wielkość: px
Rozpocząć pokaz od strony:

Download "poprzez reasekurację proporcjonalną w modelu Jan Matuszewski Uniwersytet Warszawski"

Transkrypt

1 Minimalizacja prawdopodobieństwa ruiny poprzez reasekurację proporcjonalną w modelu Sparre Andersena Jan Matuszewski Uniwersytet Warszawski

2 Prezentacja powstała w oparciu o wyniki uzyskane w pracy magisterskiej pisanej na Wydziale Matematyki, Informatyki i Mechaniki pod opieką prof. Wojciecha Niemiro

3 Plan prezentacji 1. Problem minimalizacji prawdopodobieństwa ruiny w literaturze 2. Model Sparre Andersena 3. Sformułowanie problemu 4. Optymalne sterowanie procesem nadwyŝki 5. Główny rezultat 6. Przykład: Model klasyczny z wykładniczymi szkodami 7. Podsumowanie i spis literatury

4 Problem minimalizacji prawdopodobieństwa ruiny Z zagadnieniem minimalizacji prawdopodobieństwa ruiny mamy do czynienia, gdy dopuszczamy moŝliwość ingerowania ubezpieczyciela w proces nadwyŝki. W literaturze najczęściej ciej rozpatruje się dwa typy ingerencji (sterowania): reasekurację, inwestycje części rezerw w ryzykowny instrument finansowy. Sterowanie ubezpieczyciela ma charakter dynamiczny, to znaczy, Ŝe dokonywane jest wielokrotnie i zaleŝy od stanu nadwyŝki

5 Problem minimalizacji prawdopodobieństwa ruiny Zagadnienie to polega na znalezieniu, o ile to moŝliwe, strategii reasekuracyjnej lub inwestycyjnej, która minimalizuje prawdopodobieństwo ruiny w takim modelu. Są dwa podejścia do tego zagadnienia: model ze sterowaniem w czasie ciągłym, w którym ubezpieczyciel podejmuje decyzje w kaŝdej chwili model ze sterowaniem w czasie dyskretnym, gdzie ubezpieczyciel podejmuje decyzje co pewien okres czasu o dodatniej, być moŝe losowej długości t R +

6 Problem minimalizacji prawdopodobieństwa ruiny Modele ze sterowaniem w czasie ciągłym pozwalają na osiąganie lepszych rezultatów, np. moŝliwe jest wyznaczenie w sposób analityczny optymalnej strategii jako funkcji nadwyŝki. W modelach ze sterowaniem w czasie dyskretnym nie uzyskano dotychczas tak dokładnych wyników. Modele dyskretne mają jednak tą zaletę, Ŝe są bardziej realistyczne. Niniejsza prezentacja dotyczy właśnie modelu ze sterowaniem w czasie dyskretnym, czyli pewnego uogólnienia modelu Sparre Andersena

7 1. Problem minimalizacji prawdopodobieństwa ruiny w literaturze 2. Model Sparre Andersena 3. Sformułowanie problemu 4. Optymalne sterowanie procesem nadwyŝki 5. Główny rezultat 6. Przykład: Model klasyczny z wykładniczymi szkodami 7. Podsumowanie i spis literatury

8 Model Sparre Andersena Długości poszczególnych okresów dane są przez ciąg dodatnich zmiennych losowych iid, n 1 o dystrybuancie G(. ) { } Szkody na koniec poszczególnych okresów dane są przez ciąg nieujemnych zmiennych losowych iid, n 1 o dystrybuancie F(. ) { } Z n Y n 1 n zmienne Y n i Z n są niezaleŝne

9 Model Sparre Andersena Model Sparre Andersena jest pewnym uogólnieniem, które obejmuje inne znane modele teorii ruiny: Jeśli przyjmiemy, Ŝe Z n są deterministyczne, to otrzymamy dyskretny model teorii ruiny Jeśli przyjmiemy, Ŝe Z n ~ Exp(λ), to otrzymamy klasyczny model z poissonowskim procesem pojawiania się szkód

10 1. Problem minimalizacji prawdopodobieństwa ruiny w literaturze 2. Model Sparre Andersena 3. Sformułowanie problemu 4. Optymalne sterowanie procesem nadwyŝki 5. Główny rezultat 6. Przykład: Model klasyczny z wykładniczymi szkodami 7. Podsumowanie i spis literatury

11 Sformułowanie problemu Oznaczenia: Y typowa szkoda, E(Y)=μ Z typowa długość okresu, E(Z)= X n stan nadwyŝki na początku okresu n+1-go Na początku okresu n+1-go ubezpieczyciel decyduje się na pewien poziom reasekuracji proporcjonalnej d n. To znaczy, Ŝe szkody w n+1-szym okresie pokryje on w wysokości d n Y n+1. Wartość (1-d n )Y n+1 pokrywa reasekurator. Typowe d n oznaczać będę przez d Wybrany poziom reasekuracji zaleŝy od stanu nadwyŝki, czyli d n = φ n (X n ). 1 λ

12 Sformułowanie problemu Przy braku reasekuracji ubezpieczyciel kalkuluje składkę zgodnie z narzutem bezpieczeństwa η c=c(1)=(1+ η)μλ. Reasekurator, przy poziomie reasekuracji d pobiera składkę: c r (d)=(1+θ)(1-d)µλ, gdzieθ>η. Zatem składka netto pobierana przez ubezpieczyciela wynosi: c(d)=c-c r (d). Aby zapewnić nieujemność składki c(d) trzeba załoŝyć, Ŝe θ η d, 1 1+ θ

13 X Sformułowanie problemu Proces nadwyŝki ubezpieczyciela ewoluuje zgodnie z równaniem: ϕ ϕ, X0 x, X 0 n+ 1 = Xn + c( n( Xn)) Zn+ 1 n( Xn) Yn + 1 X =, < 0 n +1 X n = n Wprowadzenie stanu pochłaniającego jest uzasadnione, gdyŝ analizujemy proces nadwyŝki jedynie do momentu ruiny. Jest równieŝ wygodne z punktu widzenia dalszej analizy Konstrukcję taką moŝna znaleźć w pracy Schäla (2004)

14 Sformułowanie problemu Definicja. Sterowaniem nazwiemy mierzalną funkcję θ η ϕ: [,1] 1+ θ, a strategią ciąg sterowań Proces nadwyŝki przy strategii π i nadwyŝce x,π początkowej x oznaczam przez X n. Prawdopodobieństwo ruiny przy strategii π : Ψ π ( x) = [ n < : X x n, π (,0)] {, 0} π = n Prawdopodobieństwo ruiny w skończonym horyzoncie: π, Ψ ( ) = [ x π x : X (,0)] m n m n ϕ n

15 1. Problem minimalizacji prawdopodobieństwa ruiny w literaturze 2. Model Sparre Andersena 3. Sformułowanie problemu 4. Optymalne sterowanie procesem nadwyŝki 5. Główny rezultat 6. Przykład: Model klasyczny z wykładniczymi szkodami 7. Podsumowanie i spis literatury

16 Optymalne sterowanie procesem nadwyŝki Badane zagadnienie, tak jak zostało sformułowane, jest jednym z typowych zagadnienień rozwaŝanych w bardziej ogólnej teorii optymalnego sterowania w czasie dyskretnym Sformułowanie zagadnienia w ten sposób oraz udowodnienie, Ŝe moŝna do niego stosować ogólne twierdzenia z teorii optymalnego sterowania zawdzięczamy pracy Schäla (2004) * π Interesuje nas wyznaczenie Ψ ( x) = inf Ψ ( x) π

17 Optymalne sterowanie procesem nadwyŝki Definicja. Dla kaŝdej funkcji mierzalnej i ograniczonej z dołu takiej, Ŝe określamy v: v( ) = 0

18 Optymalne sterowanie procesem nadwyŝki x (,0) PoniewaŜ z załoŝenia stan moŝemy odwiedzić co najwyŝej raz zachodzą równości: Ψ Ψ m π, ( ) [ x π m x = g( X n n= 0 π ( x) = lim Ψ ( x) m π m )]

19 Optymalne sterowanie procesem nadwyŝki Twierdzenie (Verification Theorem) Niech będzie mierzalną funkcją oraz niech φ będzie sterowaniem takim, Ŝe. Wtedy: v :, [ 0 ) π v( x) = inf Ψ ( x) v T v = = ϕ dla kaŝdego x oraz φ definiuje π optymalną stacjonarną strategię, o ile zachodzi: lim [ v( X n x n, π ) g( X dla wszystkich strategii π i dla wszystkich x n, π )] = 0 x 0 Bv

20 Optymalne sterowanie procesem nadwyŝki Lemat (Schäl) Niech będzie mierzalną funkcją. Zachodzą wówczas: Jeśli dla pewnego sterowania φ zachodzi to v : ϕ Ψ, [ 0 ) T v v ϕ Bv v Jeśli, to, o ile zachodzi: lim [ v( X n x n, π ) Ψ * v, π g( X )] = 0 Lemat ten pokazuje, jak moŝna szukać dolnego i górnego oszacowania na minimalne p-wo ruiny x n T ϕ v v

21 1. Problem minimalizacji prawdopodobieństwa ruiny w literaturze 2. Model Sparre Andersena 3. Sformułowanie problemu 4. Optymalne sterowanie procesem nadwyŝki 5. Główny rezultat 6. Przykład: Model klasyczny z wykładniczymi szkodami 7. Podsumowanie i spis literatury

22 Główny rezultat JeŜeli zachodzą jednocześnie następujące warunki: d zbiór jest niepusty i prawostronnie otwarty, { r ( dy c( d ) Z ) r > 0 : Ee < } [ [ dy c(d)z] < 0 [ dy > c ( d ) Z ] > 0.,., to dla kaŝdego d istnieje jednoznaczne, dodatnie rozwiązanie równania ( dy c( d ) Z ) R e zwane współczynnikiem dopasowania. = 1

23 Główny rezultat Dla kaŝdego d mamy jednoznacznie wyznaczony współczynnik dopasowania, więc moŝemy traktować go jako funkcję d i przyjąć oznaczenie R(d). Definicja. Maksymalnym współczynnikiem dopasowania nazywamy liczbę spełniającą zaleŝność d * R * = max R( d) d Przez oznaczamy argument maksymalizujący R(d).

24 Główny rezultat x 0 Twierdzenie 1 Dla prawdziwe jest następujące górne oszacowanie na minimalne prawdopodobieństwo ruiny: Ψ * R x ( x ) C + e *, C [ * * R d ( Y y) e Y > y ] 1 + = inf [ y 0 gdzie.

25 Główny rezultat Aby udowodnić dolne dodatnie, dolne oszacowanie wprowadzę pewne ograniczenie na zmienną Y. Definicja (Gaier, Grandits, Schachermeyer) Zmienna losowa Y jest UEMTD dla r (z ang. uniform exponential moment in tail distribution for r), jeŝeli c = sup y 0 [ r( Y y) e Y > y ] < Niestety, jest to dość restrykcyjne załoŝenie.

26 Główny rezultat 0 Twierdzenie 2 JeŜeli, a ponadto Y jest UEMTD dla R *, to prawdziwe jest następujące dolne oszacowanie na minimalne prawdopodobieństwo ruiny: x C e R * x Ψ * ( x), C [ * R ( Y y) e Y > y ] 1 = sup [ y 0 gdzie.

27 Główny rezultat x 0 Wniosek JeŜeli i Y jest UEMTD dla R *, to zachodzą nierówności: 0 < C liminf x * Ψ * ( x ) e R x, lim sup x Ψ * ( x) e INTERPRETACJA: jeŝeli szkody mają cienkie ogony, to, przy nadwyŝce początkowej dąŝącej do nieskończoności, minimalne p-wo ruiny maleje nie szybciej niŝ eksponencjalnie. R * x C +.

28 1. Problem minimalizacji prawdopodobieństwa ruiny w literaturze 2. Model Sparre Andersena 3. Sformułowanie problemu 4. Optymalne sterowanie procesem nadwyŝki 5. Główny rezultat 6. Przykład: Model klasyczny z wykładniczymi szkodami 7. Podsumowanie i spis literatury

29 Model klasyczny z wykładniczymi szkodami ZałoŜenia: 1 Y ~ Exp( ), Z ~ Exp( λ), µ θ > η Twierdzenie (Schäl) W takim modelu, gdzie sterowanie ogranicza się do reasekuracji proporcjonalnej, optymalną strategią jest brak reasekuracji (d=1), jeśli zachodzi 1+θ > (1+η) 2. Dowód polega na zastosowaniu Verification Theorem. W tym szczególnym przypadku dostajemy explicite wzór na minimalne prawdopodobieństwo ruiny.

30 Model klasyczny z Model klasyczny z wykładniczymi szkodami wykładniczymi szkodami Dla 1+η<1+θ<(1+η )2 maksymalny współczynnik dopasowania osiągany jest dla ) ( * < = θ θ θ η θ d i wynosi Ponadto, jeśli dodatkowo 1+θ>1+2η to zachodzi: 1+θ θ. ) ( 1) 1 ( 2 * η θ µ θ + = R x R x R e d R x e R * * ) (1 ) ( ) (1 * * * * Ψ µ µ

31 Model klasyczny z wykładniczymi szkodami η=0.2, θ=0.41 nadwyŝka początkowa klasyczne p-wo ruiny ogr. dolne na min p-wo ruiny ogr. górne na min. p-wo ruiny e e e e e e e e e-73

32 Model klasyczny z wykładniczymi szkodami klasyczne p-wo ruiny ograniczenie górne η = 0.2, θ = 0.25

33 1. Problem minimalizacji prawdopodobieństwa ruiny w literaturze 2. Model Sparre Andersena 3. Sformułowanie problemu 4. Optymalne sterowanie procesem nadwyŝki 5. Główny rezultat 6. Przykład: Model klasyczny z wykładniczymi szkodami 7. Podsumowanie i spis literatury

34 Podsumowanie Uzyskane oszacowanie górne poprawia klasyczne oszacowanie górne dzięki maksymalizacji współczynnika dopasowania MoŜna próbować uzyskać inne oszacowania, w szczególności nietrywialne dolne oszacowanie korzystając z lematu Schäla, które nie wymagałoby załoŝenia UEMTD Kolejny problem do rozwaŝenia, to pokazanie, Ŝe lim Ψ * ( x) e granica istnieje. x R * x Ponadto, wydaje mi się, Ŝe bez większych komplikacji moŝna wprowadzić dodatkowe sterowanie (np. inwestycja w ryzykowny instrument) i otrzymać podobne wyniki

35 Literatura [1] Asmussen S., Ruin probabilities, World Scientific, Singapore, [2] Bertsekas D., Shreve S.E.,Stochastic optimal control: the discrete-time case, Academic Press, New York, [3] Gaier J., Grandits P., Schachermeyer W., Asymptotic ruin probabilities and optimal investment, Annals of Applied Probability 13, , [4] Gajek L., On the deficit distribution when ruin occurs discrete-time model, Insurance: Mathematics and Economics 36, 13-24, 2005.

36 Literatura [5] Groniowska A., Niemiro W., Controlled risk processes in discrete time: Lower and upper approximations to the optimal probability of ruin, Insurance: Mathematics and Economics 36, , [6] Schäl M., On discrete-time dynamic programming in insurance: exponential utility and minimizing the ruin probability, Scandinavian Actuarial Journal 3, , [7] Schäl M., Control of ruin probabilities by discretetime investments, Math. Meth. Oper. Res., 62, , [8] Schmidli H., On minimizing the ruin probability by investment and reinsurance, Annals of Applied Probability 12, , 2002.

37 DZIĘKUJĘ ZA UWAGĘ!

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

Dyskretny proces ryzyka z uwzględnieniem reasekuracji i losowej stopy procentowej 1

Dyskretny proces ryzyka z uwzględnieniem reasekuracji i losowej stopy procentowej 1 Roczniki Kolegium Analiz Ekonomicznych Zeszyt 3/23 Helena Jasiulewicz Dyskretny proces ryzyka z uwzględnieniem reasekuracji i losowej stopy procentowej Streszczenie W artykule rozważane jest prawdopodoieństwo

Bardziej szczegółowo

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych..00 r. Zadanie. Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie

Bardziej szczegółowo

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )

Bardziej szczegółowo

Detekcja rozkładów o ciężkich ogonach

Detekcja rozkładów o ciężkich ogonach Detekcja rozkładów o ciężkich ogonach J. Śmiarowska, P. Jamer Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska 24 kwietnia 2012 J. Śmiarowska, P. Jamer (Politechnika Warszawska) Detekcja

Bardziej szczegółowo

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *

Bardziej szczegółowo

Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych)

Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych) Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych) Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki leszekp@mimuw.edu.pl Horyzonty 2014 17-03-2014 Będlewo Zadania numeryczne

Bardziej szczegółowo

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009

Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Rafał M. Łochowski Szkoła Główna Handlowa w Warszawie O pewnym modelu pojawiania się szkód Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Modele pojawiania

Bardziej szczegółowo

PROCES RYZYKA Z ZALEŻNYMI OKRESAMI MIĘDZY WYPŁATAMI ANALIZA PRAWDOPODOBIEŃSTWA RUINY 1

PROCES RYZYKA Z ZALEŻNYMI OKRESAMI MIĘDZY WYPŁATAMI ANALIZA PRAWDOPODOBIEŃSTWA RUINY 1 Stanisław Heilpern Uniwersytet Ekonomiczny we Wrocławiu PROCES RYZYKA Z ZALEŻNYMI OKRESAMI MIĘDZY WYPŁATAMI ANALIZA PRAWDOPODOBIEŃSTWA RUINY 1 Wprowadzenie W pracy będzie rozpatrywany ciągły proces ryzyka,

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014 Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1 Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:

Bardziej szczegółowo

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n

Bardziej szczegółowo

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n

Bardziej szczegółowo

Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2013/14

Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2013/14 ZESTAW A IMIȨ I NAZWISKO: Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2/4 Data: 224 Egzaminar: Ryszard Szekli INSTRUKCJE: Rozwiązując test zakreślamy literką X POPRAWNE ODPOWIEDZI W TABELCE

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Geometryczna zbieżność algorytmu Gibbsa

Geometryczna zbieżność algorytmu Gibbsa Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności

Bardziej szczegółowo

Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej

Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Co to jest entropia nadwyżkowa? Niech (X i ) i Z będzie procesem

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty momenty Oprócz omówionych już do tej pory charakterystyk rozkładów bardzo wygodnym i skutecznym narzędziem badanie zmiennej losowej są tzw. transformaty jej rozkładu: funkcje tworzące i funkcje charakterystyczne.

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

01. dla x 0; 1 2 wynosi:

01. dla x 0; 1 2 wynosi: Matematyka ubezpieczeń majątkowych 0.0.04 r. Zadanie. Ryzyko X ma rozkład z atomami: Pr X 0 08. Pr X 0. i gęstością: f X x 0. dla x 0; Ryzyko Y ma rozkład z atomami: Pr Y 0 07. Pr Y 0. i gęstością: fy

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach. Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Numeryczne aproksymacje prawdopodobieństwa ruiny

Numeryczne aproksymacje prawdopodobieństwa ruiny Numeryczne aproksymacje prawdopodobieństwa ruiny Krzysztof Burnecki Aleksander Weron Centrum Metod Stochastycznych im. Hugona Steinhausa Instytut Matematyki i Informatyki Politechnika Wrocławska www.im.pwr.wroc.pl/

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA

UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA KARIERA MATEMATYKĄ KREŚLONA UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA Ryzyko i ubezpieczenie Możliwość zajścia niechcianego zdarzenia nazywamy ryzykiem. Ryzyko prawie zawsze wiąże się ze stratą. Ryzyko i ubezpieczenie

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych Nazwa modułu: teoria ryzyka Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Bardziej szczegółowo

UPORZĄDKOWANIE STOCHASTYCZNE ESTYMATORÓW ŚREDNIEGO CZASU ŻYCIA. Piotr Nowak Uniwersytet Wrocławski

UPORZĄDKOWANIE STOCHASTYCZNE ESTYMATORÓW ŚREDNIEGO CZASU ŻYCIA. Piotr Nowak Uniwersytet Wrocławski UPORZĄDKOWANIE STOCHASTYCZNE ESTYMATORÓW ŚREDNIEGO CZASU ŻYCIA Piotr Nowak Uniwersytet Wrocławski Wprowadzenie X = (X 1,..., X n ) próba z rozkładu wykładniczego Ex(θ). f (x; θ) = 1 θ e x/θ, x > 0, θ >

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X Zadanie. Mamy dany ciąg liczb q, q,..., q n z przedziału 0,, oraz ciąg m, m,..., m n liczb dodatnich. Rozważmy dwie zmienne losowe: o X X X... X n, gdzie X i ma złożony rozkład dwumianowy o parametrach,q

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. RozwaŜmy

Bardziej szczegółowo

Statystyka aktuarialna i teoria ryzyka, rozkłady szkód

Statystyka aktuarialna i teoria ryzyka, rozkłady szkód Statystyka aktuarialna i teoria ryzyka, rozkłady szkód Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) SAiTR wykład 7 1 / 16 ROZKŁADY WARTOŚCI SZKÓD Podstawowe własności: rozkłady skupione na dodatniej

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky ego Marek Kałuszka Michał Krzeszowiec Ogólnopolska Konferencja Naukowa Zagadnienia

Bardziej szczegółowo

Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów

Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=

Bardziej szczegółowo

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej.

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. 1. Wartość bezwzględną liczby jest określona wzorem: x, dla _ x 0 x =, x, dla _ x < 0 Wartość bezwzględna liczby nazywana

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych) (niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać

Bardziej szczegółowo

Krzysztof Kępczyński Zagadnienie paryskiej ruiny w gaussowskim modelu ryzyka

Krzysztof Kępczyński Zagadnienie paryskiej ruiny w gaussowskim modelu ryzyka Uniwersytet Wrocław Wydział Matematyki i Informatyki Instytut matematyczny specjalność: zastosowania rachunku prawdopodobieństwa i statystyki Krzysztof Kępczyński Zagadnienie paryskiej ruiny w gaussowskim

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Systemy uczace się 2009 1 / 32 Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Hung Son Nguyen Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: son@mimuw.edu.pl Grudzień

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

APROKSYMACJE DE VYLDERA PRAWDOPODOBIEŃSTWA RUINY DLA MODELU Z CZASEM CIĄGŁYM W NIESKOŃCZONYM HORYZONCIE CZASOWYM

APROKSYMACJE DE VYLDERA PRAWDOPODOBIEŃSTWA RUINY DLA MODELU Z CZASEM CIĄGŁYM W NIESKOŃCZONYM HORYZONCIE CZASOWYM STUDIA OECONOMICA POSNANIENSIA 05, vol. 3, no. DOI: 0.8559/SOEP.05..0 Karolina Tura Politechnika Gdańska, Wydział Zarządzania i Ekonomii, Katedra Nauk Ekonomicznych, Zakład Statystyki ktura@zie.pg.gda.pl

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Ubezpieczenia majątkowe

Ubezpieczenia majątkowe Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Zliczanie Podziałów Liczb

Zliczanie Podziałów Liczb Zliczanie Podziałów Liczb Przygotował: M. Dziemiańczuk 7 lutego 20 Streszczenie Wprowadzenie Przez podział λ nieujemnej liczby całkowitej n rozumiemy nierosnący ciąg (λ, λ 2,..., λ r ) dodatnich liczb

Bardziej szczegółowo

Rynek, opcje i równania SDE

Rynek, opcje i równania SDE Rynek, opcje i równania SDE Adam Majewski Uniwersytet Gdański kwiecień 2009 Adam Majewski (Uniwersytet Gdański) Rynek, opcje i równania SDE kwiecień 2009 1 / 16 1 Rynek, portfel inwestycyjny, arbitraż

Bardziej szczegółowo

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Autorzy: Marta Rotkiel, Anna Konik, Bartłomiej Parowicz, Robert Rudak, Piotr Otręba Spis treści: Wstęp Cel

Bardziej szczegółowo

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne. Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo