Maszyny wektorów podpierajacych w regresji rangowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Maszyny wektorów podpierajacych w regresji rangowej"

Transkrypt

1 Maszyny wektorów podpierajacych w regresji rangowej Uniwersytet Mikołaja Kopernika

2 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie X X R d, Y R

3 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie X X R d, Y R X, X - obserwowane wektory cech Y, Y - nieznane zmienne losowe

4 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie X X R d, Y R X, X - obserwowane wektory cech Y, Y - nieznane zmienne losowe Z jest lepszy od Z, jeśli Y > Y

5 Reguła rangująca f : X X R

6 Reguła rangująca f : X X R jeśli f (x, x ) > 0, to przewidujemy y > y

7 Reguła rangująca f : X X R jeśli f (x, x ) > 0, to przewidujemy y > y Minimalizacja ryzyka L(f ) = P( sgn(y Y ) f (X, X ) < 0) arg min f F L(f )

8 Z 1 = (X 1, Y 1 ),..., Z n = (X n, Y n ) - niezależne kopie Z

9 Z 1 = (X 1, Y 1 ),..., Z n = (X n, Y n ) - niezależne kopie Z Minimalizacja ryzyka empirycznego L n (f ) = 1 n(n 1) I[ sgn(y i Y j ) f (X i, X j ) < 0] i j arg min f F L n(f )

10 Wypukłe ryzyko ψ - wypukła funkcja straty

11 Wypukłe ryzyko ψ - wypukła funkcja straty Q(f ) = E ψ[ sgn(y Y ) f (X, X )] f = arg min f F Q(f )

12 Wypukłe ryzyko ψ - wypukła funkcja straty Q(f ) = E ψ[ sgn(y Y ) f (X, X )] f = arg min f F Q(f ) Minimalizacja ryzyka empirycznego Q n (f ) = 1 n(n 1) ψ f (Z i, Z j ), i j gdzie ψ f (z, z ) = ψ[sgn(y y ) f (x, x )]

13 Wypukłe ryzyko ψ - wypukła funkcja straty Q(f ) = E ψ[ sgn(y Y ) f (X, X )] f = arg min f F Q(f ) Minimalizacja ryzyka empirycznego Q n (f ) = 1 n(n 1) ψ f (Z i, Z j ), i j gdzie ψ f (z, z ) = ψ[sgn(y y ) f (x, x )] f n = arg min f F Q n(f )

14 Statystyczna klasyfikacja (X, Y ) - wektor losowy, Y { 1, 1}

15 Statystyczna klasyfikacja (X, Y ) - wektor losowy, Y { 1, 1} f (x) = w, x + b

16 Statystyczna klasyfikacja (X, Y ) - wektor losowy, Y { 1, 1} f (x) = w, x + b jeśli f (x) 0, to przewidujemy y = 1

17 Przypadek liniowo separowalny dla i = 1,..., n { w, xi + b 0, gdy y i = 1 w, x i + b < 0, gdy y i = 1

18 Przypadek liniowo separowalny dla i = 1,..., n { w, xi + b 0, gdy y i = 1 w, x i + b < 0, gdy y i = 1

19 Przypadek liniowo separowalny

20 Przypadek liniowo separowalny min w,b w 2 z warunkami y i ( w, x i + b) 1 dla i = 1,..., n

21 Przypadek liniowo separowalny min w,b w 2 z warunkami y i ( w, x i + b) 1 dla i = 1,..., n w 0 = n i=1 α 0 i y ix i, b 0 = w 0,x(1)+x( 1) 2

22 Przypadek liniowo separowalny min w,b w 2 z warunkami y i ( w, x i + b) 1 dla i = 1,..., n w 0 = n i=1 α 0 i y ix i, max α b 0 = w 0,x(1)+x( 1) 2 n α i 1 n α i α j y i y j x i, x j 2 i=1 i,j=1 z warunkami n i=1 α i y i = 0 oraz α i 0, i = 1,..., n

23 Przypadek liniowo separowalny min w,b w 2 z warunkami y i ( w, x i + b) 1 dla i = 1,..., n w 0 = n i=1 α 0 i y ix i, max α b 0 = w 0,x(1)+x( 1) 2 n α i 1 n α i α j y i y j x i, x j 2 i=1 i,j=1 z warunkami n i=1 α i y i = 0 oraz α i 0, i = 1,..., n f (x) = n αi 0 y i x i, x + b 0 i=1

24 Przypadek liniowo nieseparowalny ξ 1,..., ξ n

25 Przypadek liniowo nieseparowalny ξ 1,..., ξ n dla i = 1,..., n ( ) { w, xi + b 1 ξ i, gdy y i = 1 w, x i + b 1 + ξ i, gdy y i = 1

26 Przypadek liniowo nieseparowalny ξ 1,..., ξ n dla i = 1,..., n ( ) { w, xi + b 1 ξ i, gdy y i = 1 w, x i + b 1 + ξ i, gdy y i = 1 Minimalizacja z warunkami ( ) w 2 + C n ξ i i=1

27 Liniowe reguły rangujące jeśli w, x > w, x, to przewidujemy y > y

28 Liniowe reguły rangujące jeśli w, x > w, x, to przewidujemy y > y Liniowa separowalność w, X i > w, X j, gdy Y i > Y j

29 Liniowe reguły rangujące jeśli w, x > w, x, to przewidujemy y > y Liniowa separowalność w, X i > w, X j, gdy Y i > Y j X ij = X i X j, Y ij = Y i Y j

30 Liniowe reguły rangujące jeśli w, x > w, x, to przewidujemy y > y Liniowa separowalność w, X i > w, X j, gdy Y i > Y j X ij = X i X j, Y ij = Y i Y j w, X ij > 0, gdy Y ij > 0

31 Minimalizacja ryzyka empirycznego C Q n (f ) = max [0, 1 sign(y i Y j )f (X i, X j )]+ f 2 n(n 1) i j

32 Minimalizacja ryzyka empirycznego C Q n (f ) = max [0, 1 sign(y i Y j )f (X i, X j )]+ f 2 n(n 1) i j

33 Ryzyko i ryzyko względne Dla dowolnego 0 < α < 1 ( P Q(f n ) Q n (f n ) + ) D(F, ψ) ln α 1 n β 1 α

34 Ryzyko i ryzyko względne Dla dowolnego 0 < α < 1 ( P Q(f n ) Q n (f n ) + ) D(F, ψ) ln α 1 n β 1 α P ( Q(f n ) Q(f ) + ) D(F, ψ) ln α 1 n β 1 α

35 Ryzyko i ryzyko względne Dla dowolnego 0 < α < 1 ( P Q(f n ) Q n (f n ) + ) D(F, ψ) ln α 1 n β 1 α P ( Q(f n ) Q(f ) + β = 1/2 - Clemencon(2008) ) D(F, ψ) ln α 1 n β 1 α

36 Użyte jądra Liniowe K(x, x ) = x, x

37 Użyte jądra Liniowe K(x, x ) = x, x Wielomianowe stopnia trzeciego K(x, x ) = x, x 3

38 Użyte jądra Liniowe K(x, x ) = x, x Wielomianowe stopnia trzeciego K(x, x ) = x, x 3 Gaussowskie K(x, x ) = exp ( 1 ) 2 x x 2

39 Wytrzymałość betonu na zgniatanie Dane: 1030 obserwacji, 8 cech L(1) L(10) W(1) W(10) G(1) G(10) n=100 0,198 0,196 0,199 0,196 0,179 0,185 n=300 0,191 0, ,165 0,179

40 Ceny mieszkań w Bostonie Dane: 506 obserwacji, 13 cech L(1) L(10) W(1) W(10) G(1) G(10) n=100 0,153 0,157 0,148 0,153 0,133 0,132 n=300 0,132 0, ,107 0,123

41 Jakość wina czerwonego i białego Dane: 13 cech, ponad 1600 i 5000 obserwacji Czerwone L(1) L(10) W(1) W(10) G(1) G(10) n=100 0,226 0,227 0,281 0,271 0,257 0,285 n=300 0,214 0, ,232 0,270 Białe n=100 0,265 0,266 0,292-0,282 0,305 n=300 0,253 0, ,268 0,303

42 M. A. Arcones, E. Gine, U-processes indexed by Vapnik-Chervonenkis classes of functions with applications to asymptotics and bootstrap of U-statistics with estimated parameters, Stochastic Process. Appl., vol. 52, pp , P. L. Bartlett, O. Bousquet, S. Mendelson, Local Rademacher complexities, Ann. Statist., vol. 33, pp , P. L. Bartlett, M. I. Jordan, J. D. McAuliffe, Convexity, Classification, and Risk Bounds, Journal of the American Statistical Association, vol. 101, pp , S. Clemençon, G. Lugosi, N. Vayatis, Ranking and empirical minimization of U-statistics, Ann. Statist., vol. 36, pp , C. Cortes, V. N. Vapnik, Support vector networks, Machine Learning, vol. 20, pp , P. Cortez, A. Cerdeira, F. Almeida, F. Matos, J. Reis, Modeling wine preferences by data mining from physicochemical properties, Decision Support Systems, vol. 47, Wojciech pp. Rejchel , Maszyny wektorów podpierajacych w regresji rangowej

43 E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, A. Weingessel, e1071: Misc Functions of the Department of Statistics (e1071), TU Wien, A. Frank, A. Asuncion, UCI Machine Learning Repository [ Irvine, CA: University of California, School of Information and Computer Science, V. H. de la Pena, E. Gine, Decoupling: from dependence to independence. Springer-Verlag, New York, C. Scovel, I. Steinwart, Fast rates for support vector machines using Gaussian kernels, Ann. Statist., vol. 35, pp , V. N. Vapnik, Statistical learning theory, Wiley, New York, I. C. Yeh, Modeling of strength of high performance concrete using artificial neural networks, Cement and Concrete Research, vol. 28, pp , 1998.

Estymatory regresji rangowej oparte na metodzie LASSO

Estymatory regresji rangowej oparte na metodzie LASSO Estymatory regresji rangowej oparte na metodzie LASSO Wojciech Rejchel UMK Toruń Wisła 2013 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie P X, X X R m, Y, Y R Z = (X, Y ),

Bardziej szczegółowo

Własności estymatorów regresji porządkowej z karą LASSO

Własności estymatorów regresji porządkowej z karą LASSO Własności estymatorów regresji porządkowej z karą LASSO Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Warszawski Badania sfinansowane ze środków Narodowego Centrum Nauki przyznanych w ramach finansowania

Bardziej szczegółowo

Jądrowe klasyfikatory liniowe

Jądrowe klasyfikatory liniowe Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie

Bardziej szczegółowo

UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow

UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow UCZENIE MASZYNOWE III - SVM mgr inż. Adam Kupryjanow Plan wykładu Wprowadzenie LSVM dane separowalne liniowo SVM dane nieseparowalne liniowo Nieliniowy SVM Kernel trick Przykłady zastosowań Historia 1992

Bardziej szczegółowo

7. Maszyny wektorów podpierajacych SVMs

7. Maszyny wektorów podpierajacych SVMs Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.

Bardziej szczegółowo

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja

Bardziej szczegółowo

10. Redukcja wymiaru - metoda PCA

10. Redukcja wymiaru - metoda PCA Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component

Bardziej szczegółowo

5. Analiza dyskryminacyjna: FLD, LDA, QDA

5. Analiza dyskryminacyjna: FLD, LDA, QDA Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

Regresyjne metody łączenia klasyfikatorów

Regresyjne metody łączenia klasyfikatorów Regresyjne metody łączenia klasyfikatorów Tomasz Górecki, Mirosław Krzyśko Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza XXXV Konferencja Statystyka Matematyczna Wisła 7-11.12.2009

Bardziej szczegółowo

KLASYFIKACJA TEKSTUR ZA POMOCĄ SVM MASZYNY WEKTORÓW WSPIERAJĄCYCH

KLASYFIKACJA TEKSTUR ZA POMOCĄ SVM MASZYNY WEKTORÓW WSPIERAJĄCYCH Inżynieria Rolnicza 13/2006 Jacek Goszczyński Instytut Inżynierii Rolniczej Akademia Rolnicza w Poznaniu KLASYFIKACJA TEKSTUR ZA POMOCĄ SVM MASZYNY WEKTORÓW WSPIERAJĄCYCH Streszczenie Motywacją do badań

Bardziej szczegółowo

Multiklasyfikatory z funkcją kompetencji

Multiklasyfikatory z funkcją kompetencji 3 stycznia 2011 Problem klasyfikacji Polega na przewidzeniu dyskretnej klasy na podstawie cech obiektu. Obiekt jest reprezentowany przez wektor cech Zbiór etykiet jest skończony x X Ω = {ω 1, ω 2,...,

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

PRZEWIDYWANIE WŁAŚCIWOŚCI PRODUKTU Z WYKORZYSTANIEM UCZENIA MASZYN

PRZEWIDYWANIE WŁAŚCIWOŚCI PRODUKTU Z WYKORZYSTANIEM UCZENIA MASZYN PRZEWIDYWANIE WŁAŚCIWOŚCI PRODUKTU Z WYKORZYSTANIEM UCZENIA MASZYN Tomasz Demski, StatSoft Polska Sp. z o.o. Przewidywanie właściwości produktu na podstawie składu surowcowego oraz parametrów przebiegu

Bardziej szczegółowo

WYKŁAD: Perceptron Rosenblatta. Maszyny wektorów podpierających (SVM). Empiryczne reguły bayesowskie. Zaawansowane Metody Uczenia Maszynowego

WYKŁAD: Perceptron Rosenblatta. Maszyny wektorów podpierających (SVM). Empiryczne reguły bayesowskie. Zaawansowane Metody Uczenia Maszynowego WYKŁAD: Perceptron Rosenblatta. Maszyny wektorów podpierających (SVM). Empiryczne reguły bayesowskie Zaawansowane Metody Uczenia Maszynowego Perceptron Rosenblatta Szukamy hiperpłaszczyzny β 0 + β 1 najlepiej

Bardziej szczegółowo

SVM: Maszyny Wektorów Podpieraja cych

SVM: Maszyny Wektorów Podpieraja cych SVM 1 / 24 SVM: Maszyny Wektorów Podpieraja cych Nguyen Hung Son Outline SVM 2 / 24 1 Wprowadzenie 2 Brak liniowej separowalności danych Nieznaczna nieseparowalność Zmiana przetrzeń atrybutów 3 Implementacja

Bardziej szczegółowo

Opisy przedmiotów do wyboru

Opisy przedmiotów do wyboru Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 2 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Data mining

Bardziej szczegółowo

Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych

Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych Probabilistic Topic Models Jakub M. TOMCZAK Politechnika Wrocławska, Instytut Informatyki 30.03.2011, Wrocław Plan 1. Wstęp

Bardziej szczegółowo

Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych)

Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych) Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych) Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki leszekp@mimuw.edu.pl Horyzonty 2014 17-03-2014 Będlewo Zadania numeryczne

Bardziej szczegółowo

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika

Bardziej szczegółowo

Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa.

Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa. GLM (Generalized Linear Models) Data Mining Wykład 6 Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa Naiwny klasyfikator Bayesa jest klasyfikatorem statystycznym -

Bardziej szczegółowo

strona 1 / 12 Autor: Walesiak Marek Publikacje:

strona 1 / 12 Autor: Walesiak Marek Publikacje: Autor: Walesiak Marek Publikacje: 1. Autorzy rozdziału: Borys Tadeusz; Strahl Danuta; Walesiak Marek Tytuł rozdziału: Wkład ośrodka wrocławskiego w rozwój teorii i zastosowań metod taksonomicznych, s.

Bardziej szczegółowo

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja

Bardziej szczegółowo

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym Konrad Furmańczyk Katedra Zastosowań Matematyki SGGW Wis a 2010 Plan referatu 1. Modele liniowe

Bardziej szczegółowo

strona 1 / 11 Autor: Walesiak Marek Subdyscyplina: Klasyfikacja i analiza danych Publikacje:

strona 1 / 11 Autor: Walesiak Marek Subdyscyplina: Klasyfikacja i analiza danych Publikacje: Autor: Walesiak Marek Subdyscyplina: Klasyfikacja i analiza danych Publikacje: 1. Autorzy rozdziału: Borys Tadeusz; Strahl Danuta; Walesiak Marek Tytuł rozdziału: Wkład ośrodka wrocławskiego w rozwój teorii

Bardziej szczegółowo

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie

Bardziej szczegółowo

Entropia Renyi ego, estymacja gęstości i klasyfikacja

Entropia Renyi ego, estymacja gęstości i klasyfikacja Entropia Renyi ego, estymacja gęstości i klasyfikacja Wojciech Czarnecki Jacek Tabor 6 lutego 2014 1 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 1/36 36 2 / Wojciech Czarnecki,

Bardziej szczegółowo

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):

Bardziej szczegółowo

ŁĄCZENIE RÓWNOLEGŁE MODELI KLASYFIKACJI OTRZYMANYCH METODĄ WEKTORÓW NOŚNYCH

ŁĄCZENIE RÓWNOLEGŁE MODELI KLASYFIKACJI OTRZYMANYCH METODĄ WEKTORÓW NOŚNYCH Michał Trzęsiok ŁĄCZENIE RÓWNOLEGŁE MODELI KLASYFIKACJI OTRZYMANYCH METODĄ WEKTORÓW NOŚNYCH Wprowadzenie Konstruowanie funkcji klasyfikujących przez łączenie wielu modeli składowych stanowi główny nurt

Bardziej szczegółowo

Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska

Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska e-mail: bartosz.krawczyk@pwr.wroc.pl Czym jest klasyfikacja

Bardziej szczegółowo

Wstęp do przetwarzania języka naturalnego. Wykład 11 Maszyna Wektorów Nośnych

Wstęp do przetwarzania języka naturalnego. Wykład 11 Maszyna Wektorów Nośnych Wstęp do przetwarzania języka naturalnego Wykład 11 Wojciech Czarnecki 8 stycznia 2014 Section 1 Przypomnienie Wektoryzacja tfidf Przypomnienie document x y z Antony and Cleopatra 5.25 1.21 1.51 Julius

Bardziej szczegółowo

ZASTOSOWANIE TECHNIK DATA MINING W BADANIACH NAUKOWYCH

ZASTOSOWANIE TECHNIK DATA MINING W BADANIACH NAUKOWYCH ZASTOSOWANIE TECHNIK DATA MINING W BADANIACH NAUKOWYCH Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Zakres zastosowań analizy danych w różnych dziedzinach badań naukowych stale się poszerza. Wynika to

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW

Bardziej szczegółowo

Model Pasywnego Trasera w Lokalnie Ergodycznym Środowisku

Model Pasywnego Trasera w Lokalnie Ergodycznym Środowisku w Lokalnie Ergodycznym Środowisku Tymoteusz Chojecki UMCS, Lublin Tomasz Komorowski IMPAN, Warszawa Kościelisko, 10 września 2016, XLV Konferencja Zastosowań Matematyki T. Komorowski, T. Chojecki w Lokalnie

Bardziej szczegółowo

Budowa modeli klasyfikacyjnych o skośnych warunkach

Budowa modeli klasyfikacyjnych o skośnych warunkach Budowa modeli klasyfikacyjnych o skośnych warunkach Marcin Michalak (Marcin.Michalak@polsl.pl) III spotkanie Polskiej Grupy Badawczej Systemów Uczących Się Wrocław, 17 18.03.2014 Outline 1 Dwa podejścia

Bardziej szczegółowo

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

8. Drzewa decyzyjne, bagging, boosting i lasy losowe

8. Drzewa decyzyjne, bagging, boosting i lasy losowe Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

2. Empiryczna wersja klasyfikatora bayesowskiego

2. Empiryczna wersja klasyfikatora bayesowskiego Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski

Bardziej szczegółowo

MODELOWANIE CZASU TRWANIA MODEL PROPORCJONALNEGO HAZARDU COXA

MODELOWANIE CZASU TRWANIA MODEL PROPORCJONALNEGO HAZARDU COXA MODELOWANIE CZASU TRWANIA MODEL PROPORCJONALNEGO HAZARDU COXA Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. W wielu zastosowaniach analiza czasu trwania pewnego zjawiska jest interesującym przedmiotem

Bardziej szczegółowo

WYKORZYSTANIE REGRESJI NIEPARAMETRYCZNEJ DO MODELOWANIA WIELKOŚCI OSZCZĘDNOŚCI GOSPODARSTW DOMOWYCH

WYKORZYSTANIE REGRESJI NIEPARAMETRYCZNEJ DO MODELOWANIA WIELKOŚCI OSZCZĘDNOŚCI GOSPODARSTW DOMOWYCH Joanna Trzęsiok Uniwersytet Ekonomiczny w Katowicach WYKORZYSTANIE REGRESJI NIEPARAMETRYCZNEJ DO MODELOWANIA WIELKOŚCI OSZCZĘDNOŚCI GOSPODARSTW DOMOWYCH Wprowadzenie Nieparametryczne metody regresji można

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

Redukcja wymiarowości i selekcja cech w zadaniach klasyfikacji i regresji z wykorzystaniem uczenia maszynowego

Redukcja wymiarowości i selekcja cech w zadaniach klasyfikacji i regresji z wykorzystaniem uczenia maszynowego zeszyty naukowe uniwersytetu szczecińskiego NR 733 studia informatica nr 30 2012 Paweł Ziemba * Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Redukcja wymiarowości i selekcja cech w zadaniach

Bardziej szczegółowo

Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re

Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Odporność statystyk według Ryszarda Zielińskiego a porządki stochastyczne

Odporność statystyk według Ryszarda Zielińskiego a porządki stochastyczne Odporność statystyk według Ryszarda Zielińskiego a porządki stochastyczne Jarosław Bartoszewicz Uniwersytet Wrocławski Zieliński (1977) wprowadził następującą definicję odporności statystycznej. M 0 =

Bardziej szczegółowo

Auditorium classes. Lectures

Auditorium classes. Lectures Faculty of: Mechanical and Robotics Field of study: Mechatronic with English as instruction language Study level: First-cycle studies Form and type of study: Full-time studies Annual: 2016/2017 Lecture

Bardziej szczegółowo

MATLAB Neural Network Toolbox przegląd

MATLAB Neural Network Toolbox przegląd MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study

Bardziej szczegółowo

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 0. Wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 11 Kontakt wojciech.kotlowski@cs.put.poznan.pl http://www.cs.put.poznan.pl/wkotlowski/mp/

Bardziej szczegółowo

KLASYFIKACJA. Słownik języka polskiego

KLASYFIKACJA. Słownik języka polskiego KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu

Bardziej szczegółowo

Własności porządkowe w modelu proporcjonalnych szans

Własności porządkowe w modelu proporcjonalnych szans Własności porządkowe w modelu proporcjonalnych szans Wisła, 8 grudnia 2009 Oznaczenia Wprowadzenie Oznaczenia Porządki stochastyczne Klasy rozkładów czasu życia X F, Y G zmienne losowe o gęstościach f

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYCZNA ANALIZA DANYCH Nazwa w języku angielskim STATISTICAL DATA ANALYSIS Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info

Bardziej szczegółowo

Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych

Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych Iwona Malinowska Politechnika Lubelska Dominik Szynal UMCS, Lublin XXXIII Konferencja "STATYSTYKA MATEMATYCZNA

Bardziej szczegółowo

1 Klasyfikator bayesowski

1 Klasyfikator bayesowski Klasyfikator bayesowski Załóżmy, że dane są prawdopodobieństwa przynależności do klasp( ),P( 2 ),...,P( L ) przykładów z pewnego zadania klasyfikacji, jak również gęstości rozkładów prawdopodobieństw wystąpienia

Bardziej szczegółowo

XXXIII Konferencja Statystyka Matematyczna

XXXIII Konferencja Statystyka Matematyczna XXXIII Konferencja Statystyka Matematyczna MODEL AUTOPSJI KOHERENTNEGO SYSTEMU Karol J. ANDRZEJCZAK kandrzej@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU. WPROWADZENIE

Bardziej szczegółowo

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Generowanie zbioru reguł asocjacyjnych i decyzyjnych ze statystycznie reprezentatywnym wsparciem i anty-wsparciem

Generowanie zbioru reguł asocjacyjnych i decyzyjnych ze statystycznie reprezentatywnym wsparciem i anty-wsparciem Generowanie zbioru reguł asocjacyjnych i decyzyjnych ze statystycznie reprezentatywnym wsparciem i anty-wsparciem Opiekun naukowy: prof. dr hab. inż. Roman Słowiński Poznań, 30 października 2012 Spis treści

Bardziej szczegółowo

SPOTKANIE 9: Metody redukcji wymiarów

SPOTKANIE 9: Metody redukcji wymiarów Wrocław University of Technology SPOTKANIE 9: Metody redukcji wymiarów Piotr Klukowski* Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.wroc.pl 08.12.2015 *Część slajdów pochodzi z prezentacji dr

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice Metody Obliczeniowe w Nauce i Technice 15. Obliczanie całek metodami Monte Carlo Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl

Bardziej szczegółowo

METODY WYZNACZANIA WSPÓŁCZYNNIKA NIEPEŁNOŚCI WIEDZY W SYSTEMACH Z WIEDZĄ NIEPEŁNĄ

METODY WYZNACZANIA WSPÓŁCZYNNIKA NIEPEŁNOŚCI WIEDZY W SYSTEMACH Z WIEDZĄ NIEPEŁNĄ METODY WYZNACZANIA WSPÓŁCZYNNIKA NIEPEŁNOŚCI WIEDZY W SYSTEMACH Z WIEDZĄ NIEPEŁNĄ AGNIESZKA NOWAK-BRZEZIŃSKA, TOMASZ JACH Uniwersytet Śląski, Instytut Informatyki Streszczenie W opracowaniu autorzy proponują

Bardziej szczegółowo

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Systemy uczace się 2009 1 / 32 Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Hung Son Nguyen Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: son@mimuw.edu.pl Grudzień

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

The data reporting such indexes for a number of years (about twelve years of such data are were fitted to a logistic curve:

The data reporting such indexes for a number of years (about twelve years of such data are were fitted to a logistic curve: 1. Introduction The paper shows estimated data of three ICT indexes available from GUS. I used two types of functions: the classical logistic sigmoidal curve q(t) = a / (1 + b exp(-c t)), and the Gompertz

Bardziej szczegółowo

SPOTKANIE 3: Regresja: Regresja liniowa

SPOTKANIE 3: Regresja: Regresja liniowa Wrocław University of Technology SPOTKANIE 3: Regresja: Regresja liniowa Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.wroc.pl 22.11.2013 Rozkład normalny Rozkład normalny (ang. normal

Bardziej szczegółowo

Oracle Data Mining 10g

Oracle Data Mining 10g Oracle Data Mining 10g Zastosowanie algorytmu Support Vector Machines do problemów biznesowych Piotr Hajkowski Oracle Consulting Agenda Podstawy teoretyczne algorytmu SVM SVM w bazie danych Klasyfikacja

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Estimated data of three ICT indexes available from GUSM

Estimated data of three ICT indexes available from GUSM Jan Grzegorek, Beata Ziewiec Estimated data of three ICT indexes available from GUSM Households with access to the Internet at home - HHI Households with computer at home - HHC Households with mobile phone

Bardziej szczegółowo

Rozmyte drzewa decyzyjne. Łukasz Ryniewicz Metody inteligencji obliczeniowej

Rozmyte drzewa decyzyjne. Łukasz Ryniewicz Metody inteligencji obliczeniowej µ(x) x µ(x) µ(x) x x µ(x) µ(x) x x µ(x) x µ(x) x Rozmyte drzewa decyzyjne Łukasz Ryniewicz Metody inteligencji obliczeniowej 21.05.2007 AGENDA 1 Drzewa decyzyjne kontra rozmyte drzewa decyzyjne, problemy

Bardziej szczegółowo

Popularne klasyfikatory w pakietach komputerowych

Popularne klasyfikatory w pakietach komputerowych Popularne klasyfikatory w pakietach komputerowych Klasyfikator liniowy Uogólniony klasyfikator liniowy SVM aiwny klasyfikator bayesowski Ocena klasyfikatora ROC Lista popularnych pakietów Klasyfikator

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Seweryn MAZURKIEWICZ* Janusz WALCZAK* ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU W artykule rozpatrzono problem

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561

Bardziej szczegółowo

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:

Bardziej szczegółowo

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n

Bardziej szczegółowo

Dynamika rozwoju rynku mediów i poligrafii

Dynamika rozwoju rynku mediów i poligrafii Dynamika rozwoju rynku mediów i poligrafii Autorzy: Wiesław Cetera Jan Grzegorek Marian Suskiewicz Beata Ziewiec Warszawa 24 października 2014 Związek tematyki mediów i poligrafii z eprognosis Połączenie

Bardziej szczegółowo

Widzenie komputerowe (computer vision)

Widzenie komputerowe (computer vision) Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja

Bardziej szczegółowo

STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI

STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI 1-2011 PROBLEMY EKSPLOATACJI 89 Franciszek GRABSKI Akademia Marynarki Wojennej, Gdynia STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI Słowa kluczowe Bezpieczeństwo, procesy semimarkowskie,

Bardziej szczegółowo

WYKŁAD 3. Klasyfikacja: modele probabilistyczne

WYKŁAD 3. Klasyfikacja: modele probabilistyczne Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami

Bardziej szczegółowo

Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber

Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber Drzewa decyzyjne Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Drzewa decyzyjne Anna Sztyber / Drzewa decyzyjne w podstawowej wersji algorytm klasyfikacji

Bardziej szczegółowo

Badania w sieciach złożonych

Badania w sieciach złożonych Badania w sieciach złożonych Grant WCSS nr 177, sprawozdanie za rok 2012 Kierownik grantu dr. hab. inż. Przemysław Kazienko mgr inż. Radosław Michalski Instytut Informatyki Politechniki Wrocławskiej Obszar

Bardziej szczegółowo

Modele uporządkowań zmiennych losowych w charakteryzacjach rozkładów prawdopodobieństwa, estymacji i miarach zależności.

Modele uporządkowań zmiennych losowych w charakteryzacjach rozkładów prawdopodobieństwa, estymacji i miarach zależności. Piotr Pawlas Wykaz opublikowanych prac naukowych lub twórczych prac zawodowych oraz informacja o osiągnięciach dydaktycznych, współpracy naukowej i popularyzacji nauki I. Wykaz publikacji stanowiących

Bardziej szczegółowo

Klasteryzacja i klasyfikacja danych spektrometrycznych

Klasteryzacja i klasyfikacja danych spektrometrycznych Klasteryzacja i klasyfikacja danych spektrometrycznych Współpraca: Janusz Dutkowski, Anna Gambin, Krzysztof Kowalczyk, Joanna Reda, Jerzy Tiuryn, Michał Dadlez z zespołem (IBB PAN) Instytut Informatyki

Bardziej szczegółowo

HARMONOGRAM GODZINOWY ORAZ PUNKTACJA ECTS CZTEROLETNICH STUDIÓW DOKTORANCKICH

HARMONOGRAM GODZINOWY ORAZ PUNKTACJA ECTS CZTEROLETNICH STUDIÓW DOKTORANCKICH P O L I T E C H N I K A Ś L Ą S K A WYDZIAŁ AUTOMATYKI, ELEKTRONIKI I INFORMATYKI DZIEKAN UL. AKADEMICKA 16 44-100 GLIWICE T: +48 32 237 13 10 T: +48 32 237 24 13 F: +48 32 237 24 13 Dziekan_aei@polsl.pl

Bardziej szczegółowo

Zastosowanie uogólnionych modeli liniowych i uogólnionych mieszanych modeli liniowych do analizy danych dotyczacych występowania zębiniaków

Zastosowanie uogólnionych modeli liniowych i uogólnionych mieszanych modeli liniowych do analizy danych dotyczacych występowania zębiniaków Zastosowanie uogólnionych modeli liniowych i uogólnionych mieszanych modeli liniowych do analizy danych dotyczacych występowania zębiniaków Wojciech Niemiro, Jacek Tomczyk i Marta Zalewska Uniwersytet

Bardziej szczegółowo

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne Wprowadzenie Prostym podejściem do klasyfikacji jest estymacja funkcji regresji r(x) =E(Y X =x)zpominięciemestymacjigęstościf k. Zacznijmyodprzypadkudwóchgrup,tj.gdy Y = {1,0}. Wówczasr(x) =P(Y =1 X =x)ipouzyskaniuestymatora

Bardziej szczegółowo

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 2 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 213-1-15 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA

ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA Jan Mielniczuk Wisła, grudzień 2009 PLAN Błędy predykcji i ich podstawowe estymatory Estymacja błędu predykcji w modelu liniowym. Funkcje kryterialne Własności

Bardziej szczegółowo