Estymatory regresji rangowej oparte na metodzie LASSO

Wielkość: px
Rozpocząć pokaz od strony:

Download "Estymatory regresji rangowej oparte na metodzie LASSO"

Transkrypt

1 Estymatory regresji rangowej oparte na metodzie LASSO Wojciech Rejchel UMK Toruń Wisła 2013

2 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie P X, X X R m, Y, Y R

3 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie P X, X X R m, Y, Y R X, X - obserwowane wektory cech Y, Y - nieznane zmienne losowe

4 z jest lepszy od z, jeśli y > y

5 z jest lepszy od z, jeśli y > y Reguła rangująca f : X X R

6 z jest lepszy od z, jeśli y > y Reguła rangująca f : X X R jeśli f (x, x ) > 0, to przewidujemy y > y

7 z jest lepszy od z, jeśli y > y Reguła rangująca f : X X R jeśli f (x, x ) > 0, to przewidujemy y > y φ : R R - funkcja straty

8 z jest lepszy od z, jeśli y > y Reguła rangująca f : X X R jeśli f (x, x ) > 0, to przewidujemy y > y φ : R R - funkcja straty Minimalizacja ryzyka z funkcją straty φ Q(f ) = E φ [ sign(y Y ) f (X, X ) ]

9 z jest lepszy od z, jeśli y > y Reguła rangująca f : X X R jeśli f (x, x ) > 0, to przewidujemy y > y φ : R R - funkcja straty Minimalizacja ryzyka z funkcją straty φ Q(f ) = E φ [ sign(y Y ) f (X, X ) ] f = arg min f F Q(f )

10 Z 1 = (X 1, Y 1 ),..., Z n = (X n, Y n ) - niezależne kopie Z

11 Z 1 = (X 1, Y 1 ),..., Z n = (X n, Y n ) - niezależne kopie Z Minimalizacja ryzyka empirycznego Q n (f ) = 1 n(n 1) 1 i j n φ [ sign(y i Y j ) f (X i, X j )]

12 Z 1 = (X 1, Y 1 ),..., Z n = (X n, Y n ) - niezależne kopie Z Minimalizacja ryzyka empirycznego Q n (f ) = 1 n(n 1) 1 i j n φ [ sign(y i Y j ) f (X i, X j )] ˆf = arg min f F Q n(f ), F F

13 0 1 funkcja straty φ(t) = I (,0) (t)

14 0 1 funkcja straty φ(t) = I (,0) (t) Ryzyko Q(f ) = P [ sign(y Y ) f (X, X ) < 0 ]

15 0 1 funkcja straty φ(t) = I (,0) (t) Ryzyko Q(f ) = P [ sign(y Y ) f (X, X ) < 0 ] Najlepsza reguła rangująca f :

16 0 1 funkcja straty φ(t) = I (,0) (t) Ryzyko Q(f ) = P [ sign(y Y ) f (X, X ) < 0 ] Najlepsza reguła rangująca f : jeśli P(Y > Y X, X ) 1 2, to Z jest lepszy od Z

17 φ(x) = max(0, 1 x) = (1 x) +

18 φ(x) = max(0, 1 x) = (1 x) +

19 Kara LASSO F = {f θ (x, x ) = θ T (x x ) : θ Θ R m}

20 Kara LASSO F = {f θ (x, x ) = θ T (x x ) : θ Θ R m} Q n (f θ ) = 1 n(n 1) [ 1 sign(y i Y j ) f θ (X i, X j )] + i j

21 Kara LASSO F = {f θ (x, x ) = θ T (x x ) : θ Θ R m} Q n (f θ ) = 1 n(n 1) ˆf = arg min θ [ 1 sign(y i Y j ) f θ (X i, X j )] + i j Q n (f θ ) + λ n m θ k k=1

22 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie P X, X X R m, Y, Y R

23 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie P X, X X R m, Y, Y R ψ 1,..., ψ m : X X R - funkcje bazowe

24 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie P X, X X R m, Y, Y R ψ 1,..., ψ m : X X R - funkcje bazowe F = { f θ (x, x ) = } m θ k ψ k (x, x ) : θ Θ R m k=1

25 Minimalizacja ryzyka z funkcją straty φ Q(f ) = E φ [ f (X, X ), Y, Y ] f = arg min f F Q(f )

26 Minimalizacja ryzyka z funkcją straty φ Q(f ) = E φ [ f (X, X ), Y, Y ] f = arg min f F Q(f ) Minimalizacja ryzyka empirycznego z karą LASSO ˆf = arg min Q n(f θ ) + λ n f θ F m θ k k=1

27 Minimalizacja ryzyka z funkcją straty φ Q(f ) = E φ [ f (X, X ), Y, Y ] f = arg min f F Q(f ) Minimalizacja ryzyka empirycznego z karą LASSO Q n (f θ ) = ˆf = arg min Q n(f θ ) + λ n f θ F 1 n(n 1) 1 i j n m θ k k=1 φ [ f θ (X i, X j ), Y i, Y j ]

28 ψ k (x, x ) = x k x k, x, x R m

29 ψ k (x, x ) = x k x k, x, x R m φ [ f θ (x, x ), y, y ] = [ 1 sign(y y ) f θ (x, x ) ] +

30 N(θ) = #{k : θ k 0}

31 N(θ) = #{k : θ k 0} { } arg min Q(f θ ) Q( f ) + γn(θ) f θ F

32 N(θ) = #{k : θ k 0} { } arg min Q(f θ ) Q( f ) + γn(θ) f θ F Tarigan, van de Geer (2006), van de Geer (2008), Bickel, Ritov, Tsybakov (2009)

33 Założenia funkcja straty φ jest wypukła ze względu na pierwszą zmienną

34 Założenia funkcja straty φ jest wypukła ze względu na pierwszą zmienną fθ F x,x f θ (x, x ) K

35 Założenia funkcja straty φ jest wypukła ze względu na pierwszą zmienną fθ F x,x f θ (x, x ) K 1 k m x,x ψ k (x, x ) C n

36 Założenia funkcja straty φ jest wypukła ze względu na pierwszą zmienną fθ F x,x f θ (x, x ) K 1 k m x,x ψ k (x, x ) C n ψ(x, x ) = [ψ 1 (x, x ),..., ψ m (x, x )] T

37 Założenia funkcja straty φ jest wypukła ze względu na pierwszą zmienną fθ F x,x f θ (x, x ) K 1 k m x,x ψ k (x, x ) C n ψ(x, x ) = [ψ 1 (x, x ),..., ψ m (x, x )] T Σ = E ψ(x, X )ψ T (X, X )

38 Założenia funkcja straty φ jest wypukła ze względu na pierwszą zmienną fθ F x,x f θ (x, x ) K 1 k m x,x ψ k (x, x ) C n ψ(x, x ) = [ψ 1 (x, x ),..., ψ m (x, x )] T Σ = E ψ(x, X )ψ T (X, X ) Najmniejsza wartość własna ρ jest dodatnia

39 Z prawdopodobieństwem przynajniej 1 1 m Cn Q(ˆf ) Q( f ) inf f θ F { Q(f θ ) Q( f ) + 4λ n K } N(θ) +2λ n K, ρ

40 Z prawdopodobieństwem przynajniej 1 1 m Cn Q(ˆf ) Q( f ) inf f θ F { Q(f θ ) Q( f ) + 4λ n K } N(θ) +2λ n K, ρ gdzie λ n = 18 2LC n log m n

41 Z prawdopodobieństwem przynajniej 1 1 m Cn Q(ˆf ) Q( f ) inf f θ F { Q(f θ ) Q( f ) + 4λ n K } N(θ) +2λ n K, ρ gdzie m n d dla d 1 λ n = 18 2LC n log m n

42 { } f θ = arg min Q(f θ ) Q( f ) + γ n N(θ) f θ F

43 { } f θ = arg min Q(f θ ) Q( f ) + γ n N(θ) f θ F P ( ) ˆθ θ 1 M(n, f θ, f ) 1...

44 Bickel, P. J., Ritov, Y., Tsybakov, A., B. (2009). Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics 37, Tarigan, B., van de Geer, S. (2006). Classifiers of support vector machine type with l 1 penalty. Bernoulli 12, Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B 58, van de Geer, S. (2008). High-dimensional generalized linear models and the Lasso. Annals of Statistics 36,

Własności estymatorów regresji porządkowej z karą LASSO

Własności estymatorów regresji porządkowej z karą LASSO Własności estymatorów regresji porządkowej z karą LASSO Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Warszawski Badania sfinansowane ze środków Narodowego Centrum Nauki przyznanych w ramach finansowania

Bardziej szczegółowo

Maszyny wektorów podpierajacych w regresji rangowej

Maszyny wektorów podpierajacych w regresji rangowej Maszyny wektorów podpierajacych w regresji rangowej Uniwersytet Mikołaja Kopernika Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie X X R d, Y R Z = (X, Y ), Z = (X, Y ) - niezależne

Bardziej szczegółowo

Jądrowe klasyfikatory liniowe

Jądrowe klasyfikatory liniowe Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie

Bardziej szczegółowo

Estymacja gęstości prawdopodobieństwa metodą selekcji modelu

Estymacja gęstości prawdopodobieństwa metodą selekcji modelu Estymacja gęstości prawdopodobieństwa metodą selekcji modelu M. Wojtyś Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Wisła, 7 grudnia 2009 Wstęp Próba losowa z rozkładu prawdopodobieństwa

Bardziej szczegółowo

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014 Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.

Bardziej szczegółowo

WYKŁAD 2. Problem regresji - modele liniowe

WYKŁAD 2. Problem regresji - modele liniowe Wrocław University of Technology WYKŁAD 2 Problem regresji - modele liniowe Maciej Zięba Politechnika Wrocławska Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Stosowana Analiza Regresji Wykład VI... 16 Listopada 2011 1 / 24 Jest to rozkład zmiennej losowej rozkład chi-kwadrat Z = n i=1 X 2 i, gdzie X i N(µ i, 1) - niezależne. Oznaczenie: Z χ 2 (n, λ), gdzie:

Bardziej szczegółowo

Zastosowanie uogólnionych modeli liniowych i uogólnionych mieszanych modeli liniowych do analizy danych dotyczacych występowania zębiniaków

Zastosowanie uogólnionych modeli liniowych i uogólnionych mieszanych modeli liniowych do analizy danych dotyczacych występowania zębiniaków Zastosowanie uogólnionych modeli liniowych i uogólnionych mieszanych modeli liniowych do analizy danych dotyczacych występowania zębiniaków Wojciech Niemiro, Jacek Tomczyk i Marta Zalewska Uniwersytet

Bardziej szczegółowo

ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA

ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA Jan Mielniczuk Wisła, grudzień 2009 PLAN Błędy predykcji i ich podstawowe estymatory Estymacja błędu predykcji w modelu liniowym. Funkcje kryterialne Własności

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

2. Empiryczna wersja klasyfikatora bayesowskiego

2. Empiryczna wersja klasyfikatora bayesowskiego Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 2 i 3 Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne autor: Maciej Zięba Politechnika Wrocławska Pojęcie prawdopodobieństwa Prawdopodobieństwo

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie

Bardziej szczegółowo

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja

Bardziej szczegółowo

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE

Bardziej szczegółowo

5. Analiza dyskryminacyjna: FLD, LDA, QDA

5. Analiza dyskryminacyjna: FLD, LDA, QDA Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń

Bardziej szczegółowo

Algorytmy MCMC i ich zastosowania statystyczne

Algorytmy MCMC i ich zastosowania statystyczne Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 1 1 Co to jest MCMC? 2

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

7. Maszyny wektorów podpierajacych SVMs

7. Maszyny wektorów podpierajacych SVMs Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.

Bardziej szczegółowo

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym Konrad Furmańczyk Katedra Zastosowań Matematyki SGGW Wis a 2010 Plan referatu 1. Modele liniowe

Bardziej szczegółowo

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy

Bardziej szczegółowo

Agata Boratyńska Statystyka aktuarialna... 1

Agata Boratyńska Statystyka aktuarialna... 1 Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej

Bardziej szczegółowo

Estymacja w regresji nieparametrycznej

Estymacja w regresji nieparametrycznej Estymacja w regresji nieparametrycznej Jakub Kolecki Politechnika Gdańska 28 listopada 2011 1 Wstęp Co to jest regresja? Przykład regresji 2 Regresja nieparametryczna Założenia modelu Estymacja i jej charakterystyki

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

Uogólniona Metoda Momentów

Uogólniona Metoda Momentów Uogólniona Metoda Momentów Momenty z próby daż a do momentów teoretycznych (Prawo Wielkich Liczb) plim 1 n y i = E (y) n i=1 Klasyczna Metoda Momentów (M M) polega na szacowaniu momentów teoretycznych

Bardziej szczegółowo

Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów

Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie

Bardziej szczegółowo

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x

Bardziej szczegółowo

Estymatory kwantylowe i estymacja kwantyli

Estymatory kwantylowe i estymacja kwantyli Tomasz Rychlik Instytut Matematyczny PAN Chopina 12, 87 100 Toruń e-mail: trychlik@impan.gov.pl XXXVIII Konferencja Statystyka Matematyczna Sesja poświȩcona pamiȩci prof. Ryszarda Zielińskiego Wisła, 3

Bardziej szczegółowo

x x 1. Przedmiot identyfikacji System x (1) x (2) : x (s) a 1 a 2 : a s mierzone, a = zestaw współczynników konkretyzujacych F ()

x x 1. Przedmiot identyfikacji System x (1) x (2) : x (s) a 1 a 2 : a s mierzone, a = zestaw współczynników konkretyzujacych F () . Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x () x (2) x (s) mierzone, a = a a 2 a s zestaw współczynników konkretyzujacych F () informacja

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

Konferencja Statystyka Matematyczna Wisła 2013

Konferencja Statystyka Matematyczna Wisła 2013 Konferencja Statystyka Matematyczna Wisła 2013 Wykorzystanie metod losowych podprzestrzeni do predykcji i selekcji zmiennych Paweł Teisseyre Instytut Podstaw Informatyki, Polska Akademia Nauk Paweł Teisseyre

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują

Bardziej szczegółowo

Redukcja wariancji w metodach Monte-Carlo

Redukcja wariancji w metodach Monte-Carlo 14.02.2006 Seminarium szkoleniowe 14 lutego 2006 Plan prezentacji Wprowadzenie Metoda losowania warstwowego Metoda próbkowania ważonego Metoda zmiennych kontrolnych Metoda zmiennych antytetycznych Metoda

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego. Jakub Tomczak

Wprowadzenie do uczenia maszynowego. Jakub Tomczak Wprowadzenie do uczenia maszynowego Jakub Tomczak 2014 ii Rozdział 1 Pojęcia podstawowe 1.1 Wprowadzenie. Zmienne losowe ˆ Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez

Bardziej szczegółowo

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Bardziej szczegółowo

PRZEDZIAŁ UFNOŚCI DLA FRAKCJI. Ryszard Zieliński. XXXVIII Konferencja Zastosowań Matematyki Zakopane Kościelisko 8-15 września 2009

PRZEDZIAŁ UFNOŚCI DLA FRAKCJI. Ryszard Zieliński. XXXVIII Konferencja Zastosowań Matematyki Zakopane Kościelisko 8-15 września 2009 Ryszard Zieliński XXXVIII Ogólnopolska Konferencja Zastosowań Matematyki Zakopane Kościelisko 8-15 września 2009 ESTYMACJA FRAKCJI W populacji składającej się z N elementów jest nieznana liczba M elementów

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych

Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych Iwona Malinowska Politechnika Lubelska Dominik Szynal UMCS, Lublin XXXIII Konferencja "STATYSTYKA MATEMATYCZNA

Bardziej szczegółowo

Składki zaufania z zastosowaniem niesymetrycznych funkcji strat

Składki zaufania z zastosowaniem niesymetrycznych funkcji strat Helena Jasiulewicz Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych Wojciech Kordecki Wyższa Szkoła Handlowa we Wrocławiu Katedra Ekonomi i Rachunkowości Składki zaufania

Bardziej szczegółowo

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Wrocław University of Technology SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Szymon Zaręba Studenckie Koło Naukowe Estymator 179226@student.pwr.wroc.pl 23.11.2012 Rozkład dwupunktowy i dwumianowy Rozkład

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

Własności porządkowe w modelu proporcjonalnych szans

Własności porządkowe w modelu proporcjonalnych szans Własności porządkowe w modelu proporcjonalnych szans Wisła, 8 grudnia 2009 Oznaczenia Wprowadzenie Oznaczenia Porządki stochastyczne Klasy rozkładów czasu życia X F, Y G zmienne losowe o gęstościach f

Bardziej szczegółowo

WYKŁAD 3. Klasyfikacja: modele probabilistyczne

WYKŁAD 3. Klasyfikacja: modele probabilistyczne Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami

Bardziej szczegółowo

Predykcja i selekcja zmiennych w klasyfikacji z wieloma etykietami przy użyciu łańcuchów klasyfikatorów i sieci elastycznej

Predykcja i selekcja zmiennych w klasyfikacji z wieloma etykietami przy użyciu łańcuchów klasyfikatorów i sieci elastycznej Seminarium Poznań 2016 Predykcja i selekcja zmiennych w klasyfikacji z wieloma etykietami przy użyciu łańcuchów klasyfikatorów i sieci elastycznej Paweł Teisseyre Instytut Podstaw Informatyki PAN Plan

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

Selekcja modelu liniowego i predykcja metodami losowych podprzestrzeni

Selekcja modelu liniowego i predykcja metodami losowych podprzestrzeni Selekcja modelu liniowego i predykcja metodami losowych podprzestrzeni Paweł Teisseyre Instytut Podstaw Informatyki, Polska Akademia Nauk Paweł Teisseyre Selekcja modelu liniowego i predykcja 1 / 29 Plan

Bardziej szczegółowo

Podstawowe modele probabilistyczne

Podstawowe modele probabilistyczne Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje

Bardziej szczegółowo

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

Estymatory nieobciążone

Estymatory nieobciążone Estymatory nieobciążone Zadanie 1. Pobieramy próbkę X 1,..., X n niezależnych obserwacji z rozkładu Poissona o nieznanym parametrze λ. Szacujemy p 0 = e λ za pomocą estymatora ˆp 0 = e X, gdzie X jest

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku

Bardziej szczegółowo

SPOTKANIE 3: Regresja: Regresja liniowa

SPOTKANIE 3: Regresja: Regresja liniowa Wrocław University of Technology SPOTKANIE 3: Regresja: Regresja liniowa Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.wroc.pl 22.11.2013 Rozkład normalny Rozkład normalny (ang. normal

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009

STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2016 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2016 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Dana jest następująca macierz wypłat gry o sumie zero: Podaj rozwiązanie tej gry. M = 3 2 2 2 3 4 5 2 3 3 2 2 4 2 0 3 3 3 Kredyt ma być spłacany na początku roku

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o

Bardziej szczegółowo

Regresyjne metody łączenia klasyfikatorów

Regresyjne metody łączenia klasyfikatorów Regresyjne metody łączenia klasyfikatorów Tomasz Górecki, Mirosław Krzyśko Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza XXXV Konferencja Statystyka Matematyczna Wisła 7-11.12.2009

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których

Bardziej szczegółowo

Ą ń Ś ź ń ć ż Ę Ń Ą ć ń ń ż ń ź ź ź Ż ń ź ń Ą ń ż Ł ż Ę Ż ć ż ń Ę ć ż ż ń Ę ż ń ń Ą ż ń Ąć Ę ń Ę Ł Ą Ż ż Ę Ę ń Ż ż Ż Ę Ę Ę Ę Ę ć ż ż ż ć ćń ż ź Ę ń ż ć Ę ż ż Ę ź Ę ń ż Ę Ę ń Ę Ę ń ć Ż ć ż Ą Ę Ę ź ń ż ń

Bardziej szczegółowo

Ń ź Ń ź Ń ź Ń ź ź Ń Ń Ń Ń ź Ą ź Ń ź Ó Ą ć Ń ć Ń ć ć ć ć ć ź ź ć Ń Ń ć ć Ę Ą ź Ę Ń ć ź Ń ź Ł Ń ć Ń Ą ć Ń ć ć ź Ń ćń Ś ź ź ź ć Ń ź ź Ń Ń Ę Ń ź Ń ź Ń Ą ć ź ć ć Ę ć ź ć Ą ć ź ć Ń ć ć ź ć Ń Ń Ń Ę ć Ą Ą ź Ń

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

ROZDZIAŁ 1. Rachunek funkcyjny

ROZDZIAŁ 1. Rachunek funkcyjny ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast

Bardziej szczegółowo

Metody Ekonometryczne

Metody Ekonometryczne Metody Ekonometryczne Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 4 Uogólniona Metoda Najmniejszych Kwadratów (GLS) 1 / 19 Outline 1 2 3 Jakub Mućk Metody Ekonometyczne

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re

Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem

Bardziej szczegółowo

Przykład zastosowania optymalnej alokacji w estymacji frakcji

Przykład zastosowania optymalnej alokacji w estymacji frakcji optymalnej alokacji w estymacji frakcji Katedra Ekonometrii i Statystyki SGGW XVIII Metody Ilościowe w Badaniach Ekonomicznych Rogów 20 czerwca 2017 r. Plan prezentacji 1 2 3 4 Rozważmy skończona populację

Bardziej szczegółowo

Ą Ń Ę Ę Ą Ę Ć ź Ż Ż Ą ń Ź Ż Ż ń ń Ź Ą Ń Ą Ą Ę ń ź Ę Ę Ż Ć Ą ź Ą Ę ń ź Ę ń ń Ą Ż Ę ń Ą ń ń Ę Ę Ę Ź ń Ę ń ń ń ń Ź Ę Ś ź Ą Ń ń Ż Ź Ę Ź ń ń ń Ę Ę ń Ż Ą ń ńń Ś ń ń Ż Ż Ę Ż Ń Ę Ą Ń Ł ń ń ń ń ń ń ń ń Ś Ź Ę Ś

Bardziej szczegółowo

Ł ŚĆ ń Ś Ł Ź Ć Ł Ą ńń ć Ż Ą Ł Ś ń Ł ć Ś ń ć ć ć Ó Ż ć ć Ą Ś ć Ś ć Ń Ś ć Ś ć Ś Ć Ś Ż Ś Ś Ż Ś Ó ń ć ć Ź Ł ć ć ć ń ń ć ć Ą ć ć ć Ź ć ć ć ć ć ć Ó Ź Ó Ł Ł Ń ć ć Ź Ą ć ć ń ć Ą ć ć ć Ł Ź Ź Ź Ż Ł Ż Ł Ż ć ń ć Ą

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Zawansowane modele wyborów dyskretnych

Zawansowane modele wyborów dyskretnych Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów

Bardziej szczegółowo

Strategie kwantowe w teorii gier

Strategie kwantowe w teorii gier Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie

Bardziej szczegółowo

Kryteria selekcji modelu w eksperymentalnym rozpoznawaniu sygnałów zdekomponowanych w bazach falkowych

Kryteria selekcji modelu w eksperymentalnym rozpoznawaniu sygnałów zdekomponowanych w bazach falkowych Kryteria selekcji modelu w eksperymentalnym rozpoznawaniu sygnałów zdekomponowanych w bazach falkowych Urszula Libal 1 Streszczenie: Artykuł przedstawia wyniki eksperymentalnego badania zależności między

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo