Pęd układu materialnego i bryły
|
|
- Kazimiera Wróblewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 7... Pę ułau aerialego i bryły Pęe puu aerialego o asie i pręości v azyway iloczy asy puu i jego pręości: p v. (7.4) z v v Z powyższej efiicji wyia, że pę jes weore o ieruu pręości, a więc jes weore syczy o oru puu aerialego. Dla ułau puów aerialych o asach i pręości v (rys. 7.) pę bęzie rówy suie pęów poszczególych puów aerialych: r v r v r v O y x Rys. 7.. Wyzaczeie pęu ułau aerialego p v. (7.4) Wzór (7.4) oża przesawić w posaci: p r. (a) Wiziy, że wysępująca po zaie pochoej sua, zgoie ze wzore (4.8), jes oee sayczy S rozparywaego ułau aerialego wzglęe począu ieruchoego ułau współrzęych x, y, z : S r r. (b) Po posawieiu wzoru (b) o wzoru (a) i wyoaiu różiczowaia wzór (7.4) ożey zapisać w posaci: S p v v, (7.4) gzie jes asą całowią ułau aerialego. Z orzyaego wzoru wyia, że pę ułau aerialego jes rówy iloczyowi asy całowiej ułau aerialego i pręości v śroa asy. Poao wzór (7.4) pozwala a ie zefiiowaie pęu.
2 Pęe azyway pochoą wzglęe czasu oeu sayczego ułau aerialego wzglęe ieruchoego puu: S p. (7.43) Poieważ oe sayczy wzglęe śroa asy jes rówy zeru (parz p. 4.4), zae pę ułau aerialego wzglęe śroa asy jes aże rówy zeru. Pę bryły szywej ożey obliczyć, zieląc ją a eleey o asach i raując ją jao uła puów aerialych. Przybliżoą warość pęu orzyay po zsuowaiu pęów ych eleeów, raowaych jao puy aeriale. Z olei warość ołaą pęu orzyay po wyzaczeiu graicy suy, gy liczba eleeów ąży o iesończoości r p li v v r. ała wysępująca w y wzorze po zaie pochoej jes oee sayczy bryły wzglęe począu ułau współrzęych: r r. Z uwzglęieie powyższej zależości orzyujey wzór a pę bryły: r p ( r ) v. (7.44) Wiziy zae, że pę bryły, poobie ja pę ułau aerialego, jes rówy iloczyowi jej asy i pręości śroa asy.
3 7... Zasaa pęu i popęu. Zasaa zachowaia pęu Rozparzyy obecie uła słaający się z puów aerialych o asach i pręości v. Na poszczególe puy rozparywaego ułau aerialego ziałają siły zewęrze i z wewęrze. Na rysuu 7.3 v zazaczoo siły ziałające a wa v P c F puy o asach i l. Siły l Pl zewęrze ziałające a e r F l puy zasąpioo siłai r wypaowyi P i P l, siły l r l wzajeego oziaływaia v ięzy yi puai ozaczoo O przez F l i F l. y Wypaowa sił wewęrzych ziałających a pu o asie x P F, (7.45) w l l l a wypaowa wszysich sił ziałających a e pu Rys Siły zewęrze i wewęrze ziałające a puy ułau aerialego F P + P w. (7.46) Zae zgoie z rugi prawe Newoa ożey la owolego puu rozważaego ułau aerialego apisać yaicze rówaie ruchu w posaci: r P + Pw (,,..., ). (7.47) Po założeiu, że asa jes wielością sałą, lewą sroę ego rówaia ożey przesawić w posaci pochoej wzglęe czasu pęu v puu: r ( v ) v. Rówaie (7.47) oża obecie zapisać asępująco: ( v ) P + Pw Jeżeli oay sroai powyższych rówań, o orzyay: (,,..., ). (c)
4 ( v ) P + P w, a jeżeli zasąpiy suę pochoych pęów pochoą ich suy, o v P + Pz. () Lewa sroa rówaia () jes pochoą wzglęe czasu pęu ułau aerialego: v p. Pierwsza sua po prawej sroie rówaia () jes weore główy sił zewęrzych: P W, a ruga suą wszysich sił wewęrzych ziałających w cały ułazie aerialy i zgoie ze wzore (3.3) jes rówa zeru: P w F l l l. Osaeczie rówaie () oża zapisać w posaci: p W. (7.48) Rówaie o przesawia zasaę pęu ułau puów aerialych, órą oża wypowiezieć asępująco: Pochoa wzglęe czasu pęu ułau puów aerialych jes rówa weorowi główeu sił zewęrzych ziałających a e uła. W celu wyzaczeia ziay pęu ułau puów aerialych w sończoy przeziale czasu, p. o o, wywołaej przez siły zewęrze ziałające a e uła, scałujy rówaie (7.48) w y przeziale czasu. Orzyay wey: () p( ) p W. (7.49)
5 Rówaie o azyway zasaą pęu i popęu lub prawe zieości pęu. Przyros pęu ułau aerialego w sończoy przeziale czasu jes rówy popęowi weora główego sił zewęrzych ziałających a e uła. ałę z prawej sroy rówaia (7.49) azyway popęe weora główego lub ipulse weora główego. Ta ruga azwa a swoje uzasaieie zwłaszcza w przypau sił róorwałych, p. sił zerzeiowych. Ławo zauważyć, że gy weor główy ułau sił zewęrzych jes rówy zeru: W, popę ego weora jes rówież rówy zeru, a z zasay pęu i popęu wyia, iż pę ońcowy jes rówy począoweu: czyli pę ułau aerialego jes sały: Jes o zasaa zachowaia pęu: ( ) p( ) p, p cos. (7.5) Jeżeli weor główy ułau sił zewęrzych ziałających a uła aerialy jes rówy zeru, o pę ego ułau aerialego jes sały. Gy pę ułau aerialego przesawiy w posaci iloczyu asy i pręości v śroa asy, o z zasay zachowaia pęu: v cos wyia, że śroe asy porusza się ruche jeosajy prosoliiowy. Przyła 7.7. Kloce o asie 4 g porusza się po rówi pochyłej o ącie achyleia α3 o po ziałaie siły bęącej fucją czasu P P() (rys. 7.4a). Miara ej siły zieia się w czasie o o P 5 N zgoie z wyrese poay a rys. 7.4b. Współczyi arcia ięzy locie i rówią., Obliczyć pręość v, jaą osiągie ciało w chwili 3 s, jeżeli w chwili pręość począowa v / s.
6 a) N b) P() x P P T α G Rys Wyzaczeie pręości loca Rozwiązaie. Do rozwiązaia zaaia zasosujey zasaę pęu i popęu (7.49). W yśl ej zasay przyros pęu loca w czasie o o bęzie rówy popęowi weora główego sił zewęrzych ziałających a iego: ( ) p( ) p W. Weory z ego rówaia zrzuujey a oś x rówoległą o rówi. Po uwzglęieiu zależości (7.44) ay: v v Wx. (a) Zgoie z rysuie sua rzuów wszysich sił ziałających a loce a oś x W x P() gsiα T P() gsiα µgcosα, (b) gzie T µn µgcosα. Po posawieiu (b) o rówaia (a) ay: v v P() g P() g ( siα + µcosα). ( siα + µcosα) (c) ała wysępująca w powyższy wzorze jes rówa polu wyresu przesawioego a rys. 7.4b, czyli P() P. Po posawieiu ej rówości o (c) orzyujey wzór a pręość v :
7 v P ( siα + µcosα). v + g Po posawieiu aych liczbowych orzyujey: o o ( +,cos3 ) 3, s 5 3 v + 9,8 si3 /. 4
8 7..3. Twierzeie o ruchu śroa asy Pę p w wyprowazoy w poprzei pucie rówaiu (7.48), wyrażający zasaę pęu, ożey przesawić za poocą iloczyu całowiej asy ułau aerialego i pręości v śroa jego asy. Orzyay wówczas: p ( v ) v W. (e) Wysępująca w y rówaiu pochoa pręości śroa asy wzglęe czasu jes przyśpieszeie śroa asy. May więc: a W. (7.5) Po zapisaiu weorów a i W w ułazie współrzęych x, y, z: a a W W x x i+ a y i+ W y j+ a z j+ W y, (f) weorowe rówaie (7.5) ożey przesawić w posaci rzech rówań salarych: a W,a W,a W. (7.5) x x y Weorowe rówaia (7.5) i rówoważe u rzy rówaia salare (7.5) są yaiczyi rówaiai ruchu śroa asy. Pozwalają oe a wyzaczeie ruchu śroa asy po wpływe zaych sił zewęrzych. Orzyae rówaia (7.5) lub (7.5) pozwalają a sforułowaie wierzeia, zaego po azwą wierzeia o ruchu śroa asy. Śroe asy ułau aerialego porusza się a ja pu aerialy o asie rówej całowiej asie ułau, a óry ziała siła rówa weorowi główeu sił zewęrzych ziałających a e uła. Twierzeie o ruchu śroa asy wyia rówież z pierwszej całi zasay pęu, czyli z zasay pęu i popęu przesawioej w posaci: () v ( ) y z v W. (7.53) Twierzeie o jes waży arzęzie baaia ruchu śroa asy, ale ie pozwala a wyciągięcie żaych wiosów co o ruchu puów ależących o ułau wzglęe śroa asy. z
9 Z wierzeia o ruchu śroa asy wyia, że siły wewęrze ie ogą zieić ruchu śroa asy ai jego położeia. Twierzeie o oosi się ie ylo o ułau puów aerialych, ale rówież o ciała szywego i bryły. Nałożywszy bowie a uła puów aerialych warue, aby oległość owolych puów ułau była ieziea, orzyujey oel ciała szywego.
10 7..4. Ruch ułau o zieej asie Do ej pory w rozważaiach oyczących pęu ułau aerialego załaaliśy, że całowia asa ułau ie ulega ziaie w czasie ruchu. Obecie zajiey się ruche ułau aerialego, órego asa bęzie się zieiać z upływe czasu poprzez ołączaie lub ołączaie eleeów asy. Taa ziaa asy ułau bęzie iała wpływ a jego ruch. Typowy przyłae ruchu ułau o zieej asie są raiey, z órych w czasie pracy silia asępuje wypływ gazów spaliowych, a y say ziejsza się asa raiey. Iy przyłae ogą być urzązeia o rasporu ciągłego ze zieiającą się w czasie ilością przeoszoego aeriału. W alszych rozważaiach ze zrozuiałych wzglęów ograiczyy się jeyie o wyprowazeia rówaia ruchu ciała o zieej asie. Do ułożeia rówaia ruchu wyorzysay zasaę pęu (7.48) zapisaą w posaci: ( v ) W. Przyjijy, ze śroe ułau aerialego o asie porusza się wzglęe ułau oiesieia z pręością v i w pewej chwili asa ułau zaczya się zieiać w sposób ciągły. Załaając, że w czasie o ułau orywa się (lub przyłącza o iego) asa eleeara z pręością bezwzglęą v b, oreśliy eleearą ziaę pęu. W chwili począowej pę ułau wyosi v, a w chwili + v v + v. ( )( ) b Eleearą ziaę pęu orzyay przez ojęcie zależości (i) o (h). ( v ) v [( )( v v) + v ] v v v + v+ v ( v v ) v. b v v Po poiięciu iloczyu różicze v jao ałej warości rugiego rzęu eleeara ziaa pęu ( v ) v v w, b b (g) (h) (i) (j)
11 gzie v w v b v i jes pręością asy wzglęe asy, czyli pręością wzglęą. Po uwzglęieiu wyrażeia (h) w rówaiu (e) orzyay rówaie ruchu ułau o zieej asie azywae rówaie Mieszczersiego: lub w posaci v R+ W, v v w + W (7.54) gzie R v w (7.55) i jes reacją cząsi eleearej. Jeżeli wysępująca we wzorze (7.55) pochoa / >, czyli asa ułau wzrasa z upływe czasu, o weor R a zwro pręości wzglęej vw i jes siłą haującą. Gy asa ułau aerialego bęzie aleć z upływe czasu, czyli / <, o weor R bęzie iał zwro przeciwy o pręości wzglęej v w, a więc bęzie siłą apęową. Jeżeli rówaie (7.54) zasosujey o baaia ruchu raiey i założyy, że weor pręości wzglęej v w wypływających z raiey gazów jes syczy o rajeorii lou, o weor R bęzie siłą ciągu raiey (rys. 7.5). R v w v W Rys Ruch ułau o zieej asie Przyła 7.8. Raiea o asie począowej porusza się w przesrzei ięzyplaearej z pręością począową v. Po włączeiu silia pręość wzglęa v w wypływających z raiey prouów spalaia paliwa jes sała, a jej weor jes syczy o rajeorii lou. Wyzaczyć pręość raiey po ziejszeiu się jej asy o oraz rówaie jej ruchu s s().
12 Rozwiązaie. Poieważ raiea porusza się w przesrzei ięzyplaearej, siły zewęrze a ią ziałające oża poiąć, zae W, a yaicze rówaie ruchu raiey a posawie (7.54) po uwzglęieiu (7.55) oża zapisać w posaci: v v v w lub, lub v v w. (a) v w Po scałowaiu ego rówaia w graicach wyzaczoych przez warui począowe, czyli la v () v i (), orzyujey: a po obliczeiu całe v v + v w l. v v v w, vco o (b) Poieważ weory pręości v i v w ziałają wzłuż jeej prosej i ają zwroy przeciwe (rys. 7.3), weorowy wzór (b) oża zapisać jey wzore salary: v v vwl. Powyższy wzór zosał po raz pierwszy wyprowazoy przez rosyjsiego uczoego polsiego pochozeia K. iołowsiego. Weorowy wzór (b) lub rówoważy u (c) przesawia prawo ziay pręości raiey. Ze wzorów ych wyia, że pręość raiey zależy o sosuu asy ońcowej raiey o jej asy począowej. Teraz wyzaczyy rówaie rogi raiey w fucji czasu. Posawiwszy o wzoru (c) s v, orzyujey rówaie różiczowe o posaci: s v v wl. Po scałowaiu ego rówaia w graicach o s o s i o o orzyujey rówaie ruchu raiey: (c)
13 s s + v v w l. () Aby obliczyć wysępującą w y rówaiu całę, ależy zać fucję ziay asy w czasie. Załóży, że w czasie pracy silia raiey jej asa aleje wyłaiczo weług wzoru: α e, gzie jes sały współczyiie. W y przypau l α le α Po posawieiu orzyaego wyiu o wzoru () orzyujey rówaie ruchu raiey w fucji czasu: s s + v + v wα. (e).
Energia kinetyczna układu punktów materialnych
74 egia ietycza ułau putów ateialych egią ietyczą putu ateialego o asie, pouszającego się z pęością, azyway połowę iloczyu asy putu i waatu jego pęości: Dla ułau putów ateialych o asach pouszających się
, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x
Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )
Badanie stabilności układu sterowania statkiem z nieliniowym autopilotem
Baaie stabilości ułau sterowaia statiem z ieliiowym autopilotem Zliearyzowae rówaie wiążące ochyleie ursu statu (zmiaę ąta ursu wzglęem ursu zaaego) ψ z ątem wychyleia steru δ jest astępujące (tzw. moel
Wytrzymałość śruby wysokość nakrętki
Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a
Przedmiot dynamiki
7... Preiot aii Daia jest iałe echaii, tór ajuje się baaie ależości ię ruche ciał aterialch i siłai wwołująci te ruch. Postawą aii są prawa Newtoa prtocoe w pucie.. Ab prawa te bł słuse, w echaice ewtoowsiej
Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych
Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir
DYNAMIKA. Dynamika jest działem mechaniki zajmującym się badaniem ruchu ciał z uwzględnieniem sił działających na ciało i wywołujących ten ruch.
DYNMIK Daika jes działe echaiki zajując się badaie uchu ciał z uwzględieie sił działającch a ciało i wwołującch e uch. Daika opiea się a pawach Newoa, a w szczególości a dugi pawie (zwa pawe daiki). Moża
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką
Funkcja generująca rozkład (p-two)
Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
Wyznaczyć prędkości punktów A i B
Wyzaczaie prędkości i przyspieszeia puku ciała w ruchu płaskim (a) Wyzaczyć prędkości puków i Dae: rad/s; ε 0; 5 cm; 5 cm 48 mechaika echicza kiemayka 3 Wyzaczaie prędkości i przyspieszeia puku ciała w
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Projekt ze statystyki
Projekt ze statystyki Opracowaie: - - Spis treści Treść zaia... Problem I. Obliczeia i wioski... 4 Samochó I... 4 Miary położeia... 4 Miary zmieości... 5 Miary asymetrii... 6 Samochó II... 8 Miary położeia:...
( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił
3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej
Zasada zachowania pędu i krętu 5
Zasada zachowania pęd i krę 5 Wprowadzenie Zasada zachowania pęd pnk aerialnego Jeżeli w przedziale, sa sił działających na pnk aerialny kład pnków aerialnych jes równa zer, o pęd pnk aerialnego kład pnków
VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011
Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y
Szeregi Fouriera (6 rozwiązanych zadań +dodatek)
PWR I Załad eorii Obwodów Szeregi ouriera (6 rozwiązanych zadań +dodae) Opracował Dr Czesław Michali Zad Znaleźć ores nasępujących sygnałów: a) y 3cos(ω ) + 5cos(7ω ) + cos(5ω ), b) y cos(ω ) + 5cos(ω
Równania dynamiki maszyn prądu stałego w jednostkach względnych Jako podstawę analizy przyjmijmy równania obwodu twornika:
óaa ya aszy pą sałego jeosach zgęych Jao posaę aazy pzyjjy óaa obo oa: obo zbzea: ( ) e ( ) aość sły eeoooyczej yającej z oboó a: e oe yozoy aszye: M e Bazo ygoy jes zaps óań jeosach zgęych. Jao eośc oesea
i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015
WM-E; kier. MBM, lisa za. nr. p. (z kary przemiou): Rozwiązywanie zaań z zakresu: ransformacji ukłaów współrzęnych, rachunku wekorowego i różniczkowo-całkowego o kursu Fizyka.6, r. ak. 05/6; po koniec
Ćwiczenie nr 5 BADANIE SOCZEWKI
Ćwizeie r 5 BADANIE SOCZEWKI. Wprowazeie Zolość sozewe o załamywaia promiei świetlyh uzależioa jest o astępująyh zyiów: a) ształtu powierzhi załamująyh promieie rzywiz b) materiału z tórego są wyoae współzyi
8.Dynamika ruchu drgającego i fale w ośrodkach sprężystych.
8Dynaia ruchu rgającego i fale w ośroach prężyych Wybór i opracowanie zaań 8 835 - Ryzar warowi Wybór i opracowanie zaań 836-845 - Boguław Kuz 8 W ułazie przeawiony na ryunu 8 aę g w chwili ochylono o
Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r
Wyład 6 Przestrzeie etrycze ośrodowe i zupełe. Przypoiay, że zbiór azyway przeliczaly, jeśli jest o rówoliczy ze zbiore wszystich liczb aturalych N, a co ajwyżej przeliczaly, jeśli jest o przeliczaly lub
Twierdzenia o funkcjach ciągłych
Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
cx siła z jaką element tłumiący działa na to ciało.
Drgania układu o jedny sopniu swobody Rozparzy układ składający się z ciała o asie połączonego z nierucoy podłoże za poocą eleenu sprężysego o współczynniku szywności k oraz eleenu łuiącego o współczynniku
Modele zmienności aktywów ryzykownych. Model multiplikatywny Rozkład logarytmiczno-normalny Parametry siatki dwumianowej
Moele zmieości akywów ryzykowych Moel muliplikaywy Rozkła logarymiczo-ormay Paramery siaki wumiaowej Moel muliplikaywy zmieości akywów Rekurecyjy moel muliplikaywy: (=, (k+ = (k u(k, k=,, Cea akywa w chwili
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
R n. i stopa procentowa okresu bazowego, P wartość początkowa renty, F wartość końcowa renty. R(1 )
Maeayka fasowa ubezpeczeowa Ćwczea 4 IE, I rok SS Tea: achuek re oęce rey Warość począkowa końcowa rey ey o sałych raach ea o zeych raach ea uogóoa osawowe poęca rachuku re ea es o cąg płaośc okoywaych
Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
Fizyka 1- Mechanika. Wykład 6 9.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
izya 1- Mechania Wyład 6 9.XI.17 Zygun Szeflińsi Środowisowe Laboraoriu Ciężich Jonów szef@fuw.edu.l h://www.fuw.edu.l/~szef/ Równania ruchu ole agneyczne,, r,, v Sałe jednorodne ole w chwili = w uncie
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.
D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
7 Wyzaczyć zbiór wszyskich warości rzeczywisych parameru p, dla kórych całka iewłaściwa jes zbieża x xe Dzieląc przedział całkowaia orzymujemy x x e x x e x x e Zbadamy, dla kórych warości parameru p całki
Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony
Przykładowy arkusz z rozwiązaiai Arkusz II pozio rozszerzoy ( pkt) Pukt A( -, -) jest wierzchołkie robu, którego jede z boków zawiera się w prostej k o rówaiu x - y - 0 Środkie syetrii tego robu jest pukt
WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a
WYKŁAD r. Elemey rachuku operaorowego Podawą rachuku operaorowego je zw. przekzałceie Laplace a, mające poać przekzałceia całkowego, przyporządkowujące fukcjom pewe owe fukcje, iego argumeu. Mówi ię, że
EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B
Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
izya 1- Mechania Wyład 6 1.XI.16 Zygun Szeflińi Środowiowe Laboraoriu Ciężich Jonów zef@fuw.edu.l h://www.fuw.edu.l/~zef/ Praca i energia Najrozy rzyade: Sała iła działa na ciało P owodując jego rzeunięcie
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych
ora Sygałów III ro Ioray Sosowaj Wyła Rozważy sończoy sygał () spróboway z częsolwoścą : Aalza częsolwoścowa ysrych sygałów cyrowych p óra js wa razy węsza o częsolwośc asyalj a. Oblczy jgo rasorację Fourra.
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykła 0: Rówae Schrögera Dr ż. Zbgew Szklarsk Kaera lekrok paw. C- pok.3 szkla@agh.eu.pl hp://layer.uc.agh.eu.pl/z.szklarsk/ 0.06.07 Wyzał Iforayk lekrok Telekoukacj - Teleforayka Rówae Schrögera jeo z
ZAAWANSOWANE TECHNIKI PRZETWARZANIA SYGNAŁÓW W TELEKOMUNIKACJI LABORATORIUM
POLITCHNIKA WARSZAWSKA WYDZIAŁ LKTRONIKI I TCHNIK INFORMACYJNYCH INSTYTUT TLKOMUNIKACJI ZAAWANSOWAN TCHNIKI PRZTWARZANIA SYGNAŁÓW W TLKOMUNIKACJI LABORATORIUM ĆWICZNI NR RPRZNTACJA ORTOGONALNA SYGNAŁÓW.
Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F.
15. Wyład 15: Podciała, podciała geerowae przez zbiór, rozszerzeia ciał. Charaterystya pierścieia i ciała, ciała proste i lasyfiacja ciał prostych. 15.1. Podciała, podciała geerowae przez zbiór, rozszerzeia
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI
CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację
tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze
R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych
FIZYKA R.Resnick & D. Halliday
FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela
Analiza I.1, zima globalna lista zadań
Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby
Opis ruchu we współrzędnych prostokątnych (kartezjańskich)
Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A
i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4
Imię i nazwiso Daa Klasa Grupa A Sprawdzian 3 PracA, moc, energia mechaniczna 1. Ze sojącego działa o masie 1 wysrzelono pocis o masie 1 g. nergia ineyczna odrzuu działa w chwili, gdy pocis opuszcza lufę
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17
Kolokwiu r 5: piątek 8..06, godz. 8:5-9:00, ateriał zad. 40, 50-585. Kolokwiu r 53: piątek 5..06, godz. 8:5-9:00, ateriał zad. 50, 50-59. Kolokwiu r 54: piątek..06, godz. 8:5-9:00, ateriał zad. 83, 50-64.
1. Podstawowe własności fizyczne płynów.
.. Masa, gęstość, ciśieie.. Podstawowe własości fizycze płyów. Masa jest właściwością płyu charakteryzującą jego ilość. W układzie SI jedostką podstawową asy jest l kg. Oprócz jedostki podstawowej używa
Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.
INSTRUMENTY DŁUŻNE. Rodzaje ryzyka inwestowania w obligacje Duracja i wypukłość obligacji Wrażliwość wyceny obligacji
INSTRUMENTY ŁUŻNE Rozaje yzyka iwesowaia w obligacje uacja i wypukłość obligacji Ważliwość wycey obligacji Ryzyko iwesycji w obligacje Ryzyko eiwesycyje możliwość uzyskaia iskiej sopy zwou z wypłacoych
LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Liczba punktów Wyznaczenie pierwszej współrzędnej wierzchołka paraboli: x.
LUBELSKA PRÓBA PRZED MATURĄ 05 poziom podstawowy ZESTAW A ZADANIA ZAMKNIĘTE 5 6 7 8 9 0 5 6 7 8 9 0 A B D D A D B D A B C D C B A C A C B C A B D C ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI zadaia 5 6 7 puktów
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,
Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
INSTRUMENTY DŁUŻNE. Duracja jako funkcja stopy procentowej Duracja skończonego ciągu płatności Immunizacja portfela aktywów
INSTRUMENTY ŁUŻNE aja jao fja opy poeowej aja ońzoego iąg płaośi Iizaja pofela aywów aja iąg pzepływów pzy apializaji iągłej oza opa ' ; aja jao fja ] [ ' T VR T E T E e d d d d aja jao fja apializaja
Krystyna Gronostaj Maria Nowotny-Różańska Katedra Chemii i Fizyki, FIZYKA Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 4
Kystyna Gonostaj Maia Nowotny-Różańska Katea Cheii i Fizyki, FIZYKA Uniwesytet Rolniczy o użytku wewnętznego ĆWICZENIE 4 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH I CIECZY PRZY POMOCY PIKNOMETRU Kaków, 2004-2012
Zadania II etapu Konkursu Chemicznego Trzech Wydziałów PŁ teoria III Edycja Rok szkolny 2016/17 Nr startowy zawodnika A A. Zadanie 1. Nawozy (..
Zadaie. Nawozy (.. pt) a. / pt. NH + H P 4 NH 4 H P 4... NH + H P 4 (NH 4 ) HP 4. Za poprawe zapisaie rówań reacji w formie cząsteczowej b. / pt m P 50 + 0 9,8 g 5 8 4 m N 50 + 0 4,6 g 5 m 5 9,8 4 P 45,4
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji
- obliczyć względne procentowe odchylenie otrzymanej wartości od wartości tablicowej:
Kila uwa: - Doświadczenia przeprowadzay w rupach - osobowych (nie więszych), jedna w raach rupy ażdy suden wyonuje swoje osobne poiary i obliczenia. - Na zajęcia przychodziy z wydruowanyi wybranyi ćwiczeniai
Analiza I.1, zima wzorcowe rozwiązania
Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw
ĆWICZENIE 4. WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH I CIECZY PRZY POMOCY PIKNOMETRU Kraków, 2016
Krystyna Gronostaj Maria Nowotny-Różańska Zakła Fizyki, Uniwersytet Rolniczy o użytku wewnętrznego ĆWICZENIE 4 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH I CIECZY PRZY POMOCY PIKNOMETRU Kraków, 016 Spis treści:
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12
Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a
Charakterystyki czasowe i częstotliwościowe układów automatyki. Podczas ćwiczenia poruszane będą następujące zagadnienia:
Warszawa 7 Cel ćwiczeia rachuowego Podczas ćwiczeia poruszae będą asępujące zagadieia: obliczaie odpowiedzi impulsowej i soowej uładu; wyzaczeia charaerysy częsoliwościowych (ampliudowo-fazowej oraz logarymiczej:
Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 0: Rówaie Schrödigera Dr iż. Zbigiew Szklarski Kaedra Elekroiki paw. C- pok.3 szkla@agh.edu.pl hp://layer.uci.agh.edu.pl/z.szklarski/ Rówaie Schrödigera jedo z podsawowych rówań ierelaywisyczej
Wyznaczanie czasu retencji gazu gaśniczego
st. kpt. gr iż. Przeysław Kubica Wyzaczaie czasu retecji gazu gaśiczego 1 Cel ćwiczeia Cele ćwiczeia jest: a) wykoaie testu szczelości poieszczeia etoą wetylatora rzwiowego (ag. oor fa test); b) a postawie
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch
Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi
Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.
Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
Przemieszczeniem ciała nazywamy zmianę jego położenia
1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że
Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług
Analiza matematyczna i algebra liniowa
Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.
Przykład Obliczenie wskaźnika plastyczności przy skręcaniu
Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n
Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby
I. KINEMATYKA I DYNAMIKA
piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.
Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych
CIĄGI LICZBOWE. Poziom podstawowy
CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy