ZASTOSOWANIE PODEJ CIA WEKTOROWEGO DO ZADA PROGNOZOWANIA
|
|
- Rafał Sikorski
- 7 lat temu
- Przeglądów:
Transkrypt
1 ZASTOSOWANIE PODEJCIA WEKTOROWEGO DO ZADA PROGNOZOWANIA KESRA NERMEND Uwerstet Szczecsk MARIUSZ BORAWSKI Zachodopomorsk Uwerstet Techologcz w Szczece Streszczee Rachuek wektorow jest wkorzstwa w welu dzedzach auk ze wzgldu a łatwo terpretacj metod, która moe b dokowaa w sposób grafcz. Molwe jest rówe zapsae modelu ekoometrczego w postac wektorowej. W artkule zostało przedstawoe porówae klasczego lowego modelu ekoometrczego z wektorowm modelem ekoometrc. Słowa kluczowe: model ekoometrcz, wektorow model ekoometrcz. Wprowadzee Rachuek wektorow jest wgodm arzdzem pozwalajcm a grafcz terpretacj zaleoc zwkle wraach za pomoc wzorów. Najczcej jest o wkorzstwa w aalze welowmarowej, co wka z atur metod, które operuj w przestrzeach welowmarowch. Wkorzstae rachuku wektorowego e jest jedak tlko dome aalz welowmarowej, czego przkładem moe b model wektorowej autoregresj (Var). Jest to zło- o model welorówaow. Nale zada sobe ptae cz steje prostsz model wektorow jake s jego ewetuale własoc w porówau z klasc modelam ekoometrc.. Wektorow model ekoometrcz Najprostsz model ekoometrcz moa wraz za pomoc wzoru [,,3]: ˆ β ˆ α ε, () gdze αˆ βˆ s szacowam parametram modelu ekoometrczego, a ε składkem losowm. Model te odtwarza warto a podstawe zaej wartoc. Podob mecha steje w przestrze wektorowej. Majc da wektor Y czsto zachodz potrzeba odtworzea tego wektora a postawe wektora X. Proces te jest c m jak wzaczaem wektora współrzdej wektora Y wzdłu wektora X staowcego jedowmarow układ współrzdch. Prz c e jest wmagae, ab jedowmarow układ współrzdch bł zwza z jedowmarow przestrze wektorow. Układ te moe zajdowa s w przestrze welowmarowej. Wówczas wzaczoa współrzda okrela wektor Y z pewm błdem. Współrzd moa ozacz za pomoc αˆ, a błd jako wektor ε. Moa to zapsa za pomoc astpujcego wzoru:
2 POLSKIE STOWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa Materał, r 8, Y ˆ αx ε. () Wzór te posada terpretacj grafcz co lustruje to rsuek. Y ε αˆx X Rsuek. Rzut wektora Y a wektor X Nale zwróc tu uwag a podobestwo wzoru () (). Wzór () operuje a pojedczch wartocach, atomast wzór () a -elemetowch zborach tch wartoc, jedak prz rówm jede (czl dla przestrze jedowmarowej) wzor te ró s jede o czk βˆ. Długo wektora błdu ε zale od keruku wektorów X Y oraz od wartoc współczka αˆ. Teoretcze współczk αˆ moe b dowol, jedak steje taka jego warto dla której długo wektora ε jest mmala. W praktce poszukuje s takego współczka αˆ ab długo wektora ε bła mmala. Przpadek tak zajdze wted, gd wektor ε bdze prostopadł do X, czl locz skalar ( X,ε ) bdze rów zero. Z aksjomatów loczu skalarego wka, e suma loczów skalarch wektora αˆ X oraz wektora ε wektora X jest rówa loczow skalaremu sum tch wektorów z wektorem X : ( ˆ α X ε, X ) ( ˆ αx, X ) ( ε, X ). (3) Suma wektora αˆ X ε jest rówa wektorow Y zatem: Y, X ˆ α X, X ε, X. (4) ( ) ( ) ( ) Std po włczeu współczka αˆ przed locz skalar moa wzacz jego warto: ˆ α. (5) ( Y, X ) ( ε, X ) ( X, X ) Długo wektora ε bdze ajmejsza, gd bdze o prostopadł do X, czl gd ch locz skalar jest rów zeru. Std wzór powsz przberze posta [4]: ˆ α. (6) ( Y, X ) ( X, X )
3 0 Kesra Nermed, Marusz Borawsk Zastosowae podejca wektorowego do zada progozowaa Współczk αˆ azwa s składow wektora Y wzdłu wektora X, a cał proces zalezea tego współczka rzutowaem. Składowa αˆ jest tm wksza, m długo wektora Y jest wksza, wektora X mejsza, a keruk obu wektorów s bardzej zbloe do sebe. Dla αˆ rówego zeru wektor Y e ma rzutu a wektor X, wektor s prostopadłe wzgldem sebe. W przestrze eukldesowej locz skalar ( Y, X ) defuje s astpujcm wzorem: (7) ( Y X ), Brak czka βˆ zacze ogracza molwo odtworzea wektora Y a podstawe wektora X, powodujc zacze wksze błd w przpadku modelu ekoometrczego daego wzorem (). W rachuku wektorowm w celu ejszea błdu ε zwksza s lczb os układu współrzdch. Wektor X moa rozb a dwa prostopadłe wektor ortogoaloc moa zale w [5]. Współrzde wektora X sr moa wzacz z astpujcego wzoru: X sr,, X sr oraz X. Dowód,. (8) Reprezetuje o wartoc rede współrzdch wektora X. Natomast wektor wzacz a podstawe wzoru: Podzał wektora X a wektor X sr X X sr X moa X. (9) X lustruje rsuek.
4 POLSKIE STOWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa Materał, r 8, 00 X sr X X Rsuek. Podzał wektora X a wektor X sr Po rozszerzeu układu współrzdch z jedego wektora do dwóch wzór () przjme posta: Y ˆ βx sr ˆ αx ε. (0) Iterpretacj grafcz wzoru przedstawa rsuek 3. Y ε X X αˆx ˆ βx sr ˆ αx Rsuek 3. Rzut wektora X a wektor X sr Wektor błdu ε e zale od długoc wektorów tworzcch układ współrzdch, a jede od ch keruku. Wektor βˆx sr X sr X sr moa zatem zastp przez dowol wektor o keruku X
5 Kesra Nermed, Marusz Borawsk Zastosowae podejca wektorowego do zada progozowaa detc z kerukem sr X. Przkładem takego wektora moe b wektor którego współrzdm s same jedk. Upraszcza to wzór (0) do postac: ε α β Y ˆX ˆ. () czl α( ) ε β sr X X Y ˆ ˆ. () Powstał w te sposób wzór opsujc wektorow model ekoometrcz. Zgode z zasadam rachuku wektorowego parametr αˆ moa oszacowa z astpujcego wzoru: ( ) ( ) ˆ α, (3) atomast parametr βˆ : ˆβ. (4) Parametr αˆ modelu ekoometrczego metod ajmejszch kwadratów szacuje s ze wzoru [6, 7]: ( )( ) ( ) ˆ α. (5) Lczk powszego wzoru moa przekształc astpujco: ( )( ) ( ) ( ) (6) Suma wszstkch róc zawsze jest rówa zeru, a wc: ( )( ) ( ). (7) Std wzor (0) () s tosame.
6 POLSKIE STOWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa Materał, r 8, 00 3 Parametr βˆ modelu ekoometrczego metod ajmejszch kwadratów szacuje s ze wzoru [8, 9]: ˆ β α ˆ. (8) Warto βˆ wektorowego modelu ekoometrczego rówa jest wartoc redej współrzdch wektora Y, atomast w przpadku modelu ekoometrczego daego wzorem () jest to wartoreda współrzdch wektora Y pomejszoa o wartored współrzdch wektora X przemoo przez współczk αˆ. Jest to jeda róca pomdz wektorowm modelem ekoometrc, a modelem dam wzorem (). W przpadku wektorowego modelu ekoometrczego a podstawe zajomoc współczków αˆ βˆ dokouje s odtworzea wektora Y a podstawe wektorów Otruje s w te sposób tak przeskalowae wartoc współrzdch wektorów X sr X sr X. X, ab bł jak ajblsze" współrzdm wektora Y. Współczk αˆ βˆ mów o dopasowau odtworzoego wektora do wektora Y. Dopasowae to jest tm lepsze m bardzej wektor Y ma keruek zbe z dowolm wektorem lecm a płaszcze wzaczoej przez wektor X sr X. Prz c m współczk αˆ jest wksz co do wartoc bezwzgldej tm keruek wektora Y jest bardzej podob do wektora X, a m współczk βˆ jest wksz co do wartoc bezwzgldej tm keruek wektora Y jest bardzej podob do wektora Wartoc αˆ βˆ e mog b maram podobestwa wektora Y z wektoram gd maj róe mar. Ich maram s długoc wektorów X sr X. Moa je jedak sprowa- X do wektorów dz do porówwaloc poprzez przelczae wektorów X sr. X sr X, X sr jedostkowch. Dla wektorów jedostkowch wzór a wektorow model ekoometrcz bdze astpujc: ˆ β ( X X ). (9) sr Y ˆ α ε ( ) Warto αˆ ale wzacz ze wzoru: ˆα ( ) ( ), (0) atomast βˆ :
7 4 Kesra Nermed, Marusz Borawsk Zastosowae podejca wektorowego do zada progozowaa βˆ ( ). () Ze wzgldu a to, ze operacja ta e ea keruku wektorów X sr X uzska wektorow model ekoometrcz bdze dokłade tak samo opswał badae zjawsko jak model z ejedostkowm układem współrzdm. Róca polega tlko włcze a ch warto- cach współrzdch αˆ βˆ wraoch w jedakowch jedostkach, co pozwala a okrelee do którego z wektorów wektor Y jest bardzej podob. Lczba os układu współrzdch e mus ogracza s do dwóch. Molwe jest zastosowae wkszej lczb wektorów. W pewch szczególch przpadkach wektor os układu współrzdch odtwarzajce wektor Y mog b sumowae w celu uzskaa lepszego odwzorowaa tego wektora. Do wzaczea współrzdch molwe jest wkorzstae wzoru (3). Warukem wkorzstaa tego wzorów jest wzajema ortogoalo wektorów os układów współrzdch. Jeel wszstke wektor os układów współrzdch maj pomdz sob locz skalar rów zeru to wk ch odtworzea moa sumowa. 3. Praktcz przkład W celu porówaa lowego modelu ekoometrczego z jed e objaajc z wektorowm modelem ekoometrc oszacowao współczk modelu oraz wlczoo współczk rzutu dla zaleoc procetowej loc utkowków Iteretu od PKB a osob dla 5 pastw europejskch w roku 006. Pastwa o ludoc mejszej 0 wkszej 300 procet ludoc Polsk oraz o powerzch mejszej 0 wkszej 300 procet powerzch Polsk e brao pod uwag. ródłem dach bła corocza publkacja The World Factbook" Cetralej Agecj Wwadowczej (CIA z ag. Cetral Iformato Agec) rzdu Staów Zjedoczoch [0]. Da modelu ekoometrczego otrao αˆ 0,00 βˆ 4,8 (szacowae metod ajmejszch kwadratów). Nska warto αˆ wka z odmeego zakresu dach a obu osach (0 90 % dla loc utkowków Iteretu USD dla PKB). W przpadku wektorowego modelu ekoometrczego wartoc współczków αˆ βˆ wosł odpowedo 0,00 40,69. Warto współczka αˆ dla modelu ekoometrczego z jed e objaajc wektorowego modelu ekoometrczego s zatem detcze. Rsuek 4 przedstawa zazaczo l przerwa przebeg l regresj. Prz c la wzaczoa dla modelu daego wzorem () wektorowego modelu ekoometrczego pokrwaj s. Ozacza to, e wektorow model ekoometrcz jest form zapsu modelu ekoometrczego, a współczk wzaczoe metod ajmejszch kwadratów s przelczale do współczków wektorowego modelu ekoometrczego.
8 POLSKIE STOWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa Materał, r 8, 00 5 Rsuek 4. Zaleo pomdz redm dochodem a osob a lczb utkowków Iteretu 3. Podsumowae Wektorow model ekoometrcz jest form zapsu modelu ekoometrczego z jed e objaajc. Zapewa detcze wk z klasc modelem ekoometrc dla którego parametr szacuje s metod ajmejszch kwadratów. W przpadku wektorowego modelu ekoometrczego steje jedak grafcza terpretacja szacowaa współczków. Poadto jest o puktem wjca poprzez zwkszee lczb os układu współrzdch do tworzea bardzej skomplkowach model. [] Aczel A. D.: Statstka w zarzdzau. PWN, Warszawa, 000. [] Borawsk M.: Rachuek wektorow w przetwarzau obrazów. Wdawctwo Uczelae. [3] Hozer J.. Ekoometra, Katedra Ekoometr Statstk Uwerstet Szczecsk, Szczec, 997. [4] Hozer J., Statstka, ops statstcz, Uwerstet Szczecsk, Szczec 998, s. 7. [5] Itellgece Agec Cetral. The World Factbook 006. Uted States Govermet, Prtg Offce, Washgto, 006. [6] Maddala G. S.: Ekoometra. PWN, Warszawa, 006. [7] Nermed K.:Vector Calculus Regoal Developmet Aalss, Phsca-Verlag Berl Hedelberg 009. [8] Nowak E.: Problem doboru ech do modelu ekoometrczego, Pastwowe Wdawctwo Naukowe, Warszawa, 984. [9] Nowak E.: Zars metod ekoometr. PWN, Warszawa, 00. [0] Poltechk Szczecskej, Szczec, 007. [] Zela A.: Ekoometra przestrzea, PWE, Warszawa 99.
9 6 Kesra Nermed, Marusz Borawsk Zastosowae podejca wektorowego do zada progozowaa APPLICATION OF THE TASK VECTOR TO PREDICTION PROBLEMS Summar Vector calculus s used ma dfferet domas of scece because of ts ease of methods' terpretato. Ths terpretato ca be maaged graphcal wa. It s also possble to wrte a ecoometrc model a vector form. I the artcle the comparso betwee the classcal lear ecoometrc model ad vector ecoometrc model s preseted. Kewords: Ecoometrc model, vector ecoometrc model Kesra Nermed Wdzał Nauk Ekoomczch Zarzdzaa Uwerstet Szczecsk Mckewcza 64, Szczec e-mal: kesra@poczta.wez.pl Marusz Borawsk Wdzał Iformatk Zachodopomorsk Uwerstet Techologcz w Szczece ul. ołerska 49, Szczec mborawsk@w.ps.pl
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
aij - wygrana gracza I bij - wygrana gracza II
M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj
Materiały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
Regresja linowa metoda najmniejszych kwadratów. Tadeusz M. Molenda Instytut Fizyki US
Regresja lowa metoda ajmejszch kwadratów Tadeusz M. Moleda Isttut Fzk US Regresja lowa (też: metoda ajmejszch kwadratów, metoda wrówawcza, metoda Gaussa) Zagadea stota metod postulat Gaussa współczk prostej
BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ
Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.
Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta
Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów
Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce.
Metody probablstycze statystyka Wykład 7: Statystyka opsowa. Rozkłady prawdopodobestwa wystpujce w statystyce. Podstawowe pojca Populacja geerala - zbór elemetów majcy przyajmej jed włacwo wspól dla wszystkch
Linie regresji II-go rodzaju
Lam regresj II-go rodzaju zmeej () względem () azwam zadae krzwe g(;,, ) oraz h(;,, ) gd spełają oe odpowedo waruk: E E Le regresj II-go rodzaju ( ( )) ( ) ( ) ( ) ( ) g ;,,... g ;,,... f, dd m,,... (
Statystyka. Katarzyna Chudy Laskowska
Statstka Katarza Chud Laskowska http://kc.sd.prz.edu.pl/ Aalza korelacj umożlwa stwerdzee wstępowaa zależośc oraz oceę jej atężea ZALEŻNOŚCI pomędz CECHAMI: CECHY: ILOŚCIOWA ILOŚCIOWA CECHY: JAKOŚCIOWA
METODY KOMPUTEROWE 1
MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc
Natalia Nehrebecka. Dariusz Szymański
atala ehreecka Darusz Szmańsk Wkład . MK przpadek welu zmech. Własośc hperpłaszczz regresj 3. Doroć ć dopasowaa rówaa regresj. Współczk determacj R Dekompozcjawaracj zmeejzależejzależej Współczk determacj
Miary statystyczne. Katowice 2014
Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących
OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE
OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch
dr Michał Konopczyński Ekonomia matematyczna ćwiczenia
dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom
Rachunek Prawdopodobieństwa i statystyka W 10: Analizy zależności pomiędzy zmiennymi losowymi (danymi empirycznymi)
Rachuek Prawdopodoeństwa statstka W 0: Aalz zależośc pomędz zmem losowm dam emprczm) Dr Aa ADRIAN Paw B5, pok 407 adra@tempus.metal.agh.edu.pl Odkrwae aalza zależośc pomędz zmem loścowmlczowm) Przedmotem
Analiza Matematyczna I.1
Aalza Matematycza I. Sera, Potr Nayar Zadae. Nech a k >, k =,..., b d lczbam rzeczywstym o tym samym zaku. Udowodj,»e prawdzwa jest erówo± + a + a... + a + a + a +... + a. Czy zaªo»ee,»e lczby a k maj
Podprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE
BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.
MODEL SHARP A - MIARY WRAŻLIWOŚCI
MODEL SHARP A - MIARY WRAŻLIWOŚCI Współzależość cech Rozważam jedostk zborowośc badae ze względu a dwe, lub węcej zmech W przpadku obserwacj opartch a dwóch zmech możem wkreślć dagram korelacj. Każda obserwacja
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Opracowanie wyników pomiarów
Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
Projekt 2 2. Wielomiany interpolujące
Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa
Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.
INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
Mec Me han a ik i a a o gólna Wyp W a yp dko dk w o a w do d w o o w l o ne n g e o g o ukł uk a ł du du sił.
echaika ogóla Wkład r 2 Wpadkowa dowolego układu sił. ówowaga. odzaje sił i obciążeń. odzaje ustrojów prętowch. Wzaczaie reakcji. Wpadkowa układu sił rówoległch rzłożeie układu zerowego (układ sił rówoważącch
Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka
Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej
W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12.
Zadae p (X p (X ( ( π 6 6 e 6 X m ( π 6 6 e 6 ( X C e m 6 X, gdze staªa C e zale»y od statystyk X (X,, X 6, a m jest w ksze od zera Zatem p (X/p (X jest emalej c fukcj statystyk T (X 6 X ªatwo pokaza,»e
A B - zawieranie słabe
NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZA 1. Wkład wstęp. Teora prawdopodobeństwa elemet kombatork. Zmee losowe ch rozkład 3. Populacje prób dach, estmacja parametrów 4. Testowae hpotez statstczch 5. Test parametrcze (a
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.
Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer
Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.
terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest
SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA
Załączk r do Regulamu I kokursu GIS PROGRAM PRIORYTETOWY: SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA. Cel opracowaa Celem opracowaa jest spója metodyka oblczaa efektu ograczaa emsj gazów ceplaraych,
Statystyka powtórzenie (II semestr) Rafał M. Frąk
Statstka pwtórzee (II semestr) Rafał M. Frąk TEORIA, OZNACZENIA, WZORY Rdzae mar statstczch mar płżea - wzaczaą przecęta wartść cech statstcze mar zróżcwaa (lub zmeśc, rzprszea, dspers) - wzaczaą słę zróżcwaa
RACHUNEK NIEPEWNOŚCI POMIARU
Mędzarodowa Norma Oce Nepewośc Pomaru (Gude to Epresso of Ucertat Measuremets - Mędzarodowa Orgazacja Normalzacja ISO RACHUNEK NIEPEWNOŚCI http://phscs.st./gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewodk.
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta
Niepewności pomiarów. DR Andrzej Bąk
Nepewośc pomarów DR Adrzej Bąk Defcje Błąd pomar - różca mędz wkem pomar a wartoścą merzoej welkośc fzczej. Bwa też azwa błędem bezwzględm pomar. Poeważ wartość welkośc merzoej wartość prawdzwa jest w
KORELACJA KORELACJA I REGRESJA. X, Y - cechy badane równocześnie. Dane statystyczne zapisujemy w szeregu statystycznym dwóch cech
KORELACJA I REGRESJA. KORELACJA X, Y - cech badae rówocześe. Dae statstcze zapsujem w szeregu statstczm dwóch cech...... lub w tablc korelacjej. X Y... l.... l.... l................... k k k... kl k..j......l
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)
Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata 1 2 3 4 5 Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9
TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA
Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej
Gra ekonomiczna symulujca sterowanie gospodark narodow implementowana za pomoc systemu komputerowego wykorzystujcego sztuczn sie neuronow.
Iera sstemowa - gra ekoomcza. Uwerstet Łódzk Wdzał Ekoomczo-Socologcz Keruek Iformatka Ekoometra Gra ekoomcza smuluca sterowae gospodark arodow mplemetowaa za pomoc sstemu komputerowego wkorzstucego sztucz
Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył.
Wkład. Całka podwója. Zamaa a całkę terowaą. Oblczae pól obszarów objętośc brł.. Całka podwója w prostokące. Jak pamętam, całka ozaczoa z cągłej fukcj jedej zmeej wprowadzoa bła w celu oblczaa pola powerzch
Współczynnik korelacji rangowej badanie zależności między preferencjami
Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody
EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.
Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
Analiza ZALEśNOŚCI pomiędzy CECHAMI (Analiza KORELACJI i REGRESJI)
D. Mszczńska, M.Mszczńsk, Materał do wkładu 7 ze Statstk (wersja poprawoa), WSEH, Skerewce 009/0 [] Aalza ZALEśNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje
Płaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2
Opis aalitcz wielkości podstawowch wersor e x, e Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B ) ) Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B )
Modelowanie i Analiza Danych Przestrzennych
Modelowae Aalza Daych Przestrzeych Wykład 8 Adrze Leśak Katedra Geoformatyk Iformatyk Stosowae Akadema Górczo-Hutcza w Krakowe Jaką postać ma warogram daych z tredem? Moża o wylczyć teoretycze prostego
m) (2.2) p) (2.3) r) (2.4)
Ekooetra dr ż. Zbgew Tarapata Wkład r : Postace zadań prograowaa lowego grafcza etoda rozwązwaa zadań PL POSTACIE ZADAŃ PROGRAMOWANIA LINIOWEGO Zadae decze w któr wszstke relace są lowe oraz wszstke zee
PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE
Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ VI WYBRANE TWIERDZENIA WRAZ Z DOWODAMI Na prawach rękopsu Warszawa, paźdzerk 0 Data ostatej aktualzacj:
KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny
KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Kodowanie rónicowe. Plan 1. Zasada 2. Podstawowy algorytm 3. Kodowanie adaptacyjne 4. Zastosowania
Kodowae rócowe Pla 1. Zasada. Podstawowy algorytm 3. Kodowae adaptacyje 4. Zastosowaa Kodowae rócowe zasada Jako kwatyzacj szeroko przedzału waracja, rozpto daych Obrazy, dwk korelacja w daych Wykorzystae
Planowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
Laboratorium fizyczne
Laboratorum fzcze L a portalu WIKMP CMF PŁ cmf.edu.p.lodz.pl Klkam odośk Laboratorum fzk Właścwą strukcję ależ pobrać ze stro Pracow zazajomć sę z jej treścą przed zajęcam!!! grupa I grupa II edzela
3. Wykład III: Warunki optymalności dla zadań bez ograniczeń
3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie
Prognozowanie- wiadomoci wstpne
Progozowa- wadomoc wtp Progozowa to racjoal woowa o zdarzach zach a podtaw zdarz zach. Clm progoz jt dotarcz otwch formacj potrzch do podjmowaa dczj. Progoz a mulacj. Progoza co dz w momc t Smulacja co
Statystyka Opisowa Wzory
tatystyka Opsowa Wzory zereg rozdzelczy: x - wartośc cechy - lczebośc wartośc cechy - lczebość całej zborowośc Wskaźk atężea przy rysowau wykresu szeregu rozdzelczego przedzałowego o erówych przedzałach:
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5
Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja
Matematyka dyskretna. 10. Funkcja Möbiusa
Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1
Prawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz
System M/M// System ten w odrónenu do wczenej omawanych systemów osada kolejk. Jednak jest ona ogranczona, jej maksymalna ojemno jest wartoc skoczon
Statystyka powtórzenie (II semestr) Rafał M. Frąk
Statstka powtórzee (II semestr) Rafał M. Frąk TEORIA, OZNACZENIA, WZORY Rodzaje mar statstczch mar położea - wzaczają przecęta wartość cech statstczej mar zróżcowaa (lub zmeośc, rozproszea, dspersj) -
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.
rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej
E K O N O M E T R I A (kurs 10 godz.)
E K O N O M E T R I A (kurs 0 godz.) PLAN kursu A. Ekoometra: defcje, pojęca, przkład B. Elemet statstk matematczej (zmea losowa, przedzałowa estmacja parametrów populacj, hpotez parametrcze) C. Model
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
PROGNOZOWANIE I SYMULACJE - zadania powtórzeniowe
PROGNOZOWANIE I SYMULACJE - zadana powórzenowe Zadana I. Na podsawe danych z la 88- zbudowano model: y = + 3, 5 s = szuk, R =,3 opsujcy lczb sprzedawanych arówek w yscach szuk w pewnej frme. Wyznaczy prognoz
Projekt 3 3. APROKSYMACJA FUNKCJI
Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle
Ź Ź Ó Ł Ś Ź Ń Ż Ę Ę ź Ę Ź ĘĄ ż ź Ę Ź Ż ź Ź Ł ź Ę Ż ż Ż Ą ź ż Ż Ż ż Ź ż ć ć ć Ż ż ż Ź ż ż Ź Ź Ż ć ć Ą Ż ć Ż Ń Ó ż ć ż Ż ż Ż Ź Ż ż ż Ę ż Ź Ź Ź Ź Ź ĄĄ ź Ż Ź Ź Ź Ż Ź Ź ź Ż Ź ź ź ź Ś Ź Ę ĘĄ ż Ż Ę ż ć Ś ĄĄ Ę
Wytrzymałość materiałów
Wtrzmałość materiałów IMiR - IA - Wkład Nr 8 Aaliza stau aprężeia Sta aprężeia w pukcie, tesor aprężeia, klasfikacja staów aprężeia, aaliza jedoosiowego stau aprężeia, aaliza płaskiego stau aprężeia, koło
Plan wykładu. Sztuczne sieci neuronowe. Sie Hopfielda. Sieci Hopfielda w praktyce. Wykład 9: Sieci rekurencyjne. Sieci rekurencyjne:
Pla wkładu Sec rekurece: Wkład 9: Sec rekurece Se Hammga Se tpu BAM Se RRN Se Elmaa Małgorzata Krtowska Katedra Oprogramowaa e-mal: mmac@.pb.balstok.pl Se Hopfelda Włacwoc: weca to wca ch euroów brak własego
Wiek statku a prawdopodobieństwo wystąpienia wypadku na morzu analiza współzależności
BOGALECKA Magda 1 Wek statku a prawdopodobeństwo wstąpea wpadku a morzu aalza współzależośc WSTĘP Obserwowa od blsko weku tesw rozwój trasportu morskego, oprócz lądowego powetrzego, jest kosekwecją wzmożoej
Ruch po równi pochyłej
Sławomir Jemielit Ruch po równi pochłej Z równi pochłej o kącie nachlenia do poziomu α zsuwa się ciało o masie m. Jakie jest przspieszenie ciała, jeśli współcznnik tarcia ciała o równię wnosi f? W jakich
ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
Wykład Analiza jakościowa równań różniczkowych
Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie
JEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:
w sprawie zasad podziału dotacji z budetu pastwa dla uczelni publicznych i niepublicznych
Projekt 3.0.2006 r. ROZPORZDZENIE MINISTRA NAUKI I SZKOLNICTWA WYSZEGO ) z da...2006 r. w sprawe zasad podzału dotacj z budetu pastwa dla uczel publczych epublczych Na podstawe art. 96 pkt 2 ustawy z da
REGRESJA LINIOWA. gdzie
REGREJA LINIOWA Jeżel zmerzoo obarczoe tlko błędam przpadkowm wartośc (, ),,,..., dwóch różch welkośc fzczch X Y, o którch wadomo, że są zwązae ze sobą zależoścą lową f(), to ajlepszm przblżeem współczków
Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem
Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać
Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 3 Nr: 1 Metody obliczeniowe wykład nr 3 aproksymacja i interpolacja pojęcie modelu regresji
Nr: Metod oblczeowe - Budowctwo semestr - wkład r 3 Metod oblczeowe wkład r 3 aproksmacja terpolacja pojęce modelu regresj Nr: Metod oblczeowe - Budowctwo semestr - wkład r 3 Aproksmacja daa jest ukcja
Rachunek różniczkowy funkcji wielu zmiennych
Iormaa - Wład 9 - dr Bogda Ćmel cmelbog@ma.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec
System finansowy gospodarki
System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym
POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
Rachunek różniczkowy funkcji wielu zmiennych
EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam
Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych
Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00
będą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka
ZESTAW ZADAŃ Z INFORMATYKI
(Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań
= n = = i i. Sprawdzenie istotności współczynnika korelacji ρ dla populacji na podstawie współczynnika r
STATYSTKA I ANALIZA DANYCH LAB V I VI. Pla laboatoum V VI Koelacja współczk koelacj Peasoa testowae stotośc współczka koelacj Regesja lowa egesja posta, ocea dopasowaa, testowae stotośc współczków egesj
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
Geometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
ZMIENNE LOSOWE WIELOWYMIAROWE
L.Kowals Zmee losowe welowmarowe ( ΩS P ZMIENNE LOSOWE WIELOWMIAROWE - ustaloa przestrzeń probablstcza. (... - zmea losowa - wmarowa (wetor losow cąg losow. : Ω R (fuca borelowsa P : Β R [0 - rozład zmee