Prognozowanie- wiadomoci wstpne
|
|
- Miłosz Ostrowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Progozowa- wadomoc wtp Progozowa to racjoal woowa o zdarzach zach a podtaw zdarz zach. Clm progoz jt dotarcz otwch formacj potrzch do podjmowaa dczj. Progoz a mulacj. Progoza co dz w momc t Smulacja co ło gd... Przład Z rozpatrwago modlu wa wdat a pra taow 5% mczch dochodów rodz. Utaloo mcz dochod rodz wo 4 zł. Mom zatm potaw progoz wdat a pra wo zł. Jl jda wzaczalm wdat a pra dla róch waratów dochodu p. wdat 9 zł dla dochodu 38 wdat zł dla dochodu 4 wdat zł dla dochodu 44 to ł mulacj. Procdur progozowaa Prot tucj a podtaw protch charatrt lczowch Eoomtrcz Poprzz aalog Progoz prtów hurtcz Wzacza róch caruz rozwoju. Progozowa zma wartoc adago zjawa mog : - locow zgod z dotchczaow prawdłowoc p. trdm lu fucj rgrj - jaocow odjc od dotchczaowch prawdłowoc
2 Uprozczoa lafacja progoz. Z wzgldu a wartoc progoz: progoza locowa jaocowa putowa przdzałowa Z wzgldu a or progoz: - Krótoorowa a ta or w tórm mog zachodz tlo zma locow - rdoorowa a ta or w tórm mog zachodz zma locow wl zma jaocow - Długoorowa a ta or w tórm mog zachodz zarówo zma locow ja jaocow. W pratc d podzał t odo do zagu trapolacj lcza jdot czau wjca z progoza w przzło w porówau z lcz dach: do % - progoza rótoorowa od d % - progoza rdoorowa powj % - progoza długoorowa Powa wartoc progoz wzaczam w oparcu o da to muz o dorj jaoc. Cch dach dcdujc o ch jaoc: - rztlo - jdozaczo - dtfowalo - omplto - atualo - ozt zraa opracowaa - porówwalo p. w zar: czaowm trtoralm pojcowm.
3 Etap progozowaa: Sformułowa zadaa progotczgo Orl zmch progozowach Utal clu progoz Utal horzotu progoz waruów jj dopuzczaloc Orl przła progotczch Orl czów ztałtujcch ada zjawo Zra dach Wór mtod progozowaa Wzacza progoz Oca dopuzczaloc progoz Worzta progoz Wrfacja motorowa prz powtarzaloc progoz. Podtawow chmat progozowaa. - ada zjawo t - orwacj adago zjawa t - progozowa wartoc adago zjawa.... MODEL... przzło rguła progozowaa przzło Bzwzgld łd progoz jt rów Wzgld łd progoz jt rów dodatch moa go wraa w proctach. ma zwl dla zjaw o wartocach gdz to prawdzwa warto zjawa w or progoz. Uwaga Bzwzgld łd progoz d dfuj jao *. Wzgld łd progoz d dfuj jao. 3
4 Prawdzw warto łdu progoz moa wzacz dopro po utalu prawdzwj wartoc adago zjawa wczj łd moa tlo ozacowa. Szacowa łdu progoz.. Na podtaw progoz wgałch pot. Mtoda tochatcza at. Ad.. Worztuj formacj o trafoc progozowaa w przzłoc. Przjmuj trafo progoz przzłch dz podoa do trafoc progoz przzłch. Progoz wgał uwa do zacowaa pow wzacza w t am poó ja otatcza progoza. Jao ozacowa łdu progoz moa p. przj rd z * modułów łdów zwzgldch t t *% t lu wzgldch t * t t t *% progoz wgałch. poó zacowaa łdu progoz zatoujm prz modlach adaptacjch. Ad.. Worztuj tochatcz załoa o toowam modlu. Przjmuj łd progoz jt zlo do rdj rozoc mdz molwm wartocam progozowago zjawa a molwm progozam tgo zjawa w or progoz. * Jao ozacowa łdu progoz moa p. łd rdowadratow t t t * t t lu wzgld łd rdowadratow *%. poó zacowaa t t łdu progoz zatoujm prz modlach omtrczch. Nd przjmuj progoza jt dopuzczala gd zacowa łd przracza 5 %. Schmat progozowaa a podtaw modlu oomtrczgo f - wtor zmch ojaajcch dla oru progoz. Progoza putowa: f. Progoza przdzałowa: Zwl łd zwzgld progoz przdzałowj. 4
5 Jao progoz w zaczm topu zal od jaoc zatoowago modlu oomtrczgo. Oprócz tgo Błd progoz pow mał Przjt wartoc zmch ojaajcch pow wargod Or progoz pow ow. Przład ozpatrujc modl jdotow ozt producj wlo producj W tm przpadu progoz trac dla >. Przład Lcza tudtów ruów oomczch w Polc t. oó lczoa a oc rou aadmcgo w latach woła: lcza tudtów t. zt lcza tudtów t. zt t ozpatrujc modl f t lcza tudtów t ro W tm przpadu progoza p. a ro 7 poad 46 ml oó ła przada. 5
6 6 Przpom formacj o jdorówaowch lowch modlach oomtrczch. Jda zma ojaajca. zma ojaaa zma ojaajca. przlo wartoc paramtrów truturalch cov r Waracja rztowa. Nch gdz wtd czl ozacza rd tadardow odchl od protj rgrj. Wpółcz dtrmacj orla ja cz całowtj zmoc cch wjaa modl rgrj lowj cov ˆ r - zmch ojaajcch. - zm ojaajc.... ˆ
7 7 Włao Dla Dla A d c a gd c ad to a c d c ad A Waracja rztowa. Nch gdz wtd S S Wpółcz dtrmacj
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = +
REGRESJA jda zma + prota rgrj zmj wzgldm. przlo wartoc paramtrów trukturalch cov r waga: a c cov kowaracja d r cov wpółczk korlacj Waracja rztowa. Nch gdz + wtd czl ozacza rd tadardow odchl od protj rgrj.
Wykład 6. Klasyczny model regresji liniowej
Wkład 6 Klacz modl rgrj lowj Rgrja I rodzaju pokazuj jak zmają ę warukow wartośc oczkwa zmj zalżj w zalżośc od wartośc zmj zalżj. E X m Obraz gomtrcz tj fukcj to krzwa rgrj I rodzaju czl zbór puktów płazczz,
$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI
KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor
(liniowy model popytu), a > 0; b < 0
MODELE EKONOMERYCZNE Model eoomercz o ops sochasczej zależośc adaego zjawsa eoomczego od czów szałującch go, wrażo w posac rówośc lu uładu rówośc. Jeśl p. rozparujem zjawso popu a oreślo owar lu grupę
CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (c.d.) MIARY ZMIENNOŚCI
D. zczyńa,.zczyń, atrały do wyładu 3 z Statyty, 009/0 [] CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (c.d.). mary połoŝa - wyład. mary zmośc (dyprj, rozproza) 3. mary aymtr (ośośc) 4. mary octracj IARY
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
Ł ń ż Ó Ę ń ż Ą Ż Ż Ż ń ż ż ń ć ż Ł ć ć ć ż Ż ż Ó ż Ż ń ż ć ż ć Ż ż Ż ć ż ć ć Ż ń ż Ó ż ć Ż ć Ó ż ć ż Ó ń ż ź ń Ź ć ż ć ż Ż Ź ż Ł ż ż Ł ń Ą ż Ó ćż ż Ż ń ż ć ż ć Ż ż ć Ż ć Ż ć ż Ó Ó ż ć ć Ń ć ż ć ć ż ń
Ćwiczenia 11_12 KLASYCZNY MODEL REGRESJI LINIOWEJ
Ćwcza _ KLACZN MOL RGRJI LINIOWJ Zada. W tabl przdstawoo wysokość stawk clj X oraz udzał w ryku a pw towar mportoway spoza U. 5 5 0 0 8 0 y 5 6 3 7 0 Nalży w oparcu o poda formacj: a. Zapsać rówa fukcj
Oświadczam, że warunki ww. umowy zawartej z Wojewódzką Komendą OHP są przestrzegane. Środki finansowe prosimy przekazać na rachunek bankowy Nr...
Dz tw r 77 4674 Pz. 518 ącz r 4 Mcwć t Pczęć rcwc (mcwć t) (częć rcwc) Wwóz Km OHP z rctwm trum uc Prc Mz w... DOKŁD MRY MÓW O RFDJĘ! Or, z tór wum rfucę. W rcwc Dzń zwrc umw rfucę rfucę wgrzń wcch mcm
Pojęcie modelu. Model ekonometryczny. Przykład modelu ekonometrycznego. Klasyfikacja modeli ekonometrycznych. Etapy analizy ekonometrycznej
Poęc modlu Modl s o uproszczo przdsw rzczwsośc Lwrc R Kl: Modl s o schmcz uproszcz pomąc so sp w clu wś wwęrzgo dzł form lub osruc brdz somplowgo mchzmu Główą zlą modlu s możlwość go bzpczgo przprowdz
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMINIE NA STUDIACH LICENCJACKICH
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMNE NA STUDACH LCENCJACKCH Oacoa zgooa zz d Maę Wczo a oda:. P. Kuz, J. Podgó: Saa. Wzo ablc. SGH, Wazaa, 8. M. Wczo: Saa. Lubę o! Zbó zadań. SGH, Wazaa 6 .
Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści
C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 2 1 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 10. 5. 2 0 1 5 r. w s p r a w i e I n s t r u
Prognozowanie na podstawie szeregów czasowych.
Progozowaie a podsawie szeregów czasowch. Sładowe szeregów czasowch. Szereg czasow sładowa ssemacza sładowa przpadowa red sał poziom sładowa oresowa wahaia clicze wahaia sezoowe Tred (edecja rozwojowa
Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e
Ł Ł Ą Ą Ą ż ń ż ń ż ń Ż Ż Ś ń Ż ń ć Ł Ą ń Ż Ś ń ć ń ć ń Ż ć ć ń ń ń ż ć ń ŁĄ ż ć ć ć ć ń Ż Ź ć ć ć ń ż ŁĄ Ł ż Ł Ąż ń ć ż ŚĆ ż Ł ń Ć Ś Ę ń ń ż ź Ż ń ć Ę ń ć ż ć ć ń ń Ć ć ż Ż ć ć ć ćż Ż ć Ż Ę Ż Ż Ść Ż ż
PROGNOZOWANIE WIELKOŚCI WYDOBYCIA WĘGLA KAMIENNEGO W GÓRNOŚLĄSKIM ZAGŁĘBIU WĘGLOWYM Z UŻYCIEM LINIOWEJ FUNKCJI REGRESJI
PROGNOZOWANIE WIELKOŚCI WYDOBYCIA WĘGLA KAMIENNEGO W GÓRNOŚLĄSKIM ZAGŁĘBIU WĘGLOWYM Z UŻYCIEM LINIOWEJ FUNKCJI REGRESJI Staław Kowalk 1, Kryta Probrz 1 Katdra Zarządzaa Iżyr Bzpczńtwa, Poltchka Śląka Itytut
Regresja wielokrotna. Przygotowano w oparciu o Applied Linear Regression Models Neter, Wasserman, Kutner
acj Kotrzwk Rgrja wlokrota Przygotowao w oarcu o Ald Lar Rgro odl Ntr Warma Kutr odl rgrj: - zmych zalżych... - β +β +...+β - - +ε Jśl założymy ż wówcza otać rówoważa jt otac: k β k k + ε Zakładając E(ε
n ó g, S t r o n a 2 z 1 9
Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z
Dane modelu - parametry
Dae modelu - paramer ˆ Ozaczea zmech a0 ax ax - osz w s. zł Budowa modelu: x - welość producj w seach o x - welość zarudea w osobach Meoda MNK Dae: x x 34 9 0 60 34 9 0 60 35 3 7 35 3 7 X T 0 9 3 4 5 3
Ę Ś Ó Ę Ę ź Ś Ą Ą ż ŁĘŻ Ą Ą Ą Ą Ą Ś ż ć ż Ę Ż ż ć ż Ą Ś Ż Ż Ę ż Ź ć ż Ź ź ż ć Ź ć ż Ź Ó ćż ż ż Ż Ź ż ć ć ć Ń ź ć ż Ź ż Ź Ż Ą Ż Ó Ż ż ż Ż ć ż ż ż ż Ż Ę Ó ż ć ż ż ż ż Ń ć Ż ż ć Ź ż ż ź ż ź Ź ź Ź ć ż ż ź
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H
O F E R T A H o t e l Z A M E K R Y N * * * * T a m, g d z i e b łł k i t j e z i o r p r z e p l a t a s ił z s o c z y s t z i e l e n i t r a w, a r a d o s n e t r e l e p t a z m i a r o w y m s z
Ś Ś Ą Ó ć ć Ą ŁÓ Ó Ń ć ć Ż Ó ć ź Ę ć Ę ć ć ć Ę ć ć ć ć ć ć ć ć ć ć Ó Ą Ą Ę ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ćę ć Ę ć ć Ś ć ć ć ć Ę ć Ę ć ć ŚĘ Ł Ń Ń Ś Ą ć ć ź ć Ę Ć Ę ć Ę ć ć Ę Ę ć ć ć Ą ć ć Ę ć ć
Rachunek różniczkowy funkcji wielu zmiennych
Iormaa - Wład 9 - dr Bogda Ćmel cmelbog@ma.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMINIE NA STUDIACH LICENCJACKICH
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMNE NA STUDACH LCENCJACKCH Oacoa zgooa zz d Maę Wczo a oda:. P. Kuz, J. Podgó: Saa. Wzo ablc. SGH, Wazaa, 8. M. Wczo: Saa. Lubę o! Zbó zadań. SGH, Wazaa 3 .
z d n i a 1 5 m a j a r.
C h o r ą g i e w D o l n o l ą s k a Z H P D e c y z j a n r 1 4 / I X / 2 0 1 5 K o m e n d a n t a C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 1 5 m a j a 2 0 1 5 r. w s p r a w i e g
Ł Ą Ó ŁÓ Ę Ę Ę Ł Ą Ś ŁĄ Ż Ą Ą Ł Ś Ś Ż ŁÓ ć ŁÓ ĘĘ Ą Ę ĘĘ Ą Ł Ą Ś Ą Ć ŁÓ ć ć ć ĄĄ ć ĄĄ Ł ć ć ć ŁÓ Ó Ś Ą Ł Ą ć ć ć Ę ć ć ć Ę Ś Ą ć Ą Ł ĄĄ ĄĄ ć Ę Ś Ą ć Ś Ą Ł ć Ł ć Ś Ś Ś Ś Ą Ł Ś ŁĄ Ż ć Ą Ł Ł ć ć ć ć Ę Ę Ę
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
Ł ź Ś Ł ń Ż ć ź ć Ł Ś Ś Ś Ł Ł Ź Ś Ś Ś Ł Ś ź ć ć ć Ś Ś Ś Ł Ż Ś ń Ś Ł Ś Ł Ł Ź ć ć Ł ć Ń Ś Ą Ł ŁÓ Ź ń ń Ó ć Ł Ł ź ń ć ć ć Ś Ł Ł Ź Ś Ś ń Ż Ż Ż ć ć Ś Ś Ł Ź ć ń ć ć Ś Ł Ę ń Ś Ł Ł ź ć Ź ć ć ć ń ć Ś Ś Ż ć Ś ń
Ł Ś ń ń ń ź ź Ę Ś Ś Ć Ą Ę ź Ź Ń ń Ę Ą ń Ź ń ń ź Ś ń Ź ź ć Ł Ś Ą Ś ź Ą ń Ń Ź Ś Ó ŁÓ Ę Ó Ś ć ź Ę Ą Ś Ś Ś Ś ć Ą ź ń Ą ń Ź ź ź Ę Ł ń ń ń ź Ź Ą Ń Ą Ą ć Ź ń Ą Ń ń ń ź ć ń Ę Ś Ź ć ć ć ń ń ć ń ć ć Ź Ą ć ć ć ć
Ż Ł Ó ź Ł ź Ł ź Ó Ó Ź Ó ŁÓ ź Ł Ś Ł Ź ź ŁÓ ź Ł ć Ć ć ż ć ż ż ć ż ż Ó ć ć ż ć Ł ź ż ż Ł Ź Ó Ż ć ć Ł ż ż ź ż Ć Ó Ł Ó ż Ż ż ż ż Ł Ó ż Ą ż Ł Ł ć Ł Ł Ł ż Ł Ó ż Ł ź Ż Ś Ł ż Ł ć Ż Ą Ł ż ż Ó ć ż ć Ń ć ć ż ż ć
Ł ż ż ż Ź Ż ć Ś Ż ź ż ć Ł Ń ż Ł ż ż Ż Ż Ż Ę ż Ż Ż Ż ż ć Ź Ź ż ż Ż ż ć ż ć Ż Ż Ś ż Ę ż Ż Ż Ż ź Ż Ę ź ż ż ż Ż Ą ź Ż Ż ż ż Ż Ś ż ż ż Ż ż ź Ż ż ć Ż Ż Ó Ź Ż Ź ż Ł Ż ż Ś ć ć Ś ż Ż ć Ś ć Ą Ś Ń ć Ż ć Ę Ę Ż ć ż
Ó Ź Ź Ł Ź Ą Ź Ś Ź Ź Ą Ó Ź Ź Ź Ź Ź Ź Ź Ź Ź Ź Ś Ż Ś Ś Ś Ź Ź Ś Ó Ó Ż Ó Ć Ź Ś Ż Ś Ć Ó Ś Ź Ó Ó Ź Ś Ć Ś Ż Ź Ó Ź Ź Ż Ą Ó Ó Ó Ź Ź Ź Ż Ź Ź Ż Ź Ś Ź Ś Ź Ś Ś Ż Ó Ż Ż Ź Ź Ś Ó Ó Ż Ź Ż Ś Ź Ś Ż Ż Ś Ś Ż Ó Ć Ć Ń Ś ŁÓ
Ł ŁÓ ź ń ć ń ń Ó ć ń ć Ś Ś ń Ś Ś Ś ć ć Ć Ś ć Ż Ć Ś ć Ś ń Ł ć ć ć ź ń ń ń ń ń ń ź ń ń ń ź ń Ś Ś ć ć ń Ś ć Ś Ś Ć ź ń ń ź ń ń ń ń ć ć ć ć ć ć ć ź ń ź ć ć ć ć ń ń ć ć Ś ń ń ń ń ź ć Ę ń ń ć Ł ź ź ź Ć ć ć ź
Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak
Mtod numrczn Wład nr 6 Różnczowan dr ab. Potr Froncza Różnczowan numrczn Wzor różnczowana numrczngo znajdują zastosowan wtd, gd trzba wznaczć pocodn odpowdngo rzędu uncj, tóra orślona jst tablcą lub ma
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -
ŚĆ ŁĄ Ś Ć Ć Ś ŁĄ Ł Ż Ł Ś Ż Ł Ę Ł Ż Ł Ł Ś Ś Ś Ł Ś Ł Ś Ś Ć Ś Ś ć Ś Ś Ś Ś ć Ś Ż ć Ć Ć Ś Ś Ż Ś Ż Ś Ś ć Ś Ś Ć Ś Ć Ż Ś ż Ś ż Ż Ś Ż Ś Ż Ł Ś Ś Ł Ś Ą Ę Ą Ż ż ć ć ć Ą ż ć Ś Ś Ś Ś Ż ż ć ć ć Ę Ś ż ć Ś ć Ś Ś ć Ś Ś
ó Ż ó Ę ń ó ó ń ń ę ć Ś ż Ż Ż Ż ą ą ę ń Ś ń ą ń ń ż ń ó ó ó Ś ń ć ż ń ń ń Ś Ż ż ń ó ń ą ę ń ż ą ć Ś Łą ę ą ż ą Ż ó ó Ó Ą ó ń ń Ż ę Ś ć ę ż ę ń ż ą Ż ą ą ń Ż ź ń ń ń ń ń ż ó ó ż ń Łą ę ą ż ą ó ó ó ó
Ą Ą ż ż ś ż ż ż ć ś ż ść ś ś ż ć ść ż ż ć ś ś ż ż ć ś ś ś ż ś ć ć Ę ś Ł ś ś Ń Ń ż ż Ń ść ż ść ż Ą ź ż ść Ń ś ż ś Ł ść ż ść ś ż ś ż Ó Ś ż ż ż ż ć ść ś ż ż ć ść ś ś ż ść ż ż ść ś ż ż ź ś ść ż ś ś ś ć Ł Ą
Ń ź ź Ń Ó ŁĄ Ó Ę Ł Ł Ó Ł Ę Ę Ł Ę ź Ó ź Ę Ę Ę Ę Ę Ą Ą Ł Ź Ę Ę Ę Ę Ę Ę ź Ł Ś Ś Ę Ł Ę Ę Ę ŚĆ Ą Ś Ś Ó Ę Ń Ę Ę Ł Ę Ł Ć Ż Ę Ć ź Ó Ę Ę Ę Ę Ó Ę Ś Ń Ą Ę Ą Ę Ł Ę Ó Ń Ą Ł Ć Ę Ę Ł Ę Ó Ą Ó Ę Ó Ę Ę Ę Ę Ą Ó Ź ź Ć Ó ź
ź ŁĄ ó ś ó ś ó ó ó ś ó ó ó ó ó ś ó ó ó ó ó ó ó ó ó ó ś ó ó ó ó Ż Ż ó ó ó ó ó ó ó ó ó ó ó ń ó ó ó ć ó ó ó ś ó ó ó ó ó ó ó ó ó ś ó ś Ł ś ó ó ó ó ó Ż Ż ć ó ó ś ó ó ó ó ó ó ś ó ó ó ó Ę Ż ó ś ó ó ó ó ó ś ś
ź ź ź Ę Ę ź ź ź ź Ź ć ć ć ć ć ć Ź Ł ć ć Ż ć Ż ć Ę Ł Ż Ń ć ć ć Ż ć ć ć ć ć ć Ę ć Ę Ł ć ć ć ć ć ć ć ć ć Ż ć ć ć ć ć Ż Ń ź ć Ł ć ć ć ć ć ź ź ć ć ć Ł ć ć ć Ż ć ć Ż ź ć ć ć Ż ć ć ć ć Ń ć Ę ć Ż Ł ć Ń ć ć ć Ź
ą Ą Ę Ś Ł ź ź ą ń ń ą ć ą Ę ą ą ą ą ć ą ć ą ą Ź ć Ż Ł Łą ń ń ą ą ą ą Ę ą ą ń Ź Ń ą ą ć ąć ć ć ą ą ń ą ź ą ą ą ą ą ą ą ć ą ą ą ą ć Ź ą ń ą ą Ź ą ą ą ą ą ą ć ą ą ą ą ć ą ą ą ą ć ą ć ć ą ą ń ą ń ń ń ć ą ą
Ą ć ć ć ŁĄ ć Ę Ł ć ć ć ć ź ć ć Ą ć ć Ą ć ć ć ć Ę ć ć Ę ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć Ł Ś ć ć ź ć ć ć ć ć ć ź ć ź ć ź ć ź ć ć Ą ć ć Ę ź Ą ć ć ć ć ć ć ć ć ź Ę ć ć Ą ć ć ć Ł ć ć Ą ć ć ć ć ć Ę ź ć ć ć ć ć
Ę Ę Ś ć Ł ć ż ż ż ż ż Ł Ł Ą Ń ż ć ź ż ć ć ż Ł Ę Ś ż ż ż Ł Ś ż ż ż Ś ż ż ż Ł Ł ż ż ż ć Ś Ę Ę Ś Ś Ę ć Ś Ł Ł ć ć ć ć ć ć ć Ł ć Ł Ę ć Ę ć Ę Ś Ł Ł ć ć ć ż ć ć ź ż Ł Ą Ą Ą Ę Ą Ś Ę Ś Ł Ś ć ŁĄ Ź Ę Ł Ś Ń Ę ć
ń Ż ń ź ć ć ń ć ć ć ć ź ć ń ń ć ń ć ć ć ć ź ć ń Ż ć Ż ć ć ć ć ń ć ń ć ń ć ń ć ć ń ń ć ń ć ń ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż Ż Ż ć ć ć ć ń ć ć ć ć ć ć ć Ż ć ć ć ź ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć
Ćwiczenia 10 KORELACJA
Ćwczea 0 KORELACJA Zadae W odażu przeprowadzom przed wboram prezdecm aazowao poparce da addatów A B W zaprezetowao w tabe: Y addat X płeć A B M 0 40 K 0 30 00 a Naeż prawdzć cz wbór addata a prezdeta zaeż
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą
W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b
Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.
Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników
Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych
Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla
7 4 / m S t a n d a r d w y m a g a ± û e g z a m i n m i s t r z o w s k i dla zawodu K U C H A R Z * * (dla absolwent¾w szk¾ ponadzasadniczych) K o d z k l a s y f i k a c j i z a w o d ¾ w i s p e c
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Rachunek różniczkowy funkcji wielu zmiennych
EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMINIE NA STUDIACH LICENCJACKICH
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMNE NA STUDACH LCENCJACKCH Oacoa zgotoa zz d Maę Wczo a odta:. P. Kuz, J. Podgó: Statta. Wzo tablc. SGH, Wazaa, 8. M. Wczo: Statta. Lubę to! Zbó zadań. SGH,
opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
Spis świadectw wydanych przez COCH w 2006 r.
Numer świadectwa Spis świadectw wydanych przez COCH w 2006 r. Numer rejestracyjny (punkt 3 świadectwa) Uznaje się jako (punkt 6 świadectwa) Nr protokołu badań (punkt 7.2.3 świadectwa) Data waŝności świadectwa
KORELACJA KORELACJA I REGRESJA. X, Y - cechy badane równocześnie. Dane statystyczne zapisujemy w szeregu statystycznym dwóch cech
KORELACJA I REGRESJA. KORELACJA X, Y - cech badae rówocześe. Dae statstcze zapsujem w szeregu statstczm dwóch cech...... lub w tablc korelacjej. X Y... l.... l.... l................... k k k... kl k..j......l
Ł Ł Ń Ń Ś Ń Ń ź Ń Ą Ż Ł Ę Ł Ś Ą Ą Ś Ł Ń Ś Ą Ń ć Ą Ą Ą Ą Ł Ś Ę Ś Ń Ż Ż Ś Ć Ź ć Ę Ś Ą Ź Ś Ś Ś Ś Ż Ś Ź Ą Ż Ć Ą Ś Ź Ż Ź Ź Ź Ś Ą ć Ś Ść Ś Ść Ż Ź Ź ć Ź Ź Ź Ż Ż Ź Ś Ś Ż Ż ć Ź Ż Ż ć Ś Ś Ą Ź ć Ś ć ć Ś Ś ć Ż Ż Ą
Ę Ć Ę Ó Ą ź Ó Ń Ń Ć Ó Ó Ł Ź Ł Ą Ł ć Ł ć Ź Ź ź Ń Ń Ź ć ć Ó Ą ź ć ć Ż ć ć Ź ć Ą ź Ł Ł Ę ć ć Ł Ś ć Ź ć Ł ć ć ć Ż Ó Ś Ł ć ź ć Ć ć ź ć Ź Ź Ł ć ć ć ź ź Ż Ą ź Ł ć ć ć Ó Ś Ć Ń ć Ń ć ć ź ć ć ć ć Ą Ł Ń ć Ł ć Ę Ą
Ć ń ń Ę Ó ń Ę ć ć ź Ę ć Ź ć ń ń ń ń ć ń ń ń Ę ć Ą Ę Ź ć ć ń Ą ź Ó ź ń Ę ć ć ń Ó Ą Ą ź ź Ę Ć Ę ć Ó ź Ą ć ć Ę ź ć Ź ć Ę ć Ź Ź ć ć ć ć Ł Ę ć Ć Ę Ź ć Ż Ę ń Ź Ę ć ń ć ń Ź Ź ń Ę ń ć Ó Ó Ź ć ń Ź ń Ż ć ź ź Ą Ć
Ą Ą ć Ż ć ć ź ć ć ć ć ć ć ć ć ć Ą ć ć Ą ć ć Ó Ź ć Ą ć ć ć ć ć Ą ć ć Ą Ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ą Ż ć Ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć Ż ć ć ć ć ć Ą ź ć Ę ć ć ć ć Ź ć ć ź ć ć ć
Ą Ą Ą ń ż Ę Ż ż ń ż ć ż ż ć Ń Ż ż ż Ź Ą ń Ż Ę Ń ż Ą ń ż ć Ź ć ć ż ć ż ć ż Ż ż ż ż ć ż ń ż ć ń ż ż ż ć ć ń ń ż ć ż ćż ż ż ń ż ń ż ż Ę ż Ę Ą ż ż Ęć ż ż Ę ż ć ć ć ż ń ź ń ń Ź ż Ę Ę ń Ź Ź ć Ż ć ź ż ż ż ź Ę
Ę Ę Ń ć Ź ć Ź Ń Ę Ó Ź Ę Ź Ń Ń ć Ź ź Ą Ź ć Ę Ą Ę Ź Ź Ź Ę Ź Ą Ź Ź Ą Ó Ó Ź Ą ć Ń Ą ć ć ć Ż Ą Ą Ż Ą Ą Ą ć Ź Ź Ę Ą Ą Ę Ź Ń ź Ś ź Ż Ż Ż Ą ć Ś Ą ć Ą Ż Ń Ż Ą Ź Ź ć Ń Ś Ń Ź Ź Ą Ź Ż Ą ź ć ć Ę Ź Ź Ź ź Ę ź Ę Ń Ź Ę
Ł Ł Ś Ł Ń Ń Ł Ę ć ć Ż ć Ż Ę ć ć ć Ę Ę ć Ż ź Ż ć Ż Ą Ę Ę Ż Ę ź Ś ć ć Ę ź Ą ć Ł Ę Ę ź Ż ć ć Ę Ę Ż Ż ć Ż Ę ć Ę Ę ć ź Ą ć ć ć Ę ć ć ź ć ć ź ć Ś Ż ć ć Ż ć Ż ć Ż ć ź Ż Ż Ę Ę ź Ę ć Ż Ż Ę Ż Ę Ż Ą ć ć ć Ż ź Ż ć
ć ź ć ź ć ć Ź ć ć ć ć ź ć ć ź ć ć Ź Ł ć ć ć Ż ć Ż ć ć Ź ź Ć Ą Ź Ż Ż Ź Ż Ć Ł Ł Ź Ź ź Ą ź Ą Ć Ź Ł Ź ć Ź ćź Ź Ź Ą Ź ć Ź ć Ł ć Ł ć ć Ł ć Ą ć ć ć ź ź ć ć ć ć ź ć ć ć ź ć ć ć ć ć ć ć ć Ł Ź ć ź ć Ą ć ć Ą Ć
W W Y D A N I E S P E C J A L N E S z a n o w n i P a ń s t w o! Spis t reści: y d arz e ni a c z e rw c ow e w 3 P oz nani u, r. Z
M 50-r o c z n i c a P o z n a ń s k i e g o C z e r w c a 56 r. KAZIMIERA IŁŁAKOWICZÓWNA Ro z s t r z e l a n o m o j e s e r c e C h c i a ł a m o k u l t u r z e n a p i s a ć n a p r a w d ę i n t
8 6 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu E L E K T R Y K K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś c i d l a p o t r z e b r y n k
I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )
S z a nowni P a ń s t wo! t y m rok u p oj a wi ą s i ę p i e rws i a b s ol we nc i rz e m i e ś l ni c z e j na u k i z a wod u na wy s z k ol e ni e, k t ó ry c h m i s t rz om s z k ol ą c y m b ę
16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H
Zada Zakładając, ż zm losow,,, 6 są zalż mają rozkłady ormal ~ N( m, ),,, 6, zbudowao tst jdostaj ajmocjszy dla wryfkacj hpotzy H 0 : m 0 przy altratyw H : m 0 a pozom stotośc 0,05 W rzczywstośc okazało