WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu
|
|
- Ryszard Chrzanowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORJNE Z FIZKI trzec termn wpsu zalczena do USOSu upływa...prowadząca(y)... grupa... podgrupa... zespół... semestr roku akademckego... student(ka)... SPRAWOZDANIE Z PRAC LABORATORJNEJ nr 0 Badane rozkładu rzutu śneżkam do celu pomary wykonano dna... jako ćwczene... z obowązujących... OCENA ZA TEORIĘ data podejśce (zasadncze) (poprawa) 3 OCENA KOŃCOWA data Uwag do sprawozdana (Karta tytułowa, Istota ćwczena, Karta pomarów, Opracowane (wykres), Podsumowane): Numeracja stron została przygotowana do wydruku jednostronnego (kolejność chronologczna) oraz dwustronnego. Kolejność punktów na Karce pomarów została odwrócona by lepej zrozumeć stotę ćwczena bez wprowadzena teoretycznego. Ćwczene jest zalecane jako pomoc do laboratorów z Fzyk na każdym etape ch realzacj. Każda osoba prowadząca zajęca może modyfkować zestaw danych sposób ch opracowana według własnych potrzeb. Schematyczny układ sprawozdana pozwala opanować umejętnośc:wyznaczana wartośc średnej ser pomarów oraz jej nepewnośc, wykonywana wykresów metodą regresj lnowej Gaussa, wykonywana zestawena wynków oraz ch analzy syntezy. Ćwczene można opracować w czase do 90 mnut (wersja uproszczona, bez punktów ) lub dłuższym. Do wykonana opracowana będą potrzebne przybory: do psana (np. długops), do kreślena (np. ołówek, lnjka, gumka, temperówka), do lczena (np. kalkulator z dzałanam +, -, *, /, perwastek kwadratowy), w przypadku drukowana dwustronnego mnmum 6 kartek A4 (w tym paperu mlmetrowego). Ten arkusz sprawozdana można drukować wypełnać lub przepsać odręczne zachowując układ stron punktów. druk jednostronny strona druk dwustronny strona
2 Karta oblczeń do zestawu danych nr... Zawarte w karce oblczeń tabele w zwykłym układze sprawozdana będą występowały w częśc 4. Aby usprawnć proces lczena najważnejsze do wykonana operacje zostały zebrane ponżej. n [] [] [] [ ] [] [ ] [ / ] [ 3/ ] [ ] 3 4 Sumy w kolum nach a) b) c) d) e) f) g) h) n ) u 4 j) n k) u n.. 4 l) u ł) u... 0, m) / ) ( a n) /... b druk jednostronny strona 4 druk dwustronny strona
3 . ISTOTA ĆWICZENIA nr 0. Cele ćwczena: a) ustalene czy celowano do środka elementu płotu, b) ustalene czy celowano do wycnka parabol wdocznego na elemence płotu, c) opanowane umejętnośc opracowana danych dośwadczalnych.. Welkośc znane, merzone wyznaczane w ćwczenu a) Welkośc znane: b) welkośc merzone: metodą bezpośredną merzymy... metodą pośredną (różncową, przez podstawene, zerową mostkową, zerową kompensacyjną) merzymy... c) nepewnośc welkośc wyznaczone będą metodą (typu A / B; standardową / standardową złożoną):.3 Inne nformacje Wdok elementu płot bez trafeń śneżkam: a) dwa kątownk łączące narożnk płotu, tworzące krzyż ze środkem w środku elementu płotu, b) wycnek parabol o równanu y=x (gdze x [m]) z werzchołkem w dolnym lewym narożnku płotu, powstały z pomalowana płotu na dwa kolory. druk jednostronny strona druk dwustronny strona 3
4 Wykres () położena śladów trafeń śneżkam w element płotu Wykres wykonujemy na paperze mlmetrowym nanosząc: a) punkty pomarowe ch nepewnośc maksymalne (krzyże); b) wartośc średne ch nepewnośc rozszerzone (prostokąt) wyznaczone w częśc 4. druk jednostronny strona 7 druk dwustronny strona 4
5 3. KARTA POMIARÓW DO ĆWICZENIA nr 0 Kolejność punktów na tej strone została odwrócona by lepej zrozumeć stotę ćwczena bez wprowadzena teoretycznego. 3.3 Uwag o warunkach wykonana pomarów. Na elemence płotu wdać : a) dwa kątownk łączące narożnk płotu, tworzące krzyż ze środkem w środku elementu płotu, b) wycnek parabol o równanu y=x (gdze x [m]) z werzchołkem w dolnym lewym narożnku płotu, powstały z pomalowana płotu na dwa kolory, c) śladów po trafenach śneżkam. Wszystke bok płotu zmerzono za pomocą stalowej mark o długośc m wycechowanej w temperaturze 0 C. Uzyskano za każdym razem wynk, m. Przyjęto, że płot ma kształt kwadratu. Odczytano temperaturę - C za pomocą termometru zaokennego. Wprowadzono kartezjańsk układ współrzędnych O z początkem w dolnym lewym rogu płotu. 3. Pomary uwag do nch. Nnejszy zróżncowany zestaw danych został przygotowany dla grupy lczącej maksymalne 36 osób. W zameszczonych ponżej tabelach każda z osób ćwczących mus odnaleźć swój numer na lśce grupy. Kolumny z kolejnych tabel zawerają nformacje na temat współrzędnych punktów trafena śneżkam w element płotu (, ) wyrażone w centymetrach. Kolumny właścwe dla osoby ćwczącej należy przepsać do Karty oblczeń. (..a) (..b) 3 (..c) 4 (..a) (..b) 6 (..c) nr (..a) 0 (..b) (..c) (..a) 3 (..b) 4 (..c) pocz (.3.a) 8 (.3.b) 9 (.3.c) 0 (.4.a) (.4.b) (.4.c) nr (.3.a) 6 (.3.b) 7 (.3.c) 8 (.4.a) 8 (.4.b) 30 (.4.c) pocz (..a) 4 (..b) (..c) 6 (.6.a) 7 (.6.b) 8 (.6.c) nr (..a) 3 (..b) 33 (..c) 34 (.6.a) 3 (.6.b) 36 (.6.c) 3. Parametry Ponadto, do dalszego stosowana, przyjęto ponższe wartośc: maksymalną nepewność pomarową D = maksymalną nepewność pomarową D = dr n ż. Konrad Zubko, druk jednostronny strona 3 druk dwustronny strona
6 Wykres () położena śladów trafeń śneżkam w element płotu Wykres we współrzędnych, wykonujemy na paperze mlmetrowym nanosząc: a) punkty pomarowe bez nepewnośc; b) prostą wyznaczoną metodą aproksymacj lnowej z podanem jej równana wyznaczonego w częśc 4. druk jednostronny strona 8 druk dwustronny strona 6
7 4. OPRACOWANIE ĆWICZENIA nr 0 W wększośc punktów korzystamy z wartośc wyznaczonych w Karce oblczeń. 4. Oblczena do ustalena, czy celem rzutu był środek płotu 4.. Wartość teoretyczna welkośc teoret Wartość średna welkośc Wartość nepewnośc standardowej welkośc u Wartość nepewnośc standardowej złożonej welkośc Wartość nepewnośc względnej welkośc u u c c, r Wartość nepewnośc rozszerzonej welkośc U uc Wynk są skupone wokół wartośc średnej jeżel ponższa relacja jest prawdzwa (podstawć wartośc) max mn U Wynk są skupone wokół wartośc teoretycznej jeżel ponższa relacja jest prawdzwa (podstawć wartośc) teoret U Wartość teoretyczna welkośc teoret Wartość średna welkośc Wartość nepewnośc standardowej welkośc u Wartość nepewnośc standardowej złożonej welkośc Wartość nepewnośc względnej welkośc u u c c, r Wartość nepewnośc rozszerzonej welkośc U uc Wynk są skupone wokół wartośc średnej jeżel ponższa relacja jest prawdzwa (podstawć wartośc) max mn U Wynk są skupone wokół wartośc teoretycznej jeżel ponższa relacja jest prawdzwa (podstawć wartośc) teoret U... druk jednostronny strona druk dwustronny strona 7
8 4. Oblczena do ustalena, czy celem rzutu był wycnek parabol 4.. Wyznaczene metodą aproksymacj lnowej Gaussa parametrów prostej y = ax + b w układze (): a) wartość średna współczynnka kerunkowego a / a... b) wartość wyrazu wolnego b / b... c) Tak wyznaczoną prostą należy naneść na wykres na wykrese () z podanem jej równana. d) Określene wartośc teoretyczne współczynnków a teoret...[...], bteoret...[... ] oraz ch jednostk w przypadku gdyby celem rzutów był wycnek parabol. Jeżel realzujemy ćwczene w trakce zajęć laboratoryjnych ne wykonujemy oblczeń z punktów oraz ne poddajemy ch analze. Realzując ponższe punkty należy przeprowadzć rachunek jednostek wyznaczanych welkośc. 4.. Dodatkowe oblczena do metody aproksymacj lnowej Gaussa: a) wartość nepewnośc współczynnka kerunkowego a a a b , b) wartość nepewnośc wyrazu wolnego b.....[] b a c) wartość współczynnka R (do wpsana na wykrese ()) R.....[] 4..3 Wynk są skupone wokół teoretycznej jeżel ponższa relacja jest prawdzwa (podstawć wartośc) a a ateoret U Wynk są skupone wokół teoretycznej jeżel ponższa relacja jest prawdzwa (podstawć wartośc) b b bteoret U... druk jednostronny strona 6 druk dwustronny strona 8
9 . PODSUMOWANIE ĆWICZENIA nr 0. Zestawene zaokrąglonych wartośc wyznaczonych welkośc: Parametr Parametr Parametr a prostej Parametr b prostej Wartość średna Nepewność standardowa Nepewność względna Nepewność rozszerzona Wartość teoretyczna c, u r u r U teoret a a c, u r a U teoret b b c, b U a ateoret Zestaw danych nr Współczynnk korelacj prostej R =. Analza rezultatów:, r U b..a. Który z parametrów (lość powtórzeń czy nepewność pomarowa welkość ) wyznaczena składowej punktelowana? mał wększy wpływ na nepewność złożoną..a. Który z parametrów (lość powtórzeń czy nepewność pomarowa welkość ) mał wększy wpływ na nepewność złożoną wyznaczena składowej punktelowana?..a.3 Który z parametrów (nepewność złożona welkośc albo ) mała wększy wpływ na nepewność wyznaczena położena punktelowana?..b. Czy nepewnośc względne uc, r, uc, r są duże czy małe (grancą umowną jest wartość 0,)? Wycągnąć wnosk na temat występowana błędów grubych, systematycznych przypadkowych...c. Czy w punktach 4..7, 4..7 spełnone są relacje śwadczące o skupenu wynków wokół wartośc średnej? Wycągnąć wnosk o występowana błędów grubych, systematycznych przypadkowych...c. Czy w punktach 4..8, 4..8 spełnone są relacje śwadczące o skupenu wynków wokół wartośc teoretycznej? Wycągnąć wnosk o występowana błędów grubych, systematycznych przypadkowych. druk jednostronny strona 9 druk dwustronny strona 9 b teoret
10 ..c.3 Czy w punkce 4..3 spełnone są relacje śwadczące o skupenu wynków wokół teoretycznej wartośc współczynnka kerunkowego prostej? Wycągnąć wnosk o występowana błędów grubych, systematycznych przypadkowych...c.4 Czy w punkce 4..4 spełnone są relacje śwadczące o skupenu wynków wokół teoretycznej wartośc wyrazu wolnego prostej? Wycągnąć wnosk o występowana błędów grubych, systematycznych przypadkowych...d. Na baze wykresu () wycągnąć wnosk na temat celowana: a) w środek elementu płotu, b) do ln będącej wycnkem parabol oraz występowana w tym przypadku błędów grubych, systematycznych przypadkowych:..d. Na baze wykresu () wycągnąć wnosk na temat celowana do ln będącej wycnkem parabol oraz występowana w tym przypadku błędów grubych, systematycznych przypadkowych:..d.3 Na baze wartośc współczynnka R ( z punktu 4..4.c) wycągnąć wnosk na temat celowana do ln będącej wycnkem parabol oraz występowana w tym przypadku błędów grubych, systematycznych przypadkowych. druk jednostronny strona 0 druk dwustronny strona 0
11 .3 Synteza rezultatów:.3. Czy otrzymane rezultaty wskazują na celowane śneżkam w środek płotu, czy w wycnek parabol wdoczny na płoce? Co mało najwększy wpływ na nepewność wyznaczonych welkośc?.3. Podać, czy w przyjętym modelelowana (środek elementu płotu / wycnek parabol) wystąpły błędy grube, systematyczne przypadkowe (gdze są wdoczne, jak mogą być ch przyczyny)?.3.3 Cele ćwczena a), b), c) zostały lub ne zostały osągnęte poneważ: a)... b)... c)... druk jednostronny strona druk dwustronny strona
WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu
WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORJNE Z FIZKI trzec termn wpsu zalczena do USOSu upływa...prowadząc(a/y)... grupa... podgrupa... zespół... semestr... roku akademckego... student(ka)... SPRAWOZDANIE
Bardziej szczegółowoSprawozdanie powinno zawierać:
Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,
Bardziej szczegółowoWYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego
Bardziej szczegółowoWyznaczanie współczynnika sztywności zastępczej układu sprężyn
Wyznaczane zastępczej sprężyn Ćwczene nr 10 Wprowadzene W przypadku klku sprężyn ze sobą połączonych, można mu przypsać tzw. współczynnk zastępczej k z. W skrajnych przypadkach sprężyny mogą być ze sobą
Bardziej szczegółowoPOMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA
Ćwczene O5 POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA 1. Cel zakres ćwczena Celem ćwczena jest poznane metod pomaru współczynnków odbca przepuszczana próbek płaskch 2. Ops stanowska laboratoryjnego
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Bardziej szczegółowoPneumatyczne pomiary długości
Wrocław, dna Metrologa Welkośc Geometrycznych Ćwczene Rok kerunek... Grupa (dzeń godzna rozpoczęca zajęć) Pneumatyczne pomary długośc A. Wyznaczene charakterystyk statycznej czujnka pneumatycznego. Identyfkacja
Bardziej szczegółowoWYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH
Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 6-965 POZNAŃ (budynek Centrum Mechatronk, Bomechank Nanonżyner) www.zmsp.mt.put.poznan.pl tel. +8 6 665 35 7 fa +8
Bardziej szczegółowoSPRAWDZANIE PRAWA MALUSA
INSTYTUT ELEKTRONIKI I SYSTEMÓW STEROWANIA WYDZIAŁ ELEKTRYCZNY POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM FIZYKI ĆWICZENIE NR O- SPRAWDZANIE PRAWA MALUSA I. Zagadnena do przestudowana 1. Fala elektromagnetyczna,
Bardziej szczegółowoW praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Bardziej szczegółowoRachunek niepewności pomiaru opracowanie danych pomiarowych
Rachunek nepewnośc pomaru opracowane danych pomarowych Mędzynarodowa Norma Oceny Nepewnośc Pomaru (Gude to Epresson of Uncertanty n Measurements - Mędzynarodowa Organzacja Normalzacyjna ISO) http://physcs.nst./gov/uncertanty
Bardziej szczegółowoTRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE
POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb
Bardziej szczegółowoTeoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru
Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru
Bardziej szczegółowoROZKŁAD NORMALNY. 2. Opis układu pomiarowego
ROZKŁAD NORMALNY 1. Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE (Wstęp do teorii pomiarów). 2. Opis układu pomiarowego
Bardziej szczegółowoXXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
Bardziej szczegółowoKatedra Chemii Fizycznej Uniwersytetu Łódzkiego
Katedra Chem Fzycznej Unwersytetu Łódzkego Wyznaczane współczynnka podzału Nernsta w układze: woda aceton chloroform metodą refraktometryczną opracowała dr hab. Małgorzata Jóźwak ćwczene nr 0 Zakres zagadneń
Bardziej szczegółowoBADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH
INSTYTUT KLIMATYZACJI I OGRZEWNICTWA ĆWICZENIA LABORATORYJNE Z WENTYLACJI I KLIMATYZACJI: BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH 1. WSTĘP Stanowsko laboratoryjne pośwęcone badanu
Bardziej szczegółowoMetody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej
Metody badań kaena naturalnego: Oznaczane współczynnka nasąklwośc kaplarnej 1. Zasady etody Po wysuszenu do stałej asy, próbkę do badana zanurza sę w wodze jedną z powerzchn (ngdy powerzchną obrabaną)
Bardziej szczegółowoWYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO
I PRACOWNIA FIZYCZNA, INSYU FIZYKI UMK, ORUŃ Instrukca do ćwczena nr WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO 1. Cel ćwczena Celem ćwczena est poznane ruchu harmonczneo eo praw,
Bardziej szczegółowoPAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.
Bardziej szczegółowoRozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
WPŁYW SIŁY JONOWEJ ROZTWORU N STŁĄ SZYKOŚI REKJI WSTĘP Rozpatrzmy reakcję przebegającą w roztworze mędzy jonam oraz : k + D (1) Gdy reakcja ta zachodz przez równowagę wstępną, w układze występuje produkt
Bardziej szczegółowoPomiary parametrów akustycznych wnętrz.
Pomary parametrów akustycznych wnętrz. Ocena obektywna wnętrz pod względem akustycznym dokonywana jest na podstawe wartośc następujących parametrów: czasu pogłosu, wczesnego czasu pogłosu ED, wskaźnków
Bardziej szczegółowoZadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
Bardziej szczegółowoĆwiczenie nr 1 WAHADŁO MATEMATYCZNE Instrukcja dla studenta
Analza nepewnośc pomarowych w eksperymentach fzycznych dla specjalnośc Bofzyka molekularna Ćwczene nr WAHADŁO MATEMATYCZE Instrukcja dla studenta I. WSTĘP Celem ćwczena jest ukazane początkującemu eksperymentatorow
Bardziej szczegółowoSZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
Bardziej szczegółowoMIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH
MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH Adam Mchczyńsk W roku 995 grupa nstytucj mędzynarodowych: ISO Internatonal Organzaton for Standardzaton (Mędzynarodowa Organzacja Normalzacyjna),
Bardziej szczegółowoProjekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Bardziej szczegółowoKatedra Chemii Fizycznej Uniwersytetu Łódzkiego
Katedra Chem Fzycznej Unwersytetu Łódzkego Wyznaczane współczynnka podzału Nernsta w układze: woda-kwas octowychloroform metodą potencjometryczną ćwczene nr 9 Opracowała dr hab. Małgorzata Jóźwak Zakres
Bardziej szczegółowoAUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID
ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena
Bardziej szczegółowoNatalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Bardziej szczegółowoBadanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Bardziej szczegółowoĆwiczenie nr 4 WYZNACZANIE MOMENTU BEZWŁADNOŚCI WALCA Instrukcja dla studenta (wersja z dnia 20 VI 2018) A. Majhofer i R. Nowak
Ćwczene nr 4 WYZACZAIE MOMETU BEZWŁADOŚCI WALCA (wersja z dna VI 18) A. Majhofer R. owak WYMAGAIA TEORETYCZE ewtona równana ruchu bryły sztywnej. Średna ważona, nepewność zewnętrzna wewnętrzna, spójność
Bardziej szczegółowo± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości
Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Bardziej szczegółowoMATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
Bardziej szczegółowoSystemy Ochrony Powietrza Ćwiczenia Laboratoryjne
ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych
Bardziej szczegółowoPomiar mocy i energii
Zakład Napędów Weloźródłowych Instytut Maszyn Roboczych CęŜkch PW Laboratorum Elektrotechnk Elektronk Ćwczene P3 - protokół Pomar mocy energ Data wykonana ćwczena... Zespół wykonujący ćwczene: Nazwsko
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Bardziej szczegółowoGrupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej
ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn. 29.03.2016 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Badane parametrów fotometrycznych
Bardziej szczegółowoĆwiczenie nr 4 WYZNACZANIE MOMENTU BEZWŁADNOŚCI WALCA Instrukcja dla studenta (wersja z dnia 8 X 2016) A. Majhofer i R. Nowak
Ćwczene 4 WYZACZAIE MOMETU BEZWŁADOŚCI Ćwczene nr 4 WYZACZAIE MOMETU BEZWŁADOŚCI WALCA (wersja z dna 8 X 6) A. Majhofer R. owak WYMAGAIA TEORETYCZE ewtona równana ruchu bryły sztywnej. Średna ważona, nepewność
Bardziej szczegółowoZaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
Bardziej szczegółowoI. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Bardziej szczegółowoZAŁĄCZNIKI ROZPORZĄDZENIA DELEGOWANEGO KOMISJI
KOMISJA EUROPEJSKA Bruksela, dna 27.4.2018 C(2018) 2460 fnal ANNEXES 1 to 2 ZAŁĄCZNIKI do ROZPORZĄDZENIA DELEGOWANEGO KOMISJI w sprawe zany sprostowana rozporządzena delegowanego (UE) 2017/655 uzupełnającego
Bardziej szczegółowo1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej
ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn..03.013 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Porównane parametrów fotometrycznych
Bardziej szczegółowoSYSTEM ZALICZEŃ ĆWICZEŃ
AMI, zma 010/011 mgr Krzysztof Rykaczewsk System zalczeń Wydzał Matematyk Informatyk UMK SYSTEM ZALICZEŃ ĆWICZEŃ z Analzy Matematycznej I, 010/011 (na podst. L.G., K.L., J.M., K.R.) Nnejszy dokument dotyczy
Bardziej szczegółowoLABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE
Bardziej szczegółowoTeoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru
Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu
Karta (sylabus) mułu/przedmotu Budownctwo (Nazwa kerunku studów) Studa I Stopna Przedmot: Materały budowlane II Constructon materals Rok: II Semestr: MK_26 Rzaje zajęć lczba gzn: Studa stacjonarne Studa
Bardziej szczegółowoPlanowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
Bardziej szczegółowoDIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH
RYNEK CIEŁA 03 DIANOSYKA YMIENNIKÓ CIEŁA Z UIARYODNIENIEM YNIKÓ OMIARÓ EKLOAACYJNYCH Autorzy: rof. dr hab. nż. Henryk Rusnowsk Dr nż. Adam Mlejsk Mgr nż. Marcn ls Nałęczów, 6-8 paźdzernka 03 SĘ Elementam
Bardziej szczegółowoWYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ
Grupa: Elektrotechnka, sem 3., wersja z dn. 14.1.015 Podstawy Technk Śwetlnej Laboratorum Ćwczene nr 5 Temat: WYZNACZANE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ Opracowane wykonano na podstawe następującej
Bardziej szczegółowoEgzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010
Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene
Bardziej szczegółowoSTATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],
STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:
Bardziej szczegółowoKARTA INFORMACYJNA PRZEDMIOTU
Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU
Bardziej szczegółowoSprawozdanie powinno zawierać:
1 Statyczna próba rozcągana Sprawozdane pownno zawerać: 1. Rysunek próbk.. Wzory stosowane w trakce wypełnana protokółu. 3. Uzyskany wykres rozcągana. 4. Protokół statycznej próby rozcągana ze zmerzonym
Bardziej szczegółowoROZKŁAD NORMALNY. 2. Opis układu pomiarowego. Ćwiczenie może być realizowane za pomocą trzech wariantów zestawów pomiarowych: A, B i C.
ĆWICZENIE 1 Opacowane statystyczne wynków ROZKŁAD NORMALNY 1. Ops teoetyczny do ćwczena zameszczony jest na stone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE (Wstęp do teo pomaów).
Bardziej szczegółowoStudia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej
60-965 Poznań ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, Studa stacjonarne, II stopeń, sem.1 Laboratorum Technk Śwetlnej wersja z dn. 08.05.017 Ćwczene nr 6 Temat: Porównane parametrów
Bardziej szczegółowoANALIZA NIEPEWNOŚCI POMIAROWYCH
ANALIZA NIEPEWNOŚCI POMIAROWYCH 1. POMIARY FIZYCZNE I NIEPEWNOŚCI POMIAROWE 1.1. Nepewnośc systematyczne (błędy systematyczne) 1.2. Nepewnośc przypadkowe (błędy przypadkowe) 1.3. Podsumowane 2. NIEPEWNOŚCI
Bardziej szczegółowoWspółczynnik przenikania ciepła U v. 4.00
Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury
Bardziej szczegółowoĆwiczenie 2. Parametry statyczne tranzystorów bipolarnych
Ćwczene arametry statyczne tranzystorów bpolarnych el ćwczena odstawowym celem ćwczena jest poznane statycznych charakterystyk tranzystorów bpolarnych oraz metod dentyfkacj parametrów odpowadających m
Bardziej szczegółowoLaboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
Bardziej szczegółowo5. OPTYMALIZACJA GRAFOWO-SIECIOWA
. OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,
Bardziej szczegółowoRACHUNEK NIEPEWNOŚCI POMIARU
Mędznarodowa Norma Ocen Nepewnośc Pomaru(Gude to Epresson of Uncertant n Measurements - Mędznarodowa Organzacja Normalzacjna ISO) RACHUNEK NIEPEWNOŚCI http://phscs.nst./gov/uncertant POMIARU Wrażane Nepewnośc
Bardziej szczegółowoWeryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Bardziej szczegółowoWikiWS For Business Sharks
WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace
Bardziej szczegółowoPOLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH.
POLITECHIKA ŚLĄSKA W GLIWICACH WYDZIAŁ IŻYIERII ŚRODOWISKA EERGETYKI ISTYTUT MASZY URZĄDZEŃ EERGETYCZYCH Turbna arowa II Laboratoru oarów azyn celnych (PM 8) Oracował: dr nż. Grzegorz Wcak Srawdzł: dr
Bardziej szczegółowoWykład 5 12/15/2013. Problemy algebry liniowej w Matlabie
Wykład 5. Problemy algebry lnowej w Matlabe. Analza sygnałów a) w dzedzne częstotlwośc b) w dzedzne czasu c) częstotlwoścowo-czasowa d) nagrywane analza dźwęku e) Sgnal Processng Toolbox Problemy algebry
Bardziej szczegółowoBADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Bardziej szczegółowoWSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Bardziej szczegółowoPracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym
ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE
Bardziej szczegółowoSTATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW
Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax
Bardziej szczegółowoNatalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
Bardziej szczegółowoWyznaczanie długości fali światła metodą pierścieni Newtona
013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego
Bardziej szczegółowoOKRESOWA EMERYTURA KAPITAŁOWA ZE ŚRODKÓW ZGROMADZONYCH W OFE
OKRESOWA EMERYTURA KAPITAŁOWA ZE ŚRODKÓW ZGROMADZONYCH W OFE Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Warunk nabywana prawa do okresowej emerytury kaptałowej ze środków zgromadzonych w otwartym
Bardziej szczegółowoWstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
Bardziej szczegółowoWYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ
Grupa: Elektrotechnka, sem 3., wersja z dn. 24.10.2011 Podstawy Technk Śwetlnej Laboratorum Ćwczene nr 3 Temat: WYZNACZANE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ Opracowane wykonano na podstawe następującej
Bardziej szczegółowo1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej
Grupa: Elektrotechnka, wersja z dn. 0.03.011 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Porównane parametrów fotometrycznych Ŝarówek dod śwecących o ukerunkowanym
Bardziej szczegółowoTwierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że
Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam
Bardziej szczegółowoSPRAWDZENIE PRAWA STEFANA - BOLTZMANA
Agnieszka Głąbała Karol Góralczyk Wrocław 5 listopada 008r. SPRAWDZENIE PRAWA STEFANA - BOLTZMANA LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE z Ćwiczenia 88 1.Temat i cel ćwiczenia: Celem niniejszego ćwiczenia
Bardziej szczegółowoĆwiczenie projektowe z Podstaw Inżynierii Komunikacyjnej
Poltecnka ałostocka Wydzał udownctwa Inżyner Środowska Zakład Inżyner Drogowej Ćwczene projektowe z Podstaw Inżyner Komunkacyjnej Projekt tecnczny odcnka drog klasy tecncznej Z V p 50 km/. Założena do
Bardziej szczegółowoPortfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego
Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa
Bardziej szczegółowoĆw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego
2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia
Bardziej szczegółowoJAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW
JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW Z tego dokumentu dowiesz się jak wykorzystać wbudowane funkcje arkusza kalkulacyjnego
Bardziej szczegółowo3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. 1. Wprowadzenie
3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. Wprowadzene Sprężarka jet podtawowym przykładem otwartego układu termodynamcznego. Jej zadanem jet medzy nnym podwyżzene cśnena gazu w celu: uzykane czynnka napędowego
Bardziej szczegółowoLABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Bardziej szczegółowoZagadnienia na egzamin poprawkowy z matematyki w klasie III zsz. 5. Statystyka-średnia arytmetyczna, średnia ważona, mediana, dominanata.
Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz 1. Wzajemne położenia prostych, płaszczyzn w przestrzeni. 2. Graniastosłupy- podział, pole powierzchni i objętość. 3. Ostrosłupy- podział,
Bardziej szczegółowoĆw. 32. Wyznaczanie stałej sprężystości sprężyny
0/0/ : / Ćw.. Wyznaczanie stałej sprężystości sprężyny Ćw.. Wyznaczanie stałej sprężystości sprężyny. Cel ćwiczenia Sprawdzenie doświadczalne wzoru na siłę sprężystą $F = -kx$ i wyznaczenie stałej sprężystości
Bardziej szczegółowo========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2
Leszek Sochański Arkusz przykładowy, poziom podstawowy (A1) Zadanie 1. Wykresem funkcji kwadratowej f jest parabola o wierzchołku 5,7 Wówczas prawdziwa jest równość W. A. f 1 f 9 B. f 1 f 11 C. f 1 f 1
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2
Klasa POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 8 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od. do 5.
Bardziej szczegółowoBADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH
BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH. CEL ĆWICZEIA Celem ćwczena jest poznane: podstawowych pojęć dotyczących statycznych właścwośc przetwornków pomarowych analogowych cyfrowych oraz
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3
Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne
Bardziej szczegółowoZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012
ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment
Bardziej szczegółowoRefraktometria. sin β sin β
efraktometra Prędkość rozchodzena sę promen śwetlnych zależy od gęstośc optycznej ośrodka oraz od długośc fal promenena. Promene śwetlne padając pod pewnym kątem na płaszczyznę granczących ze sobą dwóch
Bardziej szczegółowoRAPORT. Kraków, MONITORING OSIADANIA TERENU NA OBSZARZE GMINY PSZCZYNA. Zleceniodawca: Gmina Pszczyna
MONITORING OSIADANIA TERENU NA OBSZARZE GMINY PSZCZYNA RAPORT Kraków, 30.11.2018 Zlecenodawca: Gmna Pszczyna 1 1 DANE FORMALNE 1.1. Zamawający: gmna Pszczyna 1.2. Wykonawca: SATIM Montorng Sateltarny sp.
Bardziej szczegółowoI PRACOWNIA FIZYCZNA, UMK TORUŃ WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY SZTYWNEJ ZA POMOCĄ WAHADŁA TORSYJNEGO
PACOWNA FZYCZNA, UMK TOUŃ nstrukja do ćwzena nr 9 * WYZNACZANE MOMENTU BEZWŁANOŚC BYŁY SZTYWNEJ ZA POMOCĄ WAHAŁA TOSYJNEGO. Cel ćwzena Wyznazene momentu bezwładnoś za pomoą wahadła torsyjnego (metoda dynamzna).
Bardziej szczegółowoWykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.
Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno
Bardziej szczegółowoĆw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Bardziej szczegółowoProblematyka walidacji metod badań w przemyśle naftowym na przykładzie benzyn silnikowych
NAFTA-GAZ luty 013 ROK LXIX Zygmunt Burnus Instytut Nafty Gazu, Kraków Problematyka waldacj metod badań w przemyśle naftowym na przykładze benzyn slnkowych Wprowadzene Waldacja metody badawczej to szereg
Bardziej szczegółowo) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Bardziej szczegółowo