Wyznaczanie długości fali światła metodą pierścieni Newtona

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyznaczanie długości fali światła metodą pierścieni Newtona"

Transkrypt

1 013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego x 1 x K x x1 1000m K Pomar promen perścen nterferencyjnych n p l a [m] a [m ] Kolor śwatła:. Wyznaczene długośc fal b [m ] R [mm] [m] [m] 1

2 013 Katedra Fzyk SGGW Ćwczene 368 Ćwczene 368: Wyznaczane długośc fal śwatła metodą perścen Newtona Wprowadzene Śwatło wdzalne jest to promenowane elektromagnetyczne, czyl zaburzene pola elektromagnetycznego rozchodzące sę w przestrzen, na które reaguje oko ludzke. Zakres długośc fal tego promenowana wynos od 400 nm (początek foletu) do 700 nm (konec czerwen). Do śwatła zalcza sę równeż promenowane podczerwone nadfoletowe. Długość fal pomędzy punktam przestrzen, w których fala jest w tej samej faze. W przypadku fal elektromagnetycznych oznacza to, że wektory natężena pola elektrycznego w punktach oddalonych o długość fal mają ten sam kerunek, wartość zwrot, czyl są dentyczne. To samo dotyczy wektorów ndukcj magnetycznej. Czas T, jak potrzebuje fala na przebyce drog równej długośc fal, nazywany jest okresem fal, natomast częstotlwoścą fal f określa sę lczbę długośc fal meszczących sę na drodze przebytej przez falę w jednostce czasu (dla częstotlwośc wyrażonej w Hz jednostką czasu jest sekunda): c T c f c prędkość śwatła (w próżn km/s) Śwatło ma naturę dualną, falowo korpuskularną. Przyjmuje sę, że śwatło to swego rodzaju strumene osoblwych cząstek (korpuskuł), zwanych fotonam, które wykazują własnośc falowe. Na falową naturę śwatła wskazują take zjawska, jak dyfrakcja nterferencja promen śwetlnych. Dyfrakcją nazywamy ugnane sę prostolnowego begu promen na krawędzach przesłon. Interferencją fal nazywamy nakładane sę fal o tej samej częstotlwośc, powodujące wzmocnene lub osłabene natężena fal wypadkowej tych fal jest stała w czase. Załóżmy, że z dwóch źródeł Z 1 Z (rys. 1) wychodzą dwe jednakowe spójne fale o długośc : Aby w punkce P nastąpło wzmocnene natężena fal wypadkowej, obe fale muszą być w tym punkce w tej samej faze, co będze mało mejsce, jeśl różnca dróg r przebytych przez fale od źródeł Z 1 Z do punktu P będze całkowtą welokrotnoścą długośc fal : r r r1 n n=1,, 3, Promene spotykające sę w fazach przecwnych, ulegną wzajemnemu wygaszenu. Zank śwatła w punkce P zaobserwujemy, gdy różnca r dróg dwóch promen będze równa neparzystej welokrotnośc długośc fal: r r r (1) 1 n 1 Oddzelne źródła śwatła ne są ze sobą spójne. Fale spójne wytwarza sę w sposób sztuczny, przez nałożene na sebe promen wychodzących z tego samego źródła, ale przebywających różne drog optyczne. Jednym ze sposobów uzyskana różncy dróg jest układ optyczny pozwalający zaobserwować perścene Newtona.

3 013 Katedra Fzyk SGGW Ćwczene 368 Perścene Newtona (rys. ) otrzymujemy, gdy śwatło monochromatyczne (jednobarwne) pada na układ składający sę z soczewk płasko-wypukłej S płytk płasko-równoległej P. Śwatło padające prostopadle na układ soczewka płytka ulega częścowo odbcu na każdej powerzchn grancznej. Perścene Newtona powstają w wynku nterferencj promena odbtego od górnej powerzchn płytk P z promenem odbtym od sferycznej powerzchn soczewk S. Wynkem nterferencj są jasne (wzmocnene) cemne (wygaszene) okręg. Ich położene zależy od grubośc warstwy powetrza pomędzy płytką a soczewką, gdyż zmana grubośc warstwy powetrza powoduje równeż zmanę różncy dróg nterferujących promen. Kolejne perścene mają przypsane numery rzędu, przy czym środkowe cemne koło ma rząd 0, najmnejszy cemny perśceń ma rząd 1, następny cemny perśceń ma rząd, td. Grubość warstwy powetrza można oszacować korzystając z praw geometr zastosowanych do schematycznego układu przedstawonego na rys. 3. Z podobeństwa trójkątów ACE CDE wynka proporcja: e a () a R e gdze e grubość warstwy powetrza, a promeń podstawy czaszy kulstej (równeż promeń perścena), R promeń krzywzny soczewk. Poneważ R >> po uproszczenu przekształcenu wzoru () otrzymamy: a e (3) R Warunek wygaszana fal śwetlnych wymaga, aby różnca dróg nterferujących promen była neparzystą welokrotnoścą długośc fal (wzór 1). Różnca dróg r promena odbtego od płytk P promena odbtego od sferycznej powerzchn soczewk S równa jest: r e (4) / jest wynkem zmany fazy fal odbtej od powerzchn płytk P. Przy odbcu fal od środowska o wększym współczynnku załamana nż współczynnk załamana środowska, w którym fala sę przemeszcza zachodz zmana fazy o 180, co odpowada różncy dróg równej /. Po podstawenu wzoru (4) do wzoru (1) uzyskujemy równość: e n 1 (5) 3

4 013 Katedra Fzyk SGGW Ćwczene 368 a po podstawenu wzoru (3) do wzoru (5) przekształcenu otrzymamy wzór na promeń cemnego perścena rzędu n: a nr (6) Znając promeń krzywzny soczewk R oraz promeń perścena rzędu n można z tego wzoru polczyć długość fal śwatła. WYKONANIE ĆWICZENIA Schemat układu pomarowego znajduje sę na rys. 4: Rys. 5 Równoległa wązka śwatła monochromatycznego ze źródła Z po częścowym odbcu od płytk szklanej P ustawonej pod kątem 45 względem os optycznej mkroskopu, pada na układ soczewka-płytka. Promene odbte ku górze przechodzą przez płytkę P trafają do obektywu mkroskopu a następne do oka obserwatora. Jako źródło śwatła wykorzystana jest doda śwecąca, która emtuje śwatło o wąskm zakrese długośc fal. Doda, soczewka, płytka płasko-równoległa, oraz płytka ustawona pod kątem 45 są na stałe ze sobą połączone w pojedynczy zestaw dośwadczalny (rys. 5). Do pomaru promen perścen nterferencyjnych posługujemy sę mkroskopem o newelkm powększenu, z okularem pomarowym. Bęben śruby okularu pomarowego podzelony jest na 100 podzałek. Wewnątrz okularu nanesona jest skala główna okularu (cyfry od 0 do 8) krzyż z ntek pajęczych, który przesuwa sę podczas obrotu śruby. Pomary rozpoczynamy od wycechowana podzałk okularu. Cechowane podzałk okularu pomarowego 1. Umeszczamy na stolku mkroskopu metalową płytkę z nedużym otworem po środku. W płytce umeszczone jest szkełko kalbracyjne. Na szkełku zaznaczony jest mały okrąg, wewnątrz którego narysowana jest podzałka mkrometryczna (1 mm podzelony na 100 odcnków). Szkełko należy umeścć dokładne pod okularem mkroskopu ośwetlć je śwatłem odbtym od lusterka mkroskopu. Patrząc w okular należy odszukać skalę mkrometryczną regulując głębę ostrośc pokrętłem z boku mkroskopu.. Krzyż z ntek pajęczych ustawamy na perwszej kresce podzałk mkrometrycznej (kreska ta odpowada wartośc 0) (rys. 6): 4

5 013 Katedra Fzyk SGGW Ćwczene Rys. 6 Nad krzyżem z ntek pajęczych wdać podwójną ponową kreskę, która przesuwa sę razem z krzyżem wzdłuż szeregu cyfr od 0 do 8. Odczytujemy cyfrę leżącą po lewej stron podwójnej kresk. Cyfra ta oznacza lczbę setek (a węc 0, 100, 00, 300 td. aż do 800). Na bębne okularu pomarowego odczytujemy lczbę dzesątek jednośc. Wpsujemy całą wartość do tabel jako x Obracając śrubę okularu, ustawamy krzyż na ostatnej kresce podzałk mkrometrycznej (kreska ta odpowada wartośc 1 mm). Odczytujemy wartość z okularu pomarowego jako x. 4. Lczba podzałek bębna okularu pomarowego przypadająca na 1 mm (K) jest różncą pomędzy odczytam dla kresk 0 1 mm. Oblczamy: K x x 1 (7) 5. Jeżel 1 mm równy jest K podzałek okularu pomarowego, to wartość najmnejszej podzałk bębna okularu pomarowego wyrażona w m będze równa: 1000m (8) K Pomar promen perścen nterferencyjnych Numery rzędu perścen, dla których wykonywane są pomary wyznacza prowadzący ćwczena. 1. Pod obektywem umeszczamy zestaw dośwadczalny z rys. 5. Dodę podłączamy do gnazda elektrycznego. Pod mkroskopem pownno być wdać jednolte tło w kolorze, w jakm śwec doda.. Regulując głębę ostrośc mkroskopu należy odszukać perścene Newtona. Po odszukanu należy ustawć perścene na środku pola wdzena (środek perścen mnej węcej pod cyfrą 4 skal okularu, rys. 7a). Rys. 7a Rys. 7b 3. Promeń perścena rzędu n jest to połowa średncy perścena rzędu n. Aby zmerzyć średnce perścen robmy odczyty położena wybranych perścen na prawo na lewo od środka. Zaczynamy od strony prawej. Śrubę mkrometryczną ustawamy krzyż na cemnym perścenu danego rzędu (pomar perścena rzędu 1 pokazany na rys. 7b) odczytujemy wskazana okularu pomarowego. Wpsujemy jako p. 5

6 a [m ] 013 Katedra Fzyk SGGW Ćwczene Krzyż z ntek pajęczych przesuwamy na cemny perśceń kolejnego rzędu. (Do pomarów wyberamy 8-9 perścen. Ne muszą to być perścene kolejne np. można wybrać perścene:1,,3,5,7,9,10,1). Robmy odczyt, wpsujemy w tabel, a następne merzymy położena kolejnych cemnych perścen na prawo od środka. Po zakończenu pomarów z prawej strony, robmy analogczne pomary z lewej strony perścen. Podczas robena pomarów należy bardzo uważać, aby ne poruszyć zestawu dośwadczalnego względem stolka mkroskopowego (jeśl sę przesune, należy pomary zacząć od początku). 5. Oblczamy promene perścen, przelczając od razu skalę bębna okularu pomarowego na mkrometry: 6. Oblczamy a. Wykres oblczene długośc fal 1 a p l Na podstawe danych pomarowych należy sporządzć wykres a f ( n).zależność ta jest funkcją lnową o równanu y a bx. Z porównana tego równana ze wzorem (6) wynka, że b R. Stąd: b (10) R R jest to promeń krzywzny soczewk. Wartość promena krzywzny soczewk należy spsać z wtyczk zestawu dośwadczalnego. Odczytane odpowednch danych z wykresu można wykonać dwoma sposobam: ręczne lub za pomocą arkusza kalkulacyjnego (np. Mcrosoft Offce Excel, OpenOffce Calc). Sposób ręczny 7. Rysujemy wykres a f ( n) zależnośc kwadratu promena perścena od rzędu perścena na paperze mlmetrowym. 8. Do zaznaczonych punktów pomarowych dopasowujemy lnę prostą y a bx. Na prostej zaznaczamy dwa punkty (rys. 8 ne mogą być to punkty pomarowe, punkty wyberamy możlwe blsko początku końca prostej). Z os x y odczytujemy współrzędne wybranych punktów n a ; n, a :, j j (9) rząd perścena n Rys. 8 6

7 013 Katedra Fzyk SGGW Ćwczene 368 ( Dla doceklwych: zgodne ze wzorem (6) prosta pownna przechodzć przez punkt (0,0) czyl a=0. Jednak w rzeczywstośc, na skutek newelkego spłaszczena soczewk w obszarze styku z płaską płytką, prosta ne mus przechodzć przez punkt (0,0), a 0 ). a 9. Oblczamy nachylene prostej ze wzoru: b n 10. Oblczamy długość fal ze wzoru (10). (UWAGA NA JEDNOSTKI! μm mm m ) a n j j (11) Za pomocą arkusza kalkulacyjnego Excel (w OpenOffce jest bardzo podobne) 7. W arkuszu w perwszej kolumne wpsujemy rząd perścena n, w drugej kwadrat promena perścena a. Zaznaczamy komórk z lczbam. W Menu wyberamy Wstaw wykres. Wyberamy wykres punktowy bez ln zamykamy okno wyboru wykresu przycskem Zakończ. Prawym przycskem myszy klkamy dowolny punkt pomarowy na wykrese wyberamy Dodaj lnę trendu. Wyberamy Typ lnowy, w Opcjach zaznaczamy Wyśwetl równane na wykrese. Zamykamy okno przycskem OK. (w OpenOffce lna trendu nazywa sę krzywą regresj) 8. Na wykrese pojaw sę funkcja w postac y bx a. Zapsujemy wartość b, która jest nachylenem prostej. 9. Oblczamy długość fal ze wzoru (10). RACHUNEK BŁĘDÓW Na błąd wyznaczena długośc fal składa sę: dokładność wycechowana podzałk bębna okularu pomarowego α, dokładność odczytana położena perścen p l oraz wyznaczena promen a, dokładność dopasowana prostej do punktów pomarowych wyznaczena nachylena b, oraz dokładność oszacowana promena krzywzny R. Można przyjąć, że: l p R 0,5% l p R a l p a l p b a 5% b a (5% jest zwązane z dokładnoścą odczytu danych z wykresu) Sumaryczne, dokładność wyznaczena oblczamy ze wzoru: b R b R Oblczamy wartość. PYTANIA DO DYSKUSJI Jak jest tablcowy zakres długośc śwatła dla koloru użytego w dośwadczenu? Czy tablcowy zakres długośc śwatła pokrywa sę z wyznaczonym przedzałem? 7

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

SPRAWDZANIE PRAWA MALUSA

SPRAWDZANIE PRAWA MALUSA INSTYTUT ELEKTRONIKI I SYSTEMÓW STEROWANIA WYDZIAŁ ELEKTRYCZNY POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM FIZYKI ĆWICZENIE NR O- SPRAWDZANIE PRAWA MALUSA I. Zagadnena do przestudowana 1. Fala elektromagnetyczna,

Bardziej szczegółowo

Ćwiczenie 366. Wyznaczanie współczynnika załamania światła metodą pomiaru kąta najmniejszego odchylenia. I. Wyznaczanie kąta łamiącego pryzmatu

Ćwiczenie 366. Wyznaczanie współczynnika załamania światła metodą pomiaru kąta najmniejszego odchylenia. I. Wyznaczanie kąta łamiącego pryzmatu Katedra Fzyk SGGW Nazwsko Data Nr na lśce Imę Wydzał Dzeń tyg Godzna Ćwczene 3 Wyznaczane współczynnka załamana śwatła metodą pomaru kąta najmnejszego odchylena I Wyznaczane kąta łamącego pryzmatu Położene

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej 60-965 Poznań ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, Studa stacjonarne, II stopeń, sem.1 Laboratorum Technk Śwetlnej wersja z dn. 08.05.017 Ćwczene nr 6 Temat: Porównane parametrów

Bardziej szczegółowo

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn. 29.03.2016 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Badane parametrów fotometrycznych

Bardziej szczegółowo

Refraktometria. sin β sin β

Refraktometria. sin β sin β efraktometra Prędkość rozchodzena sę promen śwetlnych zależy od gęstośc optycznej ośrodka oraz od długośc fal promenena. Promene śwetlne padając pod pewnym kątem na płaszczyznę granczących ze sobą dwóch

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH

BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH INSTYTUT KLIMATYZACJI I OGRZEWNICTWA ĆWICZENIA LABORATORYJNE Z WENTYLACJI I KLIMATYZACJI: BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH 1. WSTĘP Stanowsko laboratoryjne pośwęcone badanu

Bardziej szczegółowo

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA Ćwczene O5 POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA 1. Cel zakres ćwczena Celem ćwczena jest poznane metod pomaru współczynnków odbca przepuszczana próbek płaskch 2. Ops stanowska laboratoryjnego

Bardziej szczegółowo

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Katedra Chem Fzycznej Unwersytetu Łódzkego Wyznaczane współczynnka podzału Nernsta w układze: woda aceton chloroform metodą refraktometryczną opracowała dr hab. Małgorzata Jóźwak ćwczene nr 0 Zakres zagadneń

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2 T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA.

( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA. 0.X.203 ĆWICZENIE NR 8 ( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA. I. Zestaw przyrządów:. Mikroskop. 2. Płytki szklane płaskorównoległe.

Bardziej szczegółowo

Ćwiczenie projektowe z Podstaw Inżynierii Komunikacyjnej

Ćwiczenie projektowe z Podstaw Inżynierii Komunikacyjnej Poltecnka ałostocka Wydzał udownctwa Inżyner Środowska Zakład Inżyner Drogowej Ćwczene projektowe z Podstaw Inżyner Komunkacyjnej Projekt tecnczny odcnka drog klasy tecncznej Z V p 50 km/. Założena do

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR KRZYWIZNY SOCZEWEK 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania krzywizny soczewek. 2. Zakres wymaganych zagadnieo: Zjawisko dyfrakcji i interferencji

Bardziej szczegółowo

Ć W I C Z E N I E N R O-7

Ć W I C Z E N I E N R O-7 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-7 POMIAR PROMIENI KRZYWIZNY SOCZEWKI PŁASKO-WYPUKŁEJ METODĄ PIERŚCIENI

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

Sprawozdanie powinno zawierać:

Sprawozdanie powinno zawierać: Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,

Bardziej szczegółowo

Ile wynosi suma miar kątów wewnętrznych w pięciokącie?

Ile wynosi suma miar kątów wewnętrznych w pięciokącie? 1 Ile wynos suma mar kątów wewnętrznych w pęcokące? 1 Narysuj pęcokąt foremny 2 Połącz środek okręgu opsanego na tym pęcokące ze wszystkm werzchołkam pęcokąta 3 Oblcz kąty każdego z otrzymanych trójkątów

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

Metody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej

Metody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej Metody badań kaena naturalnego: Oznaczane współczynnka nasąklwośc kaplarnej 1. Zasady etody Po wysuszenu do stałej asy, próbkę do badana zanurza sę w wodze jedną z powerzchn (ngdy powerzchną obrabaną)

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej Grupa: Elektrotechnka, wersja z dn. 0.03.011 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Porównane parametrów fotometrycznych Ŝarówek dod śwecących o ukerunkowanym

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ WPŁYW SIŁY JONOWEJ ROZTWORU N STŁĄ SZYKOŚI REKJI WSTĘP Rozpatrzmy reakcję przebegającą w roztworze mędzy jonam oraz : k + D (1) Gdy reakcja ta zachodz przez równowagę wstępną, w układze występuje produkt

Bardziej szczegółowo

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując

Bardziej szczegółowo

Pomiary dawek promieniowania wytwarzanego w liniowych przyspieszaczach na użytek radioterapii

Pomiary dawek promieniowania wytwarzanego w liniowych przyspieszaczach na użytek radioterapii Pomary dawek promenowana wytwarzanego w lnowych przyspeszaczach na użytek radoterap Włodzmerz Łobodzec Zakład Radoterap Szptala m. S. Leszczyńskego w Katowcach Cel radoterap napromenene obszaru PTV zaplanowaną,

Bardziej szczegółowo

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn..03.013 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Porównane parametrów fotometrycznych

Bardziej szczegółowo

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO I PRACOWNIA FIZYCZNA, INSYU FIZYKI UMK, ORUŃ Instrukca do ćwczena nr WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO 1. Cel ćwczena Celem ćwczena est poznane ruchu harmonczneo eo praw,

Bardziej szczegółowo

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia

Bardziej szczegółowo

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane

Bardziej szczegółowo

Płaszczyzny, Obrót, Szyk

Płaszczyzny, Obrót, Szyk Płaszczyzny, Obrót, Szyk Zagadnienia. Szyk kołowy, tworzenie brył przez Obrót. Geometria odniesienia, Płaszczyzna. Wykonajmy model jak na rys. 1. Wykonanie korpusu pokrywki Rysunek 1. Model pokrywki (1)

Bardziej szczegółowo

Interferencja i dyfrakcja

Interferencja i dyfrakcja Podręcznik zeszyt ćwiczeń dla uczniów Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik

Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik Rozwiązania zadań Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY Zadanie 1 (5pkt) Równanie jest kwadratowe, więc Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik /:4 nierówności

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH

WYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 6-965 POZNAŃ (budynek Centrum Mechatronk, Bomechank Nanonżyner) www.zmsp.mt.put.poznan.pl tel. +8 6 665 35 7 fa +8

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 +

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 + Różnczkowalność pocodne Ćwczene. Znaleźć pocodne cz astkowe funkcj f(x, y) = arctg x y. Rozw azane: Wdać, że funkcj f można napsać jako f(u(x, y)) gdze f(u) = arctg(u), u(x, y) = x y. Korzystaj ac z reg

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Temat 2: Podstawy optyki geometrycznej-1. Zasada Fermata. Prawo odbicia światła

Temat 2: Podstawy optyki geometrycznej-1. Zasada Fermata. Prawo odbicia światła Temat : Podstawy optyk geometrycznej-1 Ilość godzn na temat wykładu: Zagadnena: Zasada Fermata. Zasada Huygensa. Wyprowadzene praw odbca załamana śwatła z zasad Fermata Huygensa. Współczynnk załamana.

Bardziej szczegółowo

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera. MGR 10 10. Optyka fizyczna. Dyfrakcja i interferencja światła. Siatka dyfrakcyjna. Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej. Elektromagnetyczna teoria światła. Polaryzacja światła.

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 2 Temat: Modelowanie powierzchni swobodnych 3D przy użyciu programu Autodesk Inventor Spis treści 1.

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Jak korzystać z Excela?

Jak korzystać z Excela? 1 Jak korzystać z Excela? 1. Dane liczbowe, wprowadzone (zaimportowane) do arkusza kalkulacyjnego w Excelu mogą przyjmować różne kategorie, np. ogólne, liczbowe, walutowe, księgowe, naukowe, itd. Jeśli

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. 0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie

Bardziej szczegółowo

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

Pomiar dyspersji materiałów za pomocą spektrometru

Pomiar dyspersji materiałów za pomocą spektrometru Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia

Bardziej szczegółowo

Ć W I C Z E N I E N R O-7

Ć W I C Z E N I E N R O-7 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-7 POMIAR PROMIENI KRZYWIZNY SOCZEWKI PŁASKO-WYPUKŁEJ METODĄ PIERŚCIENI

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Interferencja i dyfrakcja

Interferencja i dyfrakcja Podręcznik metodyczny dla nauczycieli Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

Projekt okładki, rysunki i fotografie: Piotr Storoniak Rysunki: Damian Trzybiński

Projekt okładki, rysunki i fotografie: Piotr Storoniak Rysunki: Damian Trzybiński 1 Zespół autorsk: Lda Chomcz (ćw. 6, 15, 16) Karol Krzymńsk (ćw. 1, 2, 4, 6, 7, 9, 17, rozdzał III) Artur Skorsk (ćw. 3, 1, rozdzał II) Potr Storonak (ćw. 8) Beata Zadykowcz (ćw. 13, 14, 18) Agneszka Żylcz-Stachula

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Pomiary parametrów akustycznych wnętrz.

Pomiary parametrów akustycznych wnętrz. Pomary parametrów akustycznych wnętrz. Ocena obektywna wnętrz pod względem akustycznym dokonywana jest na podstawe wartośc następujących parametrów: czasu pogłosu, wczesnego czasu pogłosu ED, wskaźnków

Bardziej szczegółowo

ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE. I. Cel ćwiczenia: Zapoznanie się z budową mikroskopu i jego podstawowymi możliwościami pomiarowymi.

ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE. I. Cel ćwiczenia: Zapoznanie się z budową mikroskopu i jego podstawowymi możliwościami pomiarowymi. ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE I. Zestaw przyrządów: 1. Mikroskop z wymiennymi obiektywami i okularami.. Oświetlacz mikroskopowy z zasilaczem. 3. Skala mikrometryczna. 4. Skala milimetrowa na statywie.

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORJNE Z FIZKI trzec termn wpsu zalczena do USOSu upływa...prowadząc(a/y)... grupa... podgrupa... zespół... semestr... roku akademckego... student(ka)... SPRAWOZDANIE

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Pomiar dyspersji materiałów za pomocą spektrometru

Pomiar dyspersji materiałów za pomocą spektrometru Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH Metrologa Wspomagana Komputerowo - Zegrze, 9-22 05.997 WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH dr nż. Jan Ryszard Jask, dr nż. Elgusz Pawłowsk POLITECHNIKA lubelska

Bardziej szczegółowo

Przykład 3.2. Rama wolnopodparta

Przykład 3.2. Rama wolnopodparta rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją

Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją CZĘŚĆ A CZŁOWIEK Pytania badawcze: Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją Czy obraz świata jaki rejestrujemy naszym okiem jest zgodny z rzeczywistością? Jaki obraz otoczenia

Bardziej szczegółowo