Równania i układy równań liniowych i nieliniowych. Artur Wymysłowski, prof. PWr.
|
|
- Łukasz Adamczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Równania i układy równań liniowych i nieliniowych Artur Wymysłowski, prof. PWr.
2 Plan wykładu Przypomnienie ostatniego wykładu (różniczkowanie i całkowanie numeryczne + zastosowania) Układy i systemy liniowe i nieliniowe Równania definicje opis przykłady Układy równań definicje opis przykłady
3 Poprzedni wykład Różniczkowanie: wyznaczanie i porównanie wybranych parametrów zmiennych / obiektów, np. v, a, itp. szacowanie błędów rozwiązywanie równań wyznaczanie przybliżonej wartości funkcji Całkowanie: wyznaczanie i porównanie wybranych parametrów zmiennych / obiektów, np. E, itp. suma dla zmiennych niepoliczalnych prognozowanie przybliżone wyznaczanie całki z funkcji
4 Wstęp W matematyce system liniowy to taki, w przypadku którego funkcja (przekształcenie lub odwzorowanie) f(x) jest liniowa, tzn. (superpozycja): addytywność => f(x+y)=f(x)+f(y) proporcjonalność => f(αx)=αf(x) Natomiast, system nieliniowy to taki, który nie jest liniowy, a zatem nie są spełnione warunki: addytywności i proporcjonalności intuicyjnie => system nieliniowy to taki w przypadku którego zmienne nie mogą być zapisane jako liniowa kombinacja niezależnych komponentów, np. ax+by+...
5 Funkcja / przekształcenie lub mapa - różnica pomiędzy funkcją y=f(x) a równaniem f(x)=0 (Uwaga: niektóre równania mają rozwiązania funkcyjne) - analiza wariacyjna => zamiana f(x) poprzez całkę na wartości y => przekształcenie - f() nie musi być tylko funkcją ale dowolnym przekształceniem jednej przestrzeni na inną X Y=f(X) Y
6 Przykład f(x)=ax addytywność: f(x+y)=a(x+y)=ax+ay=f(x) +f(y) proporcjonalność: f(αx)=αax=αf(x) f(x)=ax+b addytywność: f(x+y)=ax+ay+b f(x)+f(y) proporcjonalność: f(αx)=aαx+b αf(x) f(x)=ax2+bx addytywność: f(x+y)=a(x+y)2+b(x+y) f(x) +f(y) proporcjonalność: f(αx)=a(αx)2+bαx αf(x)
7 Uwagi - liniowość W przypadku ogólnym, x nie jest tylko liczbą ale może być także wektorem [x] Pojęcie liniowości dotyczy nie tylko operatorów liniowych (dodawania, mnożenie) ale także pochodnych jako operatora różniczkowania, itp. Algebra liniowa jest działem matematyki, który zajmuje się wektorami, przekształceniami liniowymi i układami równań liniowych
8 Uwagi - inne Operacje liniowe są najprostszym przypadkiem analizy matematycznej i są naturalne w tzw. matematyce stosowanej np. w odniesieniu do inżynierii Szacuje się, że 75% problemów inżynierskich i naukowych może być opisanych liniowymi układami równań Słowo liniowy pochodzi od słowa łacińskiego linearis, co oznacza skonstruowany z linii
9 Funkcja a równanie Funkcja opisuje zależność, która dla wartości zmiennych niezależnych (wejście x) wyznacza wartości zmiennych zależnych (y wyjście). funkcja przypisuje unikalną wartość y dla każdej wartości x zapis y=f(x) oznacza, że funkcja o nazwie f posiada wejście o nazwie x i wyjście o nazwie y Równanie: wyrażenie, które jest równe po obu stronach znaku równości, opisuje miejsca zerowe (inaczej pierwiastki) funkcji f(x)=0
10 Przykład Funkcja: f(x)=mx-a, np. f(x)=2x-2 Równanie: mx-a=0 lub mx=a np. 2x-2=0 => pierwiastek x=1
11 Równania W matematyce równaniem określamy równość ("="), które zawiera jedną lub więcej zmiennych: u, v, x, y, t,... Rozwiązanie równania polega na poszukiwaniu takich wartości zmiennej lub zmiennych, które spełniają równość, np.: x2+y2=r2 Rodzaje równań: algebraiczne, np. wielomianowe (kwadratowe, liniowe,...), itp. funkcyjne (tj. rozwiązanie w postaci funkcji), np. różniczkowe (rzędu pierwszego, drugiego, ), całkowe, itp. geometryczne
12 Równania różniczkowe Równania różniczkowe są opisane równaniem ogólnym, np. w przypadku równań rzędu drugiego, jako: F(x,y,u,ux,uy,uxx,uyy,uxy)=0 gdzie x i y są traktowane jako zmienne niezależne, a u jest traktowana jako zmienna zależna, a ux ( u/ x)i uy ( u/ y) pochodnymi cząstkowymi Rozwiązaniem równania różniczkowego jest funkcja => równanie funkcyjne: u=f(x,y) Równania różniczkowe opisują zależność pomiędzy zmienną zależną u a jej pochodnym ux, np.: ux=u+1
13 Rodzaje równań różniczkowych Równania różniczkowe należą do równań funkcyjnych, tzn. mają rozwiązanie w postaci funkcji u=f(x,y) Klasyfikacja: zwyczajne (ODE ordinary differential equations) => szukamy funkcji jednej zmiennej: ux=0 cząstkowe (PDE partial differential equations) => szukamy funkcji wielu zmiennych: uxy=0 rząd: pierwszy, drugi: ux, uxx
14 Zastosowanie w fizyce Równania różniczkowe opisują zależność zmiennych/funkcji i ich pochodnych, np. ux+u=0 gdzie zmienne/funkcje u reprezentują wielkości fizyczne a pochodne ux reprezentują szybkości ich zmian, a równanie definiuje relacje między nimi. Relacje takie są bardzo powszechne w fizyce i odgrywają znaczącą rolę w wielu dziedzinach: inżynieria, fizyka, itp. Równania różniczkowe można sklasyfikować wg pewnych "klasycznych" grup/klas, np.: ux+uy=0 => równanie transportu uxx+uyy=0 => równanie Laplace'a utt+uxx+u3=0 => równanie falowe ut+i*uxx=0 => mechanika kwantowa itp.
15 Przykład Problem "Drapieżnik i Ofiara" - z matematycznego punktu widzenia problem ten można opisać: układem dwóch równań różniczkowych równania posiadają dwie zmienne zależne i mają charakter sprzężony i zależny od czasu szybkość zmian liczby drapieżników zależy od liczby drapieżników i ofiar szybkość zmian liczby ofiar zależy od liczby ofiar i drapieżników Model został zaproponowany w roku 1926 przez Vito Volterra w celu opisania populacji ryb łowionych w morzu Śródziemnym
16 Właściwości równań Ogólna postać równania => f(x)=c: x może być: liczbą, wektorem, funkcją, itp. Jeżeli C=0 => równanie jednorodne Jeżeli f(x) zawiera różniczkę x' => równanie różniczkowe rozwiązywanie równań => poszukiwanie pierwiastków Równania liniowe i nieliniowe mogę być stosunkowo często rozwiązane analitycznie lub w przypadku braku takich rozwiązań, analizowane metodami numerycznymi, np. równania różniczkowe => modelowanie i symulacje
17 Funkcja a równanie liniowe W matematyce termin funkcja liniowa lub odwzorowanie liniowe odnosi się do dwóch powiązanych ze sobą pojęć: wielomian pierwszego stopnia jednej zmiennej => funkcja liniowa odwzorowanie pomiędzy dwoma przestrzeniami, które zachowuje własności addytywności i proporcjonalności => mapa liniowe Uwagi: funkcja f(x)=mx+b jest odwzorowaniem liniowym tylko wtedy, gdy b=0 równanie f(x)=c jest równaniem liniowym: jeżeli f(x) jest odwzorowaniem liniowym => mx=c jeżeli C=0 => równanie jednorodne funkcja: y= f ( x )=mx+ b równanie: Ax+ By+ C=0
18 Równania nieliniowe Problemy nieliniowe są bardzo istotne w inżynierii, ponieważ większość układów fizycznych występujących w przyrodzie jest nieliniowa Równania nieliniowe są trudne do rozwiązania i prowadzą do ciekawych zjawisk, takich jak chaos i efekt motyla, np. pogoda => małe zmiany w jednej części układu prowadzą do złożonych efektów w całym systemie
19 Nonlinear algebra
20 Równanie nieliniowe - kwadratowe Funkcja kwadratowa jest wielomianem drugiego rzędu => f(x)=ax2+bx+c i posiada jeden lub dwa miejsca zerowe (pierwiastki) w zależności od wartości współczynnika Δ: =b 2 4ac jeżeli Δ<0 => pierwiastki nie są liczbami rzeczywistymi lecz urojonymi jeżeli Δ=0 => jeden (podwójny) pierwiastek jeżeli Δ>0 => dwa pierwiastki Równanie kwadratowe => ax2+bx+c=0, gdzie a 0 jeżeli a=0 => równanie liniowe bx+c=0 rozwiązanie równania kwadratowego => pierwiastki f(x)=ax2+bx+c ponieważ są rozwiązaniem równania f(x)=0 if 0 b x1 = 2a b x2 = 2a
21 Równanie nieliniowe - sześcienne Funkcja sześcienna jest wielomianem trzeciego rzędu => f(x)=ax3+bx2+cx+d: pochodna funkcji sześciennej jest wielomianem drugiego rzędu całka funkcji sześciennej jest wielomianem czwartego rzędu f x =0 ax 3 bx 2 cx d =0 Równanie sześcienne => ƒ(x)=0; gdzie a 0; posiada przynajmniej jeden pierwiastek, który jest liczbą rzeczywistą, w zależności od wartości współczynnika Δ: jeżeli Δ>0, trzy pierwiastki rzeczywiste jeżeli Δ=0, pierwiastek rzeczywisty jeżeli Δ<0, jeden pierwiastek rzeczywisty i dwa zespolone =18 a b c d 4 b d b c 4 a c 27 a d 2
22 Miejsca zerowe dowolnej f(x) - uwagi Pierwiastki funkcji f(x) => f(x)=0 f x i f x j 0 Jeżeli f(x) jest ciągła i zmienia znak to wówczas posiada przynajmniej jeden pierwiastek pomiędzy punktami xi i xj Możliwości: jeżeli f(x) nie zmienia znaku pomiędzy dwoma punktami to pierwiastki mogą występować jeżeli f(x) zmienia znak pomiędzy dwoma punktami to wówczas może być więcej niż jeden pierwiastek Metody poszukiwania pierwiastków: metoda bisekcji metoda Newtona
23 Metod bisekcji Metoda polega na wielokrotnym zawężaniu / podziale przedziału w którym znajduje się pierwiastek Algorytm: wybierz punkty startowe xi i xj tak, aby funkcja f(x) zmieniała znak, tzn. f(xi)*f(xj)<0 oszacuj położenie miejsca zerowego funkcji jako punkt środkowy xm sprawdź warunki: jeżeli f(xi) f(xm)<0 => zerowe jest pomiędzy xixj=> xi=xi; xj=xm jeżeli f(xi) f(xm)>0 => zerowe jest pomiędzy xixj=> xi=xm ; xj=xj jeżeli f(xi) f(xm)=0 => zerowe jest w xm=> algorytm x j x i xm= oszacuj nowe położenia miejsca zerowego xm i 2 wyznacz wartość błędu względnego εa new old x m x m porównaj wartość błędu względnego εa a= 100 % new wartością założoną εs, jako kryterium xm zakończenia algorytmu iteracyjnego
24 Metoda bisekcji - uwagi Zalety: zawsze jest zbieżna założenie => przedział poszukiwania jest zawsze dzielony na połowę po każdej iteracji Wady: zbiega się stosunkowo wolno jeżeli punkt początkowy znajduje się blisko miejsca zerowego, wówczas zbieżność jest wolna Problemy: jeżeli f(x) dotyka osi x, wówczas algorytm będzie miał problem z określeniem punktów startowych jeżeli f(x) zmienia znak ale pierwiastki nie występują
25 Metoda Newtona Przyjmuje się, że jest to jedna z najlepszych metod poszukiwania miejsc zerowych funkcji f(x) Algorytm: wyznacz f'(x) metodą symboliczną lub numeryczną: AB tan = AC f x f ' x = x i 1 x i symbolicznie => jeden punkt startowy numerycznie => dwa punkty startowe przyjmij wartość początkową pierwiastka xi a następnie korzystając z pochodnej wyznacz położenie xi+1 f'(x)<0 => funkcja malejąca f'(x)>0 => funkcja rosnąca oszacuj wartość błędu względnego εa porównaj wartość błędu εa z wartością założoną jako kryterium końca obliczeń εs f ( xi ) x i + 1= x i f ' ( x i) x i + 1 x i εa = 100 % xi + 1
26 Metoda Newtona - przykład Metoda analityczna f'(x): f(x)=x3+x-1 f'(x)=3x2+1 Metoda numeryczna f'(x): f(x)=x-2sin(x) x0=2.0, x1=1.9 n f ( xn ) x n + 1=x n f ' ( xn ) n xn xn+1 e , , , x n x n 1 x n + 1=x n f ( x n ) f ( x n) f ( x n 1 ) xn-1 xn xn+1 e=xn+1-xn , ,
27 Metoda Newtona - uwagi Zalety: bardzo szybka zbieżność(zależność kwadratowa) wymaga jednego lub dwóch punktów startowych Wady: duża rozbieżność w przypadku płaskich funkcji => jeżeli punkt z iteracji znajduje się w płaskim przedziale funkcji f(x), położenie kolejnego punktu może wypaść daleko od punktu zerowego Problemy: dzielenie przez zero => jeżeli mianownik jest równy 0 oscylacje w pobliżu lokalnego minimum lub maksimum => tzw. przeskakiwanie pierwiastka
28 Układ równań liniowych Dwa podstawowe problemy: rozwiązanie układu równań typu: [A][x]=[b] poszukiwanie wartości i wektorów własnych Metody rozwiązywania: klasyczne metody matematyczne bazują na macierzy odwrotnej, tzw. metoda Cramera => prosta ale mało efektywna w przypadku metod numerycznych korzysta się z metod interpolacji i aproksymacji opartych na funkcjach liniowych w przypadku rozwiązywania równań różniczkowych korzysta się z metody różnic skończonych W fizyce, liniowość jest ważną własnością równań różniczkowych, np. równania Maxwella, itp. => jeśli dwie funkcje f(x) i g(x) są rozwiązaniem równania, to ich suma f(x)+g(x) jest również rozwiązaniem równania, tzw. skalowalność rozwiązań
29 Przykład Równanie Laplace'a: J. f(x) => rozwiązanie J. równanie liniowe => f(ax)=af(x) f(x+y)=f(x)+f(y) div( j)=0 div( ρ grad (V (x, y, z)))=0 2 V (x, y, z)=0
30 Uwaga Jeżeli rozwiązanie dla skali x to także dla skali ax
31 Wartości i wektory własne Opisuje odwzorowanie między przestrzeniami liniowymi zachowując ich strukturę: A[ x ]= [ x ] dotyczy takich działań jak dodawania i mnożenia przez skalar wartości własne λ i wektory własne x Poszukiwanie wartości własnych jest typowym problemem w inżynierii, np. wibracje, rezonans (harmoniczne), itp. f [Hz]
32 Przykład - muzyka Harmonia: chór oktawy (f / 2f / 3f, itp.) niezależnie od miejsca i czasu?!
33 Podstawowe pojęcia W matematyce układy równań liniowych (lub system liniowy) to zbiór równań liniowych zawierający jednakowe zmienne xi Najprostszym przykładem układu równań liniowych jest system składający się z dwóch równań i dwóch zmiennych x1 i x2 a 11 Ogólny układ równań liniowych a 21 zawiera m równań liniowych a m1 oraz n niewiadomych [ a 11 x 1 a12 x 2 =b 1 a21 x 1 a22 x 2 =b 2 wówczas : A x =b [ a 11 a 21 a12 a 22 a m2 wówczas : a 12 x 1 b = 1 a 22 x 2 b2 ][ ] [ ] a 1n a 2n a mn x 1 b1 x 2 = b2 x n bm ][ ] [ ]
34 Przykład Możliwe rozwiązania: nieskończenie wiele jedno brak Interpretacja geometryczna: w przypadku przestrzeni dwuwymiarowej każde równania liniowe opisuje linię/prostą na płaszczyźnie xy i zbiór rozwiązań jako przecięcia tych prostych => linii, punkt lub zbiór pusty w przypadku przestrzeni trójwymiarowej każde równanie opisuje płaszczyznę i zbiór rozwiązaniem jako przecięcia tych płaszczyzn => płaszczyzna, linii, punkt lub zbiór pusty w przypadku przestrzeni n-wymiarowej każde z równań liniowych określa płaszczyznę i zestaw rozwiązań jako przecięcie się tych płaszczyzn x y= 1 3x y=9 wówczas : x, y = 2,3
35 Właściwości Zachowanie systemu liniowego jest definiowanie jako relacja pomiędzy liczbą równań m i liczbą niewiadomych n, tzn. A[xn]=[bm], zazwyczaj: jeżeli m<n => nieskończona liczba rozwiązań, taki układ jest zdefiniowany jako nieokreślony jeżeli m=n => pojedyncze rozwiązanie jeżeli m>n => brak rozwiązań, taki układ jest zdefiniowany jako nadokreślony Algorytmy rozwiązywania układu równań liniowych: małe układy => metody analityczne: eliminacja zmiennych, redukcja wierszy, metoda Cramera, tj. wyznaczników, etc. duże układy => metody numeryczne: Metoda Gaussa, metody iteracyjne oparte na odgadywaniu rozwiązania i następnie aproksymacji lub interpolacji, itp. Układ jednorodny => b=0, tzn. A[x]=0
36 Metoda Cramera Metoda/wzory Cramera opublikowane w 1750 przez szwajcarskiego matematyka Gabriela Cramera opisują sposób rozwiązywania układu n równań liniowych z n niewiadomymi [ a 11 a 21 a 31 a n1 a12 a 22 a 32 a n2 a13 a 23 a33 an3 a1n a2n a3n a nn x1 b1 x2 b2 x 3 = b3 xn bn ][ ] [ ] det A1 x 1= det A det A1 x 1= det A det An xn = det A gdzie Ai oznacza macierz otrzymaną przez zamianę w macierzy A i-tej kolumny na kolumnę wyrazów wolnych bi danego układu równań
37 Metoda Gaussa Metoda Gaussa jest algorytmem pozwalającym na optymalne rozwiązywania układów równań liniowych Metoda Gaussa składa się z dwóch części: eliminacji => celem jest przekształcenie układu równań liniowych do postaci macierzy trójkątnej za pomocą elementarnych operacji matematycznych podstawienie => celem jest powrót do stanu pierwotnego rozwiązując układ począwszy od ostatniego wiersza [ a 11 a 21 a 31 a n1 a12 a 22 a 32 a n2 a13 a 23 a33 an3 a1n a2n a3n a nn eliminacja [ a11 a 12 a 13 1 a 1n 1 a 2n a 22 a a 33 a 3n 0 0 a n 1 nn x1 b1 x2 b2 x 3 = b3 xn bn ][ ] [ ] ][ ] [ ] b1 x1 1 b2 x2 x 3 = b 23 xn bnn 1 podstawienie xn = b n 1 n a n 1 nn ; etc.
38 Eliminacja Algorytm: krok 1 => równanie 1 dzielimy przez współczynnik a11 i mnożymy przez współczynnik a21 krok 2 => odejmujemy wynik od równania 2 powtarzamy procedurę (n-1) razy dla kolejnych wierszy [ a 11 a 21 a 31 a n1 a12 a 22 a 32 a n2 a13 a 23 a33 an3 a1n a2n a3n a nn x1 b1 x2 b2 x 3 = b3 xn bn ][ ] [ ] krok 1 a 21 a x a x a x a 1n x n =b1 a a a a a a 21 x1 21 a12 x 2 21 a13 x 3 21 a1n x n= 21 b1 a11 a11 a 11 a 11 [ ] krok 2 a21 x 1 a22 x 2 a 23 x 3 a 2n x n =b 2 a 21 a 21 a 21 a 21 a21 x 1 a x a x a x= b a a a 11 1n n a x 1 a22 x 2 a23 x 3 a2n x n =b 2
39 Podstawienie Celem jest wykorzystanie wstecznego podstawienia tak, aby znaleźć rozwiązanie dla całego układu, począwszy od ostatniego wiersza Algorytm: krok 1 => należy wyznaczyć wartość xn powtórzyć procedurę (n-1) razy dla następnego wiersza [ a11 a 12 a 13 1 a 1n 1 a 2n a 22 a a 33 a 3n 0 0 a n 1 nn b1 x1 1 b2 x2 x 3 = b 23 xn bnn 1 ][ ] [ ] krok 1 n 1 x n= bn a n 1 nn then: b xi = i 1 i n j=i 1 i 1 ii a i 1 a ij x j ; i =n 1,,1
40 Przykład [ x x 2 = x ][ ] [ ] eliminacja [ x x 2 = x ][ ] [ ] podstawienie x3 = = x 2=... x 1=...
41 Uwagi Szybkość => metoda Gaussa rozwiązania układu n równań liniowych wymaga następującej liczby operacji: operacje związane z eliminacją: n2/2 n/2 : dzielenie i odejmowanie n3/3 n/3 : mnożenie i dodawanie operacje związane z podstawieniem: n2/2 n/2 : mnożenie i odejmowanie n : dzielenie Niestabilność => istotne jest, aby unikać dzielenia przez małe liczby, ponieważ może to prowadzić do dużych błędów obliczeń, tzw. small pivot
42 Przykład Macierz wymagałaby: operacji związanych z eliminacją operacji związanych z podstawieniem Small pivout => prowadzi do: niepewności wyniku w związku ze zbliżaniem się dzielnika do 0, szczególnie w przypadku obliczeń komputerowych jeżeli dla działania a/b dzielnik b dąży to 0 to wynik dąży do nieskończoności E E-2 1E-4 1E-6 1E Small pivout
43 Dzielenie przez 0 Dlaczego nie można dzielić przez 0? a/0 =? Jeżeli nie można dzielić przez 0 to dlaczego można dzielić przez liczby bliskie 0, np.? a/1e-32 =? Jaki wynik otrzymujemy, gdy dzielimy przez liczbę bliską 0? => błędy obliczeniowe
44 Metoda iteracyjna Znana jako metoda Gaussa-Seidela Podstawowe procedury: wyznaczyć algebraicznie równanie liniowe dla każdej zmiennej xi należy przyjąć punkt startowy [x] rozwiązać dla każdego xi a następnie powtórzyć procedurę iteracyjnie oszacować błąd po każdej iteracji, tzn. czy znajduje się w zadanych granicach Uwagi: metoda pozwala użytkownikowi na kontrolę błędu rozwiązania jeżeli fizyka problemu jest zrozumiała, można próbować odgadnąć rozwiązanie, co pozwala na znaczne ograniczenie liczby iteracji n b i xi = j=1, j i a ii a ij x j ; i=1,, n punkt startowy x1 [ x ]= x 2 xn [] oszacowanie błędu x new x old i i a i= 100 new xi
45 Wnioski Równania i układy równań liniowych i nieliniowych są najbardziej rozpowszechnionym problemem w zastosowaniach inżynierskich 75% problemów inżynierskich metody rozwiązania można przedstawić w postaci prostych algorytmów Umiejętność rozwiązywania liniowych i nieliniowych układów równań jest podstawowym warunkiem zaawansowanej analizy numerycznej thick-film resistor substrate [ a 11 a 21 a 31 a n1 a12 a 22 a 32 a n2 a13 a 23 a33 an3 a1n a2n a3n a nn x1 b1 x2 b2 x 3 = b3 xn bn ][ ] [ ]
46 Układy nieliniowe W inżynierii wszystkie układy są nieliniowe a warunek liniowości wiąże się z wieloma założeniami upraszczającymi, np.: żadna ze zmiennych układu nie podlega ograniczeniom przykład operacji nieliniowych => iloczyny lub potęgi zmiennych a dodatkowo współczynniki równań mogą zależeć od zmiennych układy nieliniowe mają także pewien zakres liniowy równania liniowe są łatwe w analizie i w obliczeniach za najbardziej ogólną postać opisu układów równań nieliniowych można uznać równania różniczkowe Uwagi: nie istnieje ogólna analityczna metoda rozwiązywania układów nieliniowych nie można również stosować aparatu pojęciowego związanego z przekształceniem Laplace'a => charakterystyki czasowe i częstotliwościowe nie istnieją wartości własne istnieją metody analityczne rozwiązywania tylko niektórych typów równań nieliniowych, a głównie stosuje się metody numeryczne
47 Przykład - wahadło Siła działająca na kulkę: F =m a= m g sin a= g sin Przyspieszenie kulki liczone wg drogi s: 2 2 d s d l a= 2 = dt dt 2 Zatem równanie ruchu: 2 d l g sin =0 2 dt Liniowe Nieliniowe
48 Dziękuję za uwagę
Równania i układy równań liniowych i nieliniowych. Artur Wymysłowski, prof. PWr.
Równania i układy równań liniowych i nieliniowych Artur Wymysłowski, prof. PWr. Plan wykładu Przypomnienie ostatniego wykładu (różniczkowanie i całkowanie numeryczne + zastosowania) Układy i systemy liniowe
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Metody numeryczne Wykład 7
Metody numeryczne Wykład 7 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Plan wykładu Rozwiązywanie równań algebraicznych
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;
METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Bardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Metody numeryczne II. Układy równań liniowych
Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Wstęp do analizy matematycznej
Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska
METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie
Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku.
W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. Nie wolno dzielić przez zero i należy sprawdzić, czy dzielna nie jest równa zeru. W dziedzinie liczb
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego
Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.
Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Kubatury Gaussa (całka podwójna po trójkącie)
Kubatury Gaussa (całka podwójna po trójkącie) Całka podwójna po trójkącie Dana jest funkcja dwóch zmiennych f (x, y) ciągła i ograniczona w obszarze trójkątnym D. Wierzchołki trójkąta wyznaczają punkty
METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą
METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15
Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych
Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie
Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012.
Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012 Spis treści Przedmowa 9 CZĘŚĆ I. WSTĘP DO MATEMATYKI 11 Wykład 1. Rachunek
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Wielomiany. dr Tadeusz Werbiński. Teoria
Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
Metody Numeryczne. Wojciech Szewczuk
Metody Numeryczne Równania nieliniowe Równania nieliniowe W tych równaniach jedna lub więcej zmiennych występuje nieliniowo, np równanie Keplera x a sin x = b. Zajmiemy się teraz lokalizacją pierwiastków
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44
Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
Elementy metod numerycznych
Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Metody rozwiązywania równań nieliniowych
Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.