Wahadło torsyjne D I. Równanie ruchu obrotowego krążka. moment bezwładności krążka M moment siły D moment kierujący. drut
|
|
- Elżbieta Mazurkiewicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wahadło torsyjne ównanie ruchu obrotowego krążka d α I dt M M Dα I moment bezwładności krążka M moment siły D moment kierujący r drut d α dt D + α I ównanie oscyatora harmonicznego α α A sin( ωt + ϕ) Częstość kołowa Okres drgań ω D I I D T π Informacja o momencie bezwładności Informacja o własnościach sprężystych drutu
2 Wahadło torsyjne Nowy moment bezwładności z tw. Steinera: I I + [ m( r) + mr π I D T ] r w Dwa wace o masie m Moment bezwładności waca wzgędem osi I w /mr I D T π Wyznaczając doświadczanie T oraz T znajdziemy D oraz nieznany moment bezwładności I Podczas drgań wahadła zachodzi odkształcenie drutu poegające na ścinaniu
3 Odkształcenia sprężyste Sprężystość (eastyczność) własność powodująca, że odkształcone ciało dąży do stanu początkowego. Da ideanie sprężystych ciał naprężenia w nich wywoływane są jednoznacznymi funkcjami odkształceń. Przy niewiekich odkształceniach własności ciał stałych można opisywać traktując je jak ciała ideanie sprężyste. Wtedy, jak to wykrył. Hooke da prostych odkształceń, odkształcenie jest proporcjonane do naprężenia. Ponieważ interesuje nas odkształcenie drutu zajmijmy się najpierw przypadkiem odkształcenia postaci bez zmiany objętości jakim jest tzw. ścinanie
4 Ścinanie ozważmy kostkę prostopadłościenną przykejonej do podłoża * γ σ t γ Każdy eement górnej powierzchni kostki poddany jest naprężeniu stycznemu σ t F S F siła działająca stycznie do górnej powierzchni kostki S powierzchnia górnej ścianki kostki Odkształcenie kostki poega przesunięciu górnej ścianki w kierunku naprężenia, bez zmiany kształtu tej ścianki. Ścianka przednia i tyna przyjmują kształt równoegłoboków, ścianki boczne pochyają się o kąt γ W tym wypadku prawo Hooke a ma postać: σ γ t G moduł sztywności G * Aby naprężenia powstające na brzegach nie miały znaczenia wysokość kostki powinna znacznie mniejsza od pozostałych wymiarów
5 -F z dr Skręcanie (ścinanie) pręta r γ ϕ Pręt dzieimy na rurki o promieniu r i grubości dr Górny koniec rurki jest zamocowany. Do donego końca przykładamy parę sił o tej samej wartości i przeciwnych zwrotach tworzą one moment skręcający pręt, który równoważą naprężenia ścinające powstałe w pręcie. rϕ F z Każdy eement rurki uega ścinaniu o kąt γ Ponieważ σ γ t G moduł sztywności G γ rϕ ϕ - kat skrecenia konca rurki dugosc rurki Zatem naprężenie ścinające: rϕ σ t G
6 Moment sił sprężystości równoważący moment sił zewnętrznych: dm dm dm dm dm Fr σ σ t t S r πr dr r rϕ G πr dr πg 3 ϕ r dr Skręcanie pręta F siła styczna S powierzchnia przekroju rurki Sumując przyczynki od rurek o różnych promieniach dostajemy całkowity moment sił sprężystości równoważący moment sił zewnętrznych 4 3 D J πg 4 G π M ϕ r dr ϕ Dϕ D moment kierujący J geometryczny moment bezwładności J S r G ds π G
7 Badając drgania torsyjne wahadła fizycznego możemy wyznaczyć moduł sztywności G materiału z którego wykonany jest drut Materiał guma miedź sta wofram szkło Moduł sztywności GPa Współczynnik Poissona GPa
8 Sprężyna Przy rozciąganiu sprężyny drut, z którego jest ona wykonana uega skręceniu o kąt ϕ ϕ h s Skręcenie to wywoła pojawienie się momentu siły: M F s s promień sprężyny (Ta część anaizy rozciągania sprężyny wymaga dokładniejszej anaizy ) M πr 4 G ϕ r promień drutu długość drutu Moment sił sprężystości równoważy moment siły zewnętrznej F przyłożonej dokładnie wzdłuż osi sprężyny Łącząc powyższe wzory i biorąc pod uwagę, że długość drutu sprężyna wynosi πn s (gdzie N iczba zwojów sprezyny) dostajemy ostatecznie: F 4 Gr 4 N 3 s h F z k h k 4 Gr 3 4 N s
9 Skręcanie wałów napędzających maszyny Moc przekazywana przez wał: PMω Zamiast wałów stosuje się czasem rury ) ( ) ( J J G G dr r G M r r π ϕ ϕ π ϕ π Jaki powinien być promień zewnętrzny rury o promieniu wewnętrznym, aby dawała ona taki sam moment skręcający jak pręt o promieniu ) ( π π,9 4 S S Warto używać pustych wałków!
10 F n ozciąganie drutu Wydłużenie wzgędne: ε Prawo Hooke a (da niewiekich odkształceń) ε σ σ E F n S σ- naprezenie normane E moduł Younga F n Przewężenie wzgędne: SE t d Da odkształceń sprężystych: ε µε t ub µ - wspóczynnik Poissona ε d d ε t µ ε
11 Moduł Younga guma Nyon Magnez (Mg) Materiał Poietyen (LDPE) Poipropyen (PP) Osłonka wirusa Poi(tereftaan etyenu) (PET) Poistyren (PS) Drewno dębowe (wzdłuż włókien) Beton wysokiej wytrzymałości (ściskany) Stop ginu (auminium) (A) Szkło (SiO, NaCO3, CaCO3) Moduł Younga (E) GPa,-,,,5-, -3,-,5 3,-3, Materiał Szkło (SiO, NaCO3, CaCO3) Mosiądz (Cu, Zn) i Brąz (Cu, Sn) Tytan (Ti) Kompozyt z włókna węgowego Żeazo kute i sta Wofram (W) Węgik krzemu (SiC) Węgik tytanu (TiC) Miedź Cynk Ołów Diament (C) Moduł Younga (E) GPa Cyna 47 Nanorurka [] > 5-
12 Współczynnik Poissona Materiał Guma Ołów Auminium Sta Szkło Kwarc Wofram µ,46-,49,45,34,9,-,3,,7
13 Zmiana objętości pręta przy rozciąganiu z x y + r + r r Zmiana objętości przy rozciąganiu: ) ( π π ) ( ) π( µ σ σ µ σ E V E E V r r r r r r V Doświadczenie pokazuje, że V/V µ /
14 Wzgędna zmiana objętości: p ε ε µ t V p p Odkształcenie objętości p p p V δ V K κ κp p ciśnienie κ- wspóczynnik scisiwosci K modu scisiwosci Doświadczenie myśowe: - każda z krawędzi uega skróceniu o czynnik (-p/e) - jednocześnie w wyniku działania ciśnienia w kierunku poprzecznym poissonowskiemu w stosunku (+µp/e)(+µp/e) Długość krawędzi po deformacji: (-p/e)(+µp/e) p µ p p µ p 3( µ ) + V ( 3 )( + 6 ) V p E E E E E V 3( µ ) 3( µ ) E p κ ub K V E E 3( µ )
15 F Ścinanie płytki a a a F D a a γ π + γ a F F d grubość płytki Naprężenie styczne: σ t F ad Naprężenie normane: F F σ n σ ad ad t π γ
16 Naprężenia normane rozciąga przekątną Zmiana kąta pomiędzy bokami γ σ t G G moduł sztywności D a Zmiana długości przekątnej: - rozciąganie podłużne - rozciąganie poissonowskie tg γ γ a a / a a D σ n σ n µ D + µ D + E E E σ n D a σ t a G + µ a σ ta E a + µ σ a E t σ t +µ σ G E E G ( + µ ) t G mniejsze niż E (od /3 do / E) ograniczenie na wsp. Poissona µ >
17 Zginanie beki H. Szydłowski Pracownia Fizyczna (PWN) h - przed odkształceniem przekroje p, q były równoegłe (odegłe od punktu zamocowania o x, x+ x - po ugięciu przekroje tworzą kąt ϕ - warstwa V znajdujaca sie w odegosci y od warstwy W (neutranej) wyduza sie o ϕy - eement beki o dugosci x i grubosci y i szerokosci b jest odksztacany pod wpywem siy F n σ S
18 F n σ S Eε S Powierzchnia eementu V : Sb y Wyduzenie wzgedne (rysunek): Stad: ϕy F n E b y x Moment tej siy wzgedem warstwy W ε y ϕ x ϕ M y Fn E by y x Sumujac przyczynki od wszystkich warstw mamy: ϕ h / M E ϕ by dy E J x h / x gdzie geometryczny moment bezwadnosci (eement powierzchni zamiast masy) J h / by dy h / s y ds
19 Da beki o przekroju prostokatnym (zginanej prostopade do h) J bh 3 y h Moment si sprezystosci wytworzony w eemencie beki o dugosci x : ϕ M E J x Beke odksztaca moment siy zewnetrznej F b M ( x) F M x EJ Poniewaz pomiedzy stycznymi do beki w punktach p, q wynosi ϕ, to przyczynek S do ugiecia beki wyniesie: S ϕ( x) F S ( x) x EJ ϕ ϕ F ( x) x EJ
20 Sumujac ugiecia od wszystkich przyczynków x dostajemy: F F 3 S ( x) dx EJ 3 EJ Da beki o przekroju prostokatnym: 3 4 S F 3 bh EJ Ugiecie zaezy od ksztatu przekroju! J t J p J r π 4 π ( 4 ) 3 3 ( DH dh ) d/ Im większy moment Geometryczny, tym trudniej zginać! Materiał powinien być więc jak najdaej od osi zginania. Puste w środku wytrzymasze? Mosty, konstrukcje i kości D h H
21 J x E M ϕ Moment siy jeszcze raz x ϕ x ϕ Promien krzywizny ) ( ) ( x EJ x M Z matematyki wiadomo, ze krzywizna z y 3 / + x z x z x z Da maych ugiec:
22 M ( x) EJ z x równanie na kształt beki z x F EJ ( x) da x z z, x Strzałka ujęcia beki zamocowanej na jednym z końców F z ( ) 3 EJ 3
23 Mikroskop AFM mikroskop optyczny z kamerą AFM ~5cm podstawa MutiMode AFM +Nanoscope IIIa Digita Instruments (obecnie Veeco)
24
25 Budowa mikroskopu AFM: ruchoma próbka Mikroskop optyczny z kamerą eguacja położenia dźwigni w płaszczyźnie Skaner Uchwyt dźwigni Głowica Mocowanie skanera Wyświetacz Przewody Baza Podstawka
26 Dźwignia tapping mode Długość 5 µm Szerokość 3 µm Grubość 3 µm Wysokość µm Stała sprężystości N/m Częstość rezonansowa ~3 khz Promień krzywizny nm Kąt rozwarcia stożka 3
27 Tryb kontaktowy ( contact mode )
28 Tryb kontaktowy ( contact mode )
29 (TappingMode TM AFM)
30 EFM Eectric Force Microscopy F( x) F( x ) + F x ( x x )... + F x f k f Siła eektryczna (gradient) zmiana częstości rezonansowej Pęta sprzężenia zwrotnego: utrzymanie rezonansu Przyciąganie Wzrost częstości Odpychanie Spadek częstości
31 Dioda Schottky ego Au/GaN topografia granica półprzezroczystej warstwy Au potencjał
32 GaN GaN LT Buffer sapphire.µm potecjał (KPFM) topografia (AFM)
33 MFM Magnetic Force Microscopy F( x) F( x ) + F x ( x x )... + F x f k f Siła magnetyczna (gradient) zmiana częstości rezonansowej Pęta sprzężenia zwrotnego: utrzymanie rezonansu Przyciąganie Wzrost częstości Odpychanie Spadek częstości
34 Mikroskop sił magnetycznych (MFM)
35 Nanorurki węgowe L. Forroro et a. Eectronic and mechanica properties of carbon nanotubes,
36 Moduł Younga da nanorurki L. Forroro et a. Eectronic and mechanica properties of carbon nanotubes (Wikipedia) Paaci A. Voodin et a.,phys. ev. Lett. 84, 334 () Paaci et a., Phys. ev. Lett. 94, 755 (5)
37
Wyznaczenie momentu bezwładności przy użyciu wahadła torsyjnego
Wyznaczenie momentu bezwładności przy użyciu wahadła torsyjnego Wahadło torsyjne ównanie ruchu obrotowego krążka d α I dt M M Dα I moment bezwładności krążka M moment siły D moment kierujący r drut d α
Wyznaczenie momentu bezwładności przy użyciu wahadła torsyjnego
Wyznaczenie momentu bezwładności przy użyciu wahadła torsyjnego Wahadło torsyjne ównanie ruchu obrotowego krążka d α I dt M M Dα I moment bezwładności krążka M moment siły D moment kierujący r drut d α
Wyznaczenie momentu bezwładności przy uŝyciu
Wyznaczenie momentu bezwładności przy uŝyciu wahadła torsyjnego Wahadło torsyjne Równanie ruchu obrotowego krąŝka d α I dt M M Dα I moment bezwładności krąŝka M moment siły D moment kierujący r drut d
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA
Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu
11. WŁASNOŚCI SPRĘŻYSTE CIAŁ
11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.
Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å
Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Wahadło torsyjne T0 2. d dt. d dt. Równanie ruchu obrotowego krążka. I 0 moment bezwładności krążka M moment siły D moment kierujący.
Wahadło tosyjne ównanie uchu obotowego kążka d dt I M D M I moment bezwładności kążka M moment siły D moment kieujący dut d dt D I ównanie oscyatoa hamonicznego Asin( t Częstość kołowa Okes dgań ) D I
Wyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
LABORATORIUM FIZYCZNE
LABORATORIUM FIZYCZNE Instytut Fizyki Politechniki Krakowskiej ĆWICZENIE 5 Wyznaczanie modułu sztywności G metodą dynamiczną. Ćwiczenie 5 ĆWICZENIE 5 Wyznaczanie modułu sztywności G metodą dynamiczną 1.
Rodzaje obciążeń, odkształceń i naprężeń
Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży
Ścinanie i skręcanie dr hab. inż. Tadeusz Chyży 1 Ścinanie proste Ścinanie czyste Ścinanie techniczne 2 Ścinanie Czyste ścinanie ma miejsce wtedy, gdy na czterech ścianach prostopadłościennej kostki występują
2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)
RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Wytrzymałość Materiałów
Wytrzymałość Materiałów Skręcanie prętów o przekrojach kołowych Siły przekrojowe, deformacja, naprężenia, warunki bezpieczeństwa i sztywności, sprężyny śrubowe. Wydział Inżynierii Mechanicznej i Robotyki
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.
ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem
Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego
Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
CIENKOŚCIENNE KONSTRUKCJE METALOWE
CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 6: Wymiarowanie elementów cienkościennych o przekroju w ujęciu teorii Własowa INFORMACJE OGÓLNE Ścianki rozważanych elementów, w zależności od smukłości pod naprężeniami
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
Integralność konstrukcji
1 Integraność konstrukcji Wykład Nr 2 Inżynierska i rzeczywista krzywa rozciągania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.p/dydaktyka/imir/index.htm
ĆWICZENIE 6 WŁAŚCIWOŚCI SPRĘŻYSTE CIAŁ STAŁYCH
Janusz Lipiec Piotr Janas Zakład Fizyki, Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 6 WŁAŚCIWOŚCI SPRĘŻYSTE CIAŁ STAŁYCH 6A WYZNACZANIE MODUŁU SZTYWNOŚCI 6B POMIAR MODUŁU YOUNGA Kraków 016 ZAKRES
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w
MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW
ĆWICZENIA LABORATORYJNE Z MATERIAŁOZNAWSTWA Statyczna próba rozciągania stali Wyznaczanie charakterystyki naprężeniowo odkształceniowej. Określanie: granicy sprężystości, plastyczności, wytrzymałości na
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Laboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania
KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga metodą jednostronnego rozciągania Wprowadzenie Ze względu na budowę struktury cząsteczkowej, ciała stałe możemy podzielić
FIZYKA METALI - LABORATORIUM 6 Wyznaczanie modułu sztywności metodą wahadła torsyjnego
FIZYKA METALI - LABORATORIUM 6 Wyznaczanie modułu sztywności metodą wahadła torsyjnego 1. CEL ĆWICZENIA Celem laboratorium jest zdobycie umiejętności i wiedzy w zakresie wyznaczania modułu sztywności G
Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł
echanika ogóna Wykład nr 5 Statyczna wyznaczaność układu. Siły wewnętrzne. 1 Stopień statycznej wyznaczaności Stopień zewnętrznej statycznej wyznaczaności n: Beka: n=rgrs; Rama: n=r3ogrs; rs; Kratownica:
POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH
POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
Ćw. 4. Wyznaczanie modułu Younga z ugięcia
KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga z ugięcia Wprowadzenie Ze wzgędu na budowę struktury cząsteczkowej, ciała stałe możemy podzieić na amorficzne oraz
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
Ćwiczenie 11. Moduł Younga
Ćwiczenie 11. Moduł Younga Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego materiału obciążonego stałą siłą.
Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
Zadanie 1 Zadanie 2 tylko Zadanie 3
Zadanie 1 Obliczyć naprężenia oraz przemieszczenie pionowe pręta o polu przekroju A=8 cm 2. Siła działająca na pręt przenosi obciążenia w postaci siły skupionej o wartości P=200 kn. Długość pręta wynosi
(21) Num er zgłoszenia:
R Z E C Z PO SPO L IT A ( 12) OPIS PATENTOWY (19) PL (11) 157979 PO L SK A (13) B1 (21) Num er zgłoszenia: 277718 (51) Int.Cl.5: F16F 3/00 U rząd P atentow y R zeczypospolitej Polskiej (22) D ata zgłoszenia:
5. Indeksy materiałowe
5. Indeksy materiałowe 5.1. Obciążenia i odkształcenia Na poprzednich zajęciach poznaliśmy różne możliwe typy obciążenia materiału. Na bieżących, skupimy się na zagadnieniu projektowania materiałów tak,
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Zadanie 1: śruba rozciągana i skręcana
Zadanie 1: śruba rozciągana i skręcana Cylindryczny zbiornik i jego pokrywę łączy osiem śrub M16 wykonanych ze stali C15 i osadzonych na kołnierzu. Średnica wewnętrzna zbiornika wynosi 200 mm. Zbiornik
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVIII NR 1 (168) 007 Janusz Kolenda Akademia Marynarki Wojennej ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH STRESZCZENIE
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
Wytrzymałość Materiałów
Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.
UOGÓLNIONE PRAWO HOOKE A
UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej
ROZCIĄGANIE I ŚCISKANIE OSIOWE. Pojęcia podstawowe. Zasada de Saint Venanta
ROZCIĄGNIE I ŚCISKNIE OSIOWE Pojęcia podstawowe. Zasada de Saint Venanta Pręt obciążony siłami podłużnymi (działającymi wzdłuż osi pręta) nazywamy prętem rozciąganym, gdyż siła podłużna jest dodatnia (N
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
1 k. AFM: tryb bezkontaktowy
AFM: tryb bezkontaktowy Ramię igły wprowadzane w drgania o małej amplitudzie (rzędu 10 nm) Pomiar zmian amplitudy drgań pod wpływem sił (na ogół przyciągających) Zbliżanie igły do próbki aż do osiągnięcia
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m.
1. Dane : DANE OGÓLNE PROJEKTU Poziom odniesienia: 0,00 m. 4 2 0-2 -4 0 2. Fundamenty Liczba fundamentów: 1 2.1. Fundament nr 1 Klasa fundamentu: ława, Typ konstrukcji: ściana, Położenie fundamentu względem
Materiały Reaktorowe. Właściwości mechaniczne
Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie
θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC
Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ
WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POMIAR KĄTA SKRĘCENIA
LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POIAR KĄTA SKRĘCENIA 7.1. Wprowadzenie - pręt o przekroju kołowym W pręcie o przekroju kołowym, poddanym
AFM. Mikroskopia sił atomowych
AFM Mikroskopia sił atomowych Siły van der Waalsa F(r) V ( r) = c 1 r 1 12 c 2 r 1 6 Siły van der Waalsa Mod kontaktowy Tryby pracy AFM związane z zależnością oddziaływania próbka ostrze od odległości
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:
Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP
Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP Ekran 1 - Dane wejściowe Materiały Beton Klasa betonu: C 45/55 Wybór z listy rozwijalnej
Laboratorium wytrzymałości materiałów
Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 19 - Ścinanie techniczne połączenia klejonego Przygotował: Andrzej Teter (do użytku wewnętrznego) Ścinanie techniczne połączenia
POZ BRUK Sp. z o.o. S.K.A Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY
62-090 Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY SPIS TREŚCI Wprowadzenie... 1 Podstawa do obliczeń... 1 Założenia obliczeniowe... 1 Algorytm obliczeń... 2 1.Nośność żebra stropu na
KONSTRUKCJE DREWNIANE I MUROWE
POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =
BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH
Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.
Fizyczne właściwości materiałów rolniczych
Fizyczne właściwości materiałów rolniczych Właściwości mechaniczne TRiL 1 rok Stefan Cenkowski (UoM Canada) Marek Markowski Katedra Inżynierii Systemów WNT UWM Podstawowe koncepcje reologii Reologia nauka
BIOMECHANIKA KRĘGOSŁUPA. Stateczność kręgosłupa
BIOMECHANIKA KRĘGOSŁUPA Stateczność kręgosłupa Wstęp Pojęcie stateczności Małe zakłócenie kątowe Q Q k 1 2 2 spadek energii potencjalnej przyrost energii w sprężynie V Q k 1 2 2 Q Stabilna równowaga występuje
WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE
ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 N 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
Wyznaczanie modułu Younga metodą zginania pręta
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu FIZYKA Kod przedmiotu KS017; KN017; LS017; LN017 Ćwiczenie Nr 1 Wyznaczanie modułu Younga metodą
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:
4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9)
198 Fale 4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w wybranych metalach na podstawie pomiarów metodą echa ultradźwiękowego.
Dobór materiałów konstrukcyjnych cz. 15
Dobór materiałów konstrukcyjnych cz. 15 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Współczynnik kształtu przekroju
WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH
WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH I. Cel ćwiczenia: wyznaczenie momentu bezwładności bryły przez pomiar okresu drgań skrętnych, zastosowanie twierdzenia Steinera. II. Przyrządy:
INSTRUKCJA DO CWICZENIA NR 5
INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -