METODY HODOWLANE - zagadnienia
|
|
- Zdzisław Nawrocki
- 8 lat temu
- Przeglądów:
Transkrypt
1 METODY HODOWLANE
2 METODY HODOWLANE - zaadninia. Matmatczn podtaw mtod odowlanc. Wartość cc ilościow i dfinic paramtrów ntcznc. Mtod zacowania paramtrów ntcznc 4. Wartość odowlana cc ilościow (ocna wartości odowlan na podtawi różnc źródł informaci, porównani ic dokładności) 5. Indk lkcn (łączni źródł informaci o wartości odowlan) 6. Eliminaca wpłwów środowika w ocni wartości odowlan (mtod równoczno porównania, mtoda BLUP) 7. Slkca i potęp odowlan
3 Eliminaca wpłwów środowika w ocni wartości odowlan Ocna buaa na podtawi wdaności córk z różnc tad Modl: Ocna: ik i ik Gˆ by P W każdm modlu t zawz fktm tałm, zawz fktm loowm. Pozotał (, ) możm uznać za tał lub loow; mówim wtd o całm modlu, ż t tał lub loow. n b n a a 4 fkt tał aki t wpłw konkrtnc tad fkt loow aki t oólni wpłw ocowki
4 Przkład: ak zrobić drinki z kroplą tabaco? EFEKTY MODELU Spoób : Rozlwam butlkę,5l do 5 zklank i do każd dodam kroplę tabaco Spoób : Do butlki,5l wpuzczam 5 kropli tabaco, mizam i rozlwam do 5 zklank. Jaki t fkt tabaco w nazc drinkac? STAŁY LOSOWY
5 MODEL MIESZANY W OCENIE WARTOśCI HODOWLANEJ W modlac związanc z ocną wartości odowlan, np.: ik i ik fkt tad cz rup w modlu to fkt tał ocnian wartości odowlan to fkt loow Jt to tzw. modl mizan
6 Skutk wiloltnio toowania mtod CC Dokładna ocna buaów Trafn wbór na oców Z roku na na rok rośni śrdnia wartość odowlana populaci poawia ię trnd ntczn Potomtwo lpz ntczni Trzba dopaować modl Populaca dzili ię na tada Populaca dzili ię na tada i itni trnd ntczn ik i ik ikl i a k ikl a fkt roku urodznia buaa
7 Dodatkow fkt ntczn w modlu W modlu ikl i a k ikl fkt a oznacza śrdnią wartość odowlaną buaów urodzonc w roku. Jt to dodatkow (oprócz fktu k ) fkt ntczn w modlu. Rozwiązani problmu dodatkowc fktów ntcznc w modlu umożliwia METODA BLUP
8 Nazwa BLUP krót od Bt Linar Unbiad Prdiction, po polku: nalpza liniowa niobciążona prdkca, daąca: METODA BLUP nalpz (o minimalnm błędzi tandardowm) prz założniu liniow zalżności niobciążon (o wartości oczkiwan równ o prawdziw wartości w populaci) prdktor fktu loowo modlu (ocnę wartości odowlan) Prdkca przwidwani wartości zminn loow na podtawi wartości przmowanc przz inn zminn. Szacowani fktów loowc modlu to prdkca, w wniku otrzmum prdktor; analoiczni: zacowani fktów tałc to tmaca; otrzmum tmator.
9 METODA BLUP Mtoda BLUP: opracowana w roku 949 (C.R.Hndron) wprowadzona do zroki praktki od lat 8-tc XXw od tron tcniczn oparta na racunku macirzowm umożliwia dnoczną ocnę dużc rup zwirząt dopuzcza i wkorztu zalżności fktów modlu mizano Wmaa MOCY oblicz niow
10 Modl ocowki (Sir Modl, SM) MODELE MIESZANE W METODZIE BLUP ik i ik ikl i a k ikl Modl oobnicz (Animal Modl, AM) i i i (zapi uprozczon) dzi fkt ntczn ocniano oobnika i o wdaność (obrwaca), i fkt pcficzn dla t obrwaci, i fkt tada. Są to modl mizan: przmu ię, ż i i a ą fktami tałmi, natomiat, k, fktami loowmi. Mtoda BLUP ni wmaa ię założń o nizalżności fktów. Zalżności wnikaąc np. z pokrwninia umożliwiaą wkorztani dodatkowc źródł informaci.
11 METODA BLUP Mtoda BLUP oparta na racunku macirzowm wkorztu zalżności fktów, np. pokrwnini W obliczniac wkorztu ię MACIERZ SPOKREWNIEŃ
12 METODA BLUP MACIERZ SPOKREWNIEŃ Nr o ob ni ka Nr o ca Nr m at ki - Przkład macirz pokrwniń rodzic,, 4, 4 5, 6 Nr i ,5,5,5,75,65 4,5,5,5, ,5,5,65,75, ,5,5,5,65,75,6875 5,5,5,65,65,5,565,8475 6,75,5,75,75,565,5,965 7,65,5,5,6875,8475,965,85
13 METODA BLUP MACIERZ SPOKREWNIEŃ Macirz pokrwniń A: macirz mtrczna lmnt a i to wpółcznniki pokrwińtwa lmnt diaonaln a ą równ + wp. inbrdu śli rodzic oobnika ni ą pokrwnini to a = Przkład protc macirz pokrwniń dla trzc oobników: A,5,5,5,5,5,5 A,5,5,5,5,5,5 A I A płn rodzńtwo A półrodzńtwo T macirz tak wlądaą śli rodzic ni ucztniczą w ocni! A zwirzęta nipokrwnion (macirz idntczności)
14 METODA BLUP MACIERZ SPOKREWNIEŃ Elmnt macirz pokrwniń to wpółcznniki pokrwińtwa Wpółcznnik pokrwińtwa z dfinici: a prz założniu i i a i ( ( i i Zatm: lmnt macirz pokrwniń to iloraz kowarianci i warianci ntcznc, np. a i ) ) A
15 METODA BLUP MACIERZ KOWARIANCJI Jśli pomnożm macirz pokrwniń przz wariancę ntczną otrzmam macirz kowarianci ocnianc wartości odowlanc G A G G A Prz braku pokrwniń G I
16 MODELE MIESZANE W METODZIE BLUP Modl ocowki ik i ik ikl i a k ikl Modl oobnicz i i i Oólna potać modlu mizano ik a i ik dzi a fkt tał (tada, rup itp.), fkt loow (ntczn)
17 METODA BLUP Wźm podtawow modl ocowki ik i ik Taki modl to oóln zapi układu wilu równań. Jśli mam np. wdaności pięciu krów z dwóc tad, któr ą córkami trzc buaów, to tn układ wląda tak:
18 METODA BLUP Równania można przdtawić tak =
19 METODA BLUP = = = a śli w każdm równaniu uwzlędnim wztki informac o t tawc zwirząt, przdtawiam tak:
20 METODA BLUP Zapi klaczn układu równań Zapi macirzow układu równań
21 METODA BLUP Zapi macirzow układu równań wktor obrwaci wktor fktów tałc wktor fktów pcficznc wktor fktów loowc macirz wtąpiń fktów tałc macirz wtąpiń fktów loowc
22 METODA BLUP Zapi macirzow układu równań wktor obrwaci wktor fktów tałc wktor fktów pcficznc wktor fktów loowc macirz wtąpiń fktów tałc macirz wtąpiń fktów loowc X a Z
23 METODA BLUP X a Z = Xa + Z Zapi macirzow układu równań =
24 Oólna potać modlu mizano MODELE MIESZANE W METODZIE BLUP zapi klaczn ik a i ik zapi macirzow = Xa + Z + dzi a fkt tał (tada, rup, roku itp.), fkt loow (ntczn; ocnian wartości odowlan), X, Z macirz wtąpiń. Co z wktorm? Zakłada i, ż fkt maą rozkład normaln o t am warianci i ą parami nikorlowan. Do obliczń birz ię tlko
25 METODA BLUP Modl: = Xa + Z + Założni: fkt maą rozkład normaln o warianci i ą parami nikorlowan. Rozwiązani: tmator fktów a oraz prdktor wartości odowlanc uzku ię w wniku rozwiązania natępuąco układu równań modlu mizano, Mixd Modl Euation, MME): X'X Z' X Z'Z X'Z σ G aˆ ˆ X' Z' dzi macirz G to macirz kowarianci dla lmntów wktora.
26 MACIERZ KOWARIANCJI Przpomnim obi: A G G A Prz braku pokrwniń G I
27 METODA BLUP Układ równań oólni X'X Z'X Z'Z X'Z σ G aˆ ˆ X' Z' Jśli ocnian zwirzęta ą nipokrwnion: G I, wtd G I σ X'X Z'X X'Z Z'Z I σ σ aˆ ˆ X' Z'
28 METODA BLUP Układ równań oólni X'X Z'X Z'Z X'Z σ G aˆ ˆ X' Z' Jśli ocnian zwirzęta ą pokrwnion: G X'X Z'X A Z'Z, wtd G A σ X'Z A _ σ σ aˆ ˆ X' Z'
29 METODA BLUP Zwirzęta ą pokrwnion: Z' X' a A Z'Z Z'X X'Z X'X ˆ ˆ σ σ Zwirzęta ni ą pokrwnion: Z' X' a I Z'Z Z' X X'Z X'X ˆ ˆ σ σ k 4 k Wrażni oznaczam ako k. Ocn BLUP opart na modlu ocowkim: Ocn BLUP opart na modlu oobniczm: Skąd m to znam?
30 METODA BLUP Układ równań MME oólni X'X Z' X Z'Z X'Z σ G aˆ ˆ X' Z' L b = r L b r A ak rozwiązać taki układ równań??? No, śli L b = r to b = L - r X'X Z'X Z'Z X'Z σ G X' aˆ Z' ˆ b = L - r
31 METODA BLUP Układ równań Rozwiązani X'X Z' X Z'Z X'Z σ G aˆ ˆ X' Z' X'X Z'X Z'Z X'Z σ G X' aˆ Z' ˆ L b = r b = L - r Tak po protu?! Nitt, uzkani odwrotności macirz L to poro prac; ni dość, ż bwa wilka, to t w dodatku oobliwa Cętni to waśnię Spada! Sam tś oobliw!!!
32 PODSUMOWANIE METODA BLUP oparta t na racunku macirzowm wmaa duż moc obliczniow (ocna wilu zwirzat naraz, odwracani dużc macirz) pozwala na dobr dopaowani modlu: można uzwlędnić wil fktów, w tm dodatkow fkt ntczn umożliwia dnoczną ocnę fktów tałc i loowc, przz co ą on na ibi nawzam poprawion dopuzcza i wkorztu zalżności fktów; poprzz włączni do obliczń macirz kowarianci ntcznc wkorztu dodatkow źródła informaci da ocn o woki dokładności
2009 ZARZĄDZANIE. LUTY 2009
Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zdnini. Dn w prc hodowlnj prc z dużm zbiorm dnch (Excl). Podstw prc z rlcjną bzą dnch w prormi MS Accss 3. Sstm sttstczn n przkłdzi pkitu SAS i bzpłtno pkitu
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnna 1. Dan w prac hodowlanj praca z dużm zborm danch (Excl). Podtaw prac z rlacjną bazą danch w program MS Acc 3. Stm tattczn na przkładz paktu SAS
Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.
MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko
Ł Ą Ń
Ł Ą Ń Ł Ł ź ź Ż Ż Ą Ł ź ź Ł Ź Ż Ź ź Ż Ż Ż ź Ć Ą ź Ł Ć Ż Ż Ż Ź Ć ź Ń Ż Ż Ć Ć ź Ż Ć ź Ź Ć Ć ź Ź Ć Ź Ż ź Ź Ż Ć ź Ń Ź Ć Ć ź Ż Ź Ź Ż Ć Ź Ż Ż Ż Ż Ż Ń Ą Ź ź Ć Ż Ż Ż Ż Ż ź Ż Ż Ź ź Ć Ć Ź Ż Ł Ą Ń ź Ń Ż Ć Ą Ź Ą
Rozwiązanie równania różniczkowego MES
Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = +
REGRESJA jda zma + prota rgrj zmj wzgldm. przlo wartoc paramtrów trukturalch cov r waga: a c cov kowaracja d r cov wpółczk korlacj Waracja rztowa. Nch gdz + wtd czl ozacza rd tadardow odchl od protj rgrj.
Ł Ą ż ż Ś Ą ż ż Ń Ę ż Ą ż ż Ą ć Ą ż ż Ą Ń ż ż Ę ż ż ż ż ćż ż Ś Ź ż Ź ć ż ż ż ż ż ć ż ż ć ż ć ż ż Ś ż ć ż ż ż ć ż ż ż ż ż ż ż Ź ż ć ż ż ż ć Ź ćż ż ć ż ż ż ż Ż Ń ż ż ż ż Ź ć ż ć ż ć ż ż ż ż ż ć ż ż ż Ź ć
ź ż ć ć Ę ż ż ż ż ż ż ż ć ż ź Ę ć ż ż ż Ę ż ż ż ż ż ż ż ź ź ż ż ć ź ź ż ź ź ć ź ż ź ć ź ź ć ź Ę ź ż ź ż ć Ę ż ż ż ć ż ż ż ź ż ż ż ż ż ż ż ć ć ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ć ć ć ć ć ć Ę ż Ę ż ż
x y x y y 2 1-1
Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().
METODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zagadnena 1. Matematyczne podtawy metod odowlanyc. Wartość cecy loścowej defncje parametrów genetycznyc 3. Metody zacowana parametrów genetycznyc 4. Wartość odowlana
Wykład 6. Klasyczny model regresji liniowej
Wkład 6 Klacz modl rgrj lowj Rgrja I rodzaju pokazuj jak zmają ę warukow wartośc oczkwa zmj zalżj w zalżośc od wartośc zmj zalżj. E X m Obraz gomtrcz tj fukcj to krzwa rgrj I rodzaju czl zbór puktów płazczz,
Ż Ą Ź ć Ę Ź ć
Ą Ż Ą Ź ć Ę Ź ć ć Ż Ę Ę ć Ś ć Ż Ż Ź ć Ą ć Ę Ź ć Ś Ś Ę ć Ę ć Ź Ś ć ć ć Ż Ż Ę Ź Ę Ż Ź Ść Ś Ż Ś Ę Ź Ż Ś Ć Ą Ź Ę Ź ć Ż Ć Ę Ź Ż ź Ę Ź Ż Ę Ś Ź Ż Ż Ś Ś Ź Ź Ź Ź Ś Ę Ą Ę Ć Ś Ę Ź Ś Ś Ś Ź Ś Ę Ę Ź Ś Ź Ę Ź Ż Ę Ę ź
Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz
1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn,
Przykład 1 modelowania jednowymiarowego przepływu ciepła
Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych
Temat: Wyznaczanie odległości ogniskowej i powiększenia cienkich soczewek.
Ćwiczni Nr 0 Tmat: Wznaczani odlgłości ognikowj i owiękznia cinkich oczwk. I. LITERTUR:. D. Hallida, R. Rnick, Fizka t. II, PWN, Warzawa.. J.R. Mr-rndt. Wtę do otki, PWN, Warzawa 977.. Ćwicznia laboratorjn
Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak
Mtod numrczn Wład nr 6 Różnczowan dr ab. Potr Froncza Różnczowan numrczn Wzor różnczowana numrczngo znajdują zastosowan wtd, gd trzba wznaczć pocodn odpowdngo rzędu uncj, tóra orślona jst tablcą lub ma
Szeregowy obwód RC - model matematyczny układu
Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony
INFORMATYKA W SELEKCJI 9 MODELE MIESZANE
INFORMATYKA W SELEKCJI 9 MODELE MIESZANE SAS WYKORYSTANIE PAKIETU SAS DO ESTYMACJI EFEKTÓW MODELI MIESZANYCH. Modl stały, a modl miszany. Macirz spokrwniń addytywni polignicznych 3. Przygotowani danych
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
Modelowanie danych hodowlanych
Modelowanie danych hodowlanych 1. Wykład wstępny 2. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami
Blok 2: Zależność funkcyjna wielkości fizycznych
Blok : Zależność funkcjna wielkości fizcznch I. Odcztwanie informacji z wkreu co tak naprawdę na nim ię znajduje. Chcąc odcztać informacje z wkreu funkcji, muim dokładnie wiedzieć, jaka wielkość fizczna
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2
Stanisław Cichocki Natalia Nehreecka Zajęcia - . Model liniow Postać modelu liniowego Zapis macierzow modelu liniowego. Estmacja modelu Przkład Wartość teoretczna (dopasowana) Reszt 3. MNK - przpadek wielu
Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)
Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych
ó Ć Ó Ż Ó ó Ó Ę Ź Ź Ź Ź ó
ż Ż Ż ó Ć Ó Ż Ó ó Ó Ę Ź Ź Ź Ź ó Ż ć ó Ó ó ó ó ń ń ó ń Ż Ż ó ó ó ć ó ń Ą Ż ó Ź Ł Ż ć Ó Ó ó Ż Ż ó ć ń ń Ź Ź ó Ź Ź Ż ó Ó Ź Ż Ź ó Ż ó ó ó ó Ó Ź ć ó Ż Ż Ż ó ó Ź ó Ż ó ź Ż ć ć ó ń ó Ź Ć Ą Ż ć ć ó Ż Ż ó ż ć Ż
Szacowanie wartości hodowlanej. Zarządzanie populacjami
Szacowanie wartości hodowlanej Zarządzanie populacjami wartość hodowlana = wartość cechy? Tak! Przy h 2 =1 ? wybitny ojciec = wybitne dzieci Tak, gdy cecha wysokoodziedziczalna. Wartość hodowlana genetycznie
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Ł Ź Ż ć Ą Ż ć Ż Ż Ż ć ć Ż Ż ć Ż ć Ź Ź ć Ż Ż Ż Ę Ę Ż ć ć ć Ż Ż ć ć ć ć Ż ć ć Ż ć Ż Ż Ż Ź Ź Ż Ż Ż ć Ż Ż Ó Ż Ż ć Ż Ż ć Ż ć Ż ć Ż ć ć Ź ć Ć Ż Ż Ż Ż Ż Ż Ż Ż ć Ż Ź Ż ć Ż Ż Ż Ż Ż ć ć ć Ż ć Ł Ź ć Ź Ź Ź ć Ż Ż Ż
Wartości i wektory własne
Rozdział 7 Wartości i wektor własne Niech X będzie skończenie wmiarową przestrzenią liniową nad ciałem F = R lub F = C. Niech f : X X będzie endomorfizmem, tj. odwzorowaniem liniowm przekształającm przestrzeń
Zagadnienie statyki kratownicy płaskiej
Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych
Optymalizacja reguł przejścia systemu bonus-malus
Optymalizaca rguł przścia systmu onus-malus Dr Marcin Topolwski Dr Michał Brnardlli Instytut Ekonomtrii Szkoła Główna Handlowa w Warszawi Plan: Inspiraca, motywaca, cl i zakrs adania Ryzyko Systm onus-malus
Ć Ź ć Ę ć Ę Ć Ź Ź Ć
Ź Ć Ć Ź ć Ę ć Ę Ć Ź Ź Ć Ł Ą Ę Ć ć ćź ć Ź Ź Ź Ź Ą Ć ć Ł Ł Ł Ę ć ć Ź Ą ć Ę ć Ź Ź Ź Ź ć Ź Ź ć Ź ć Ł ć Ą Ć Ć Ć ć Ź Ą Ź ć Ź Ł Ł Ć Ź Ą ć Ć ć ć ć ć Ć Ć ć Ć ć ć Ł Ę Ź ć Ć ć Ź Ź Ć Ź Ź ć ć Ź ć Ź Ź Ź Ą Ę Ń Ź Ć Ą
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Drogi Uczniu Witaj na II etapie konkursu matematcznego. Przecztaj uważnie instrukcję.
Pierwiastki kwadratowe z liczby zespolonej
Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C
ć ć Ń Ę
ż ź ć ć Ń Ę ć Ś Ę Ś ć ć ż ć ż ż ż ć ć ć ż ź ć ż ż ż ż ć ż ż Ś ź ż ć Ą ż ż ż ż ż ż ź ć ż ć ż Ś ż ć ż ż Ą ż ż Ę ć Ż ż ć Ż ż ż ż ż ć ż ż ż ż ż ź ć ż ż ć ż ź Ś ż ż ć ż ż ż ż ć ćż ż ć ż ż ż ź ż ć ż ż ż Ś
Ą ń Ż Ź Ś Ż ź Ł Ż Ż ź ź Ż Ż Ż Ż ź ź ź ż Ż ź Ż ż ń Ż ż ć ń ż ż ż Ż ź Ż Ż ź Ż ż Ż ć ż Ż Ś ż Ś Ż ź ń ń Ż ń Ż ń Ż ź ń ń ż ż ń Ą ń Ą ń ń ń ń ń ź ń Ź ż ć ż Ż ć ź Ż ć ż ć ć ż Ą ć ń ń ć Ł ż ż ć Ż Ż ż ż Ż Ż Ż ń
Ą Ę ą Ś ą ć Ą ą ą ą ą ŻŻ ŻŻ Ą Ż ą ą ą ą ą ą ą ą ą Ą ą ą Ęć ą ą ą ą ą ć Ę Ś Ą ć ą ć Ś ą Ą ć Ą ą Ą ź Ę ź ą ć ć ą ą Ę ą ą Ę ą ą ą ą ą ą ć ą ą ą ą ć ą ą ą Ę ą ą ą ą ą ą ą ą ć ć ź ą Ą ą ć Ę Ł Ł Ę ą ą Ą ą ą
ń Ż ć Ą Ę Ę ń Ą Ż ń Ż ń Ę Ę Ę ń Ż ń Ś ń ć Ś ń ń ń ń ń Ę Ę Ą ń Ą Ń Ę ń Ż Ń ń Ź ń Ż Ś ń Ż ń ń ń Ź Ż Ą ń ń Ż ń ć Ś ń ń ź ń ń Ź ń Ś Ź ń ń ń Ż ń ć Ś ń ń ć Ż Ę ń ć Ś Ś Ż ń Ź Ż ń ń Ą ń Ś Ść Ń ń ń ź ń Ż ń Ż Ż
ć ć Ż ć Ż ć ć ź ć ć ć ć ć ć ć ć ć ź ć ć ź Ę ć ć ź ć ź ć ć ć ć ć ć ć Ę ć ć ź ć ć ź ź ź ź ź ź Ę Ę ź Ę ć ź ć ź ź ć ć ć Ę ć ź ź ć ź ć ć ź Ą ć ź ź ź ź ć ć ć Ę ź ź ć ć ć ć ć ć ź ź ć ć ć ć ć ć ć ć ć ć ć ź ź ć
Ś Ę Ż Ż Ł ź ź Ę ź Ę Ą Ę ź ć Ś Ą ć Ą ź ć Ó Ę ć ć Ś ć ć Ń ć Ż Ź Ż ć Ś ć Ę Ę Ę Ł ź ć Ś Ś ź Ł ć Ę ć Ł ć ź Ł ć Ż ć Ą Ś Ę ź Ę ć ź ć Ł Ń Ę ć Ś ź ć Ł Ł Ń ć ć ć ć Ę Ę ć ć Ż Ń Ń ŻŻ Ż Ę Ż ć ć Ę Ż Ó ć Ł Ą ć Ś Ę ć
Ł Ś Ą Ł Ę ź Ł Ł Ę Ł ź Ł Ł Ś Ł Ł ż Ł Ś Ł Ł Ś Ł ź Ę ź Ł Ł Ł Ł Ł Ł ź ć ż Ę ż Ł ż ż ć ć ć ć ć ć ż Ę ć ć ć ć ć ć ż ż ć ż ż ż ż Ł Ś Ł ż ż ć ć ć ż ć ć ć ć ż ż ż Ł Ś Ł ż Ł Ł Ł ż Ł Ś Ł Ł Ś Ł ż Ł Ś Ł ź ż Ę ż ż ź
ź Ę ć Ż Ż ń ć Ż Ę Ż ć ć ć Ż ć ć ź Ż ć Ż Ż ć ć ń Ż ć Ś Ę Ż ń Ż ć Ż ć Ż ć Ż Ż Ę ć Ż Ż Ż Ą Ę Ą ć Ż ć ć Ż Ą Ż ć ń ń Ż ń Ż Ę Ż ć Ż Ż Ł Ą źź ź ć Ż Ż Ż Ż Ę ź ź ź ź Ż Ż ń Ż Ż Ó ń Ś ć ń Ą Ę Ą Ż Ą Ę Ś Ę Ż ć Ę Ś
Ł Ń Ł Ł ź Ż ź Ł Ż Ó ż ż Ą ź Ą Ó Ń Ą Ł Ł Ą Ż Ś Ą ź Ż Ż ź Ż Ż ż Ą Ł Ż Ź Ź ź Ó ź Ł Ą ź Ń ź Ó Ł ż ć Ś Ś Ą Ł Ś ż ź ź Ą Ż Ł Ś Ś Ł Ż Ń Ń Ł Ó Ś Ś ć Ś Ó Ć ć ć Ś ż Ó Ó ź Ó Ó Ś Ó Ą Ą ć Ą Ą Ł Ą Ł Ą Ł ż Ł ź ć Ł Ą
Ż ń ń Ł Ą ń Ą Ż Ą Ż ń Ą ń ń ń ń Ł Ą ń ń ń ń ń Ą ń ń ń ń ń ń ń ć ń Ż ń ń Ą Ś Ą Ś Ą ń Ą Ś Ę ń Ś ń ń Ą ń Ż ń ź ź ń Ś ń ń Ś Ę Ś Ź Ś ń ń ć Ż ń ń Ą ń Ś Ż ń Ż Ż Ć Ż Ś Ś ć Ż Ż ć Ą ń Ą ń Ż ń ń ń Ż ć Ż Ż ń ń Ś Ż
Ł Ż Ł Ł Ł Ł ż ż ć ź ć ż ż Ż ż Ż ż Ż ć Ż Ł Ż ć ŻŻ ź ż Ł ż ż ż Ż ć Ł Ł ż ż ż ż Ż ż ż ź ć Ż ż ż Ż ż Ż ć ż ć Ż ź ż ż ć ć Ż ż Ź ż ż ż ź ż ż ź ż ż ż ż ż ź Ż Ż ź ż ć ż ż Ł ż ć ż ż ż ć ż ż ć Ż Ż ż ż ż ź ć ż ż
Uogólnione wektory własne
Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani
Ż ń Ż
Ó Ł Ż ń Ż Ę ć Ź Ę ź ć ć ć ć Ł ć ć ć Ż ć ć ć ć ć Ę ź Ż Ż ć ć ć Ą Ł ć Ż ć ć Ę ć ć ć ć ź Ę ć Ę Ę ć ć ć ć Ę ć ć Ż Ę Ę ć Ż ć Ę ć Ę Ż ć ń ć ć Ż Ż ć Ż ć ń ć ć Ż ń ń ź ć ń ń ć Ę ć ć ć ń ć ć ć Ę ń Ę ć ć ć ź Ę ń
Modelowanie danych hodowlanych
Modelowanie danych hodowlanych 1. Wykład wstępny. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami
PRZYKŁAD 1. RozłóŜ na ułamki proste następującą funkcję operatorową: Rozwiązanie. Przy pomocy rozkładu na ułamki proste otrzymujemy: Czyli + +
Powrd by xo lalik.krzyzo@wp.pl PRZYŁAD RozłóŜ na ułamki pro naępuącą unkcę opraorową: Rozwiązani Przy pomocy rozkładu na ułamki pro orzymumy: Czyli Po przmnoŝniu przz mianownik lw części równania orzymano:
EKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.
EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80
PLAN WYKŁADU. Sposoby dochodzenia do stanu nasycenia. Procesy izobaryczne
PLAN WYKŁADU Sooby dochodznia do tanu naycnia Procy izobaryczn Ochładzani izobaryczn (mratura unktu roy) Ochładzani rzz izobaryczn i adiabatyczn wyarowani/kondnację wody (mratura wilgotngo trmomtru, mratura
Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
Całkowanie przez podstawianie i dwa zadania
Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,
ć ć ć ć ć ź Ź ć ć Ń Ę ź ź Ą ć ć
Ł Ł ź Ą Ź ć Ź ć Ę ć ź Ż ć ć Ń Ę Ę Ś ć ć ć ć Ć ć ć ć ć ć ź Ź ć ć Ń Ę ź ź Ą ć ć ć Ź Ż ć Ą ć Ł Ó Ł Ę Ę ĘŚĆ Ę ĘŚ ź Ę Ą Ą Ą ĘŚ Ź Ź Ź Ź Ż Ź ć ć Ź ć Ź Ł Ź Ź Ź ć ć Ą ć ć ć ć ć ć ć Ź Ź ź ć ć ć ć ć ć ć Ź ć Ą Ę Ą
ź Ł ć Ę ź ć Ą Ó Ą Ó Ą Ą ć ń ć Ą ć ź ń ń Ó ź ć ć ź ź ć ń ć ń ć ć ć ć ć ć ć ź Ą ć ć ć ć ć ć ź ć ź ć ć ć ć ć ń ć ć ć Ł ć ń ń ń ź ń ź ń Ę Ę Ę ń ź ź ć ć Ąć Ą ć ń ź ź Ą ź Ś ń ź ń ź ń Ł Ę Ł ń Ń ć ć ć ć ć ć Ś
6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów
6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów . Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x ()
ć Ę Ż ć ć ć Ż Ź
Ł ć ć Ź Ź Ą ź Ż ć Ę Ż ć ć ć Ż Ź Ź Ź Ż Ż Ń ć ć Ń Ż Ź Ż Ź Ż ć Ó Ń Ż ć Ż ć Ę ć ć Ę Ż Ź Ż Ź Ź ć Ż Ź Ź Ź Ż ć Ź Ź Ź Ź Ź Ż Ż Ę Ż ć Ę Ę Ź ć Ż Ż ĘĄ Ź Ź ć Ż Ź Ą Ż Ść Ż Ę Ź Ż Ż Ż Ź Ż Ż ć ć ć ŻŻ ć ć ć ć Ę Ż ć ć Ż
Ó Ś
Ł ć ć Ż Ó Ś Ł Ż Ż ć Ż ć Ż Ż Ą Ż ć Ż ć ć Ż ć ć Ł Ź Ź ć Ż Ż Ż Ż Ż Ż Ż Ż Ź Ł Ł Ż ć Ą ć ć Ź Ż Ź Ż Ś Ł Ą Ą Ą Ł Ą Ś ć Ł Ż Ż ć Ż ć Ń Ś Ż ć ź ć Ą Ł ź Ż ć ź Ł ć Ż ć ć ć Ą Ś Ł Ń Ć Ł ŚĆ Ś Ó Ż Ą ź Ą Ą Ą ź Ś Ś Ł Ź
ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż
ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż ż ż Ń ż ż Ń Ń Ń ż ć ż ż ć ż ż ż ć Ą Ń ż ć ć ż ż ż ż ć ćż ż Ń Ń Ł ż Ń Ń Ń ć Ń ć ć Ń ż Ń Ń ż ż ż ć Ń ć ż ć ć ć ć Ń ż Ń Ń ć Ń Ę ż Ń ż ż ż Ł ż ć ż ć ż ż ż ż ć ć ż ż ć ź ż ż
Ć ą ć ą ą ć ś ń ć śćś ń ć ć ść ż ą ś ż ż ą ń ż ż ą ś Ę ą ą ś ą ż ą ż ą ś ć ą ż ś ś ś ż ż ń ż Ć ś ż ą ś ś ś ć ś ą ą ś ą ś ś ą ż ż
Ł ż ń Ś ą ą Ę ń Ł ą ą ą ą Ń ą ą ą ą ś ą ż ą ż ąć Ś ą ś ą ś ą ą ż ń ż Ś Ę ń ą żź ż ż Ć ą ć ą ą ć ś ń ć śćś ń ć ć ść ż ą ś ż ż ą ń ż ż ą ś Ę ą ą ś ą ż ą ż ą ś ć ą ż ś ś ś ż ż ń ż Ć ś ż ą ś ś ś ć ś ą ą ś
Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.
Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób
ń Ą ę ę Ż ę Ó Ó ż żę ę ę ę ę ę ę ę ę ę ę ź ż ż Ż ż ż
Ą ń Ą ę ę Ż ę Ó Ó ż żę ę ę ę ę ę ę ę ę ę ę ź ż ż Ż ż ż Ł ę ę Ż ę Ż ę ę ę ż Ż ę ń ę ę ę ę Ą ń ę ę Ź ę ę ż ż ę ę Ż ę Ż ę Ź ę ę Ą ę Ń ę ę ż ż ę Ą ę ź Ż ę ę ę Ó ć ń ę ę Ł ę ć ę ż ę Ń ę Ż ż ę ę Ż ę ę Ż ę ę
I. Wymagania/ograniczenia obiektowe. II. Struktura układu sterowania
Projkt kład trowania = trktraparamtr I. Wmagania/ogranicznia obiktow cl: założnia projktow poób: opi tchnologiczn, warnki tchniczn II. Strktra kład trowania cl: wbór trktr kład i tp rglatora poób: widzadoświadczni
6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły
6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü
Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A
Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
Uświadomienie potrzeby badawczej.
III. BADANIA MARKETINGOWE PROWADZENIA BADAŃ 1. W badaniach marktingowych poszukuj się odpowidzi na trzy rodzaj pytań: pytania o fakty o różnym stopniu złożoności co jst? pytania o cchy (właściwości) stwirdzanych
$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI
KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor
Matematyka ubezpieczeń majątkowych r.
Zadanie. Niech łączna wartość szkód: Ma złożony rozkład Poissona. Momenty rozkładu wartości poedyncze szkody wynoszą:, [ ]. Wiemy także, że momenty nadwyżki wartości poedyncze szkody ponad udział własny
Badanie zależności cech
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i element kombinatorki. Zmienne losowe i ich rozkład 3. Populacje i prób danch, estmacja parametrów 4. Testowanie hipotez 5. Test parametrczne (na przkładzie