LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA

Wielkość: px
Rozpocząć pokaz od strony:

Download "LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA"

Transkrypt

1 POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-06 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA ĆWICZENIE NR POMIAR CIEPŁA SPALANIA (Nowy kalorymetr) Prowadzący przedmiot: dr hab. iŝ. Elwira Tomczak dr iŝ. Michał Tylma

2 WYZNACZANIE CIEPŁA SPALANIA SUBSTANCJI STAŁYCH Wyzaczaie ciepła spalaia związków ciekłych i stałych w warukach stałej objętości przeprowadza się metodą kalorymetryczą, w tzw. bombie kalorymetryczej. Pomiaru efektu cieplego dokouje się w przyrządzie zwaym kalorymetrem. Składa się o z kalorymetru właściwego (aczyie wypełioe wodą wraz z bombą kalorymetryczą) oraz płaszcza o stałej temperaturze. W wyiku przebiegu reakcji chemiczej temperatura w układzie zmieia się. Jedym ze sposobów wyzaczeia ciepła spalaia jest tzw. metoda w kalorymetrze diatermiczym. Te specyficzy typ kalorymetru charakteryzuje się małą wymiaą ciepła pomiędzy kalorymetrem właściwym, a płaszczem. Wymiaę tę uwzględia się w obliczeiach w postaci tzw. poprawki a przekazywaie ciepła. Spalaie substacji w bombie kalorymetryczej jest przemiaą izochoryczą,, w której układ ie wykouje pracy objętościowej. Ciepło tej przemiay jest rówe zatem zmiaie eergii wewętrzej. PoiewaŜ eergia wewętrza układu jest fukcją temperatury, więc pomiar ciepła przemiay izochoryczej polega a dokładym ozaczeiu przyrostu temperatury. KaŜdy pomiar kalorymetryczy moŝa podzielić a trzy okresy czasowe. Przedział pierwszy, który azywa się wstępym, zaczya się w chwili, gdy rozpoczya się obserwację temperatury w kalorymetrze i kończy w chwili zaiicjowaia badaej przemiay. W tym przedziale (pomiędzy T i T ) temperatura wody, w której jest zaurzoa bomba rośie w wyiku pracy mieszadła). W momecie zaiicjowaia reakcji zaczya się okres drugi, azyway główym (pomiędzy T i T ). Przedział te kończy się w chwili, gdy temperatura w kalorymetrze osiągie maksymalą wartość. Dalej zaczya się przedział trzeci, zway końcowym. Przedział końcowy trwa przez cały czas odczytywaia temperatury po osiągięciu przez ią wartości, w której zmiay zachodzą liiowo (pomiędzy T i T 4 ), czasem rówej wartości maksymalej. PoiŜszy rysuek przedstawia zmiay temperatury w kalorymetrze KL-M.

3 Cykl: 0 - Włączeie kalorymetru i ustabilizowaie temperatury wewątrz kalorymetru (mi.) - Przedział wstępy - rejestracja temperatury T i odmierzeie pewego odcika czasu przed zaiicjowaiem rekcji (5 mi.) - Przedział główy - rejestracja temperatury T i zapło próbki w bombie kalorymetryczej ( mi.) - Przedział końcowy - rejestracja temperatury T (T maksymala), (5 mi.) 4 - Rejestracja temperatury T 4 i zakończeie pracy. Gdyby układ był idealie izoloway cieplie, to temperatury w przedziale wstępym i końcowym rosłyby liiowo w fukcji czasu (rosłyby w wyiku pracy mieszadła). Całkowity wzrost temperatury układu byłby wówczas rówy róŝicy tych dwóch temperatur. W rzeczywistości temperatura układu podczas pomiaru zmieia się iezaczie w przedziale pierwszym i zacziej w przedziale końcowym w wyiku wymiay eergii a sposób ciepła między układem a otoczeiem. Wskutek tego maksymala, zmierzoa w kalorymetrze temperatura jest iŝsza od temperatury, jaką osiągąłby układ, gdyby wyrówaie temperatury astąpiło w ieskończeie krótkim czasie. W przypadku tego doświadczeia pomiar ciepła spalaia wyzacza się metodą pomiarów porówawczych. Metoda polega a bezpośredim porówaiu ciepła spalaia substacji badaej z ciepłem spalaia substacji wzorcowej. Oba wyiki muszą pochodzić z pomiarów wykoaych w idetyczych warukach. Podstawowym wzorcem termochemiczym, zatwierdzoym przez Międzyarodową Uię Chemii Czystej i Stosowaej (IUPAC), jest kwas bezoesowy. Obliczeia Ciepło spalaia s badaej substacji moŝa wyrazić za pomocą rówaia: s = K T gdzie: K stała kalorymetru, T - skorygoway przyrost temperatury w procesie główym reakcji. Stałą kalorymetru obliczamy a podstawie spaleia substacji wzorcowej. Zając jej ciepło spalaia w i T= T -T moŝemy obliczyć K K = T w

4 Wyzaczaie pojemości cieplej (stałej K) kalorymetru. Pojemość cieplą (stałą K) kalorymetru wyzacza się w sposób idetyczy jak ciepło spalaia próbki paliwa z tym tylko, Ŝe w miejsce badaej próbki stosuje się substację o ściśle określoym cieple spalaia - kwas bezoesowy. Próbka do spalaia powia być przygotowaa w postaci pastylki. Wszystkie waruki pomiaru (objętość wody, temperatura, ciśieie itp.) ustaloe w czasie ozaczaia pojemości cieplej K zobowiązują do dalszego ścisłego ich przestrzegaia przy ormalej pracy z daym kalorymetrem. Wartość ciepła spalaia kwasu bezoesowego w temperaturze 98,5 K i pod ciśieiem 0 atm. wyosi w = -64. WYKONANIE POMIARÓW. Pomiar aleŝy przeprowadzać w temperaturze ok.5 o C (temperatura płaszcza).. Przygotować pastylkę badaego paliwa według istrukcji do pastylkarki. Jeśli jest owa substacja badaa ajpierw wykoać pastylki bez drutu oporowego w celu wyczyszczeia pastylkarki.. W czystym tyglu aleŝy umieścić pastylkę, tak by drut oporowy ie dotykał do ściaek tygla. Końce drutu oporowego aleŝy zamocować do elektrod. W tym celu aleŝy podieść tulejki zaciskowe i wsuąć końcówki drutu w acięcia elektrod i asuąć z powrotem zaciski. Niedokłade przylegaie drutu oporowego do elektrod moŝe spowodować tworzeie łuku elektryczego ziekształcającego w sposób bardzo istoty wyik pomiaru. 4. Do bomby aleŝy wlać cm wody destylowaej, włoŝyć głowicę bomby i dokładie zakręcić pierścień uszczeliający. Napełieie bomby tleem aleŝy wykoywać w astępującej kolejości (tylko w obecości prowadzącego): a) połączyć wylot z butli tleowej za pomocą kapilary z wlotem bomby b) przedmuchać bombę tleem w celu usuięcia powietrza - aleŝy przepuścić iewielką ilość tleu przez bombę z otwartym zaworem. c) zamkąć zawór bomby d) apełić bombę tleem aŝ do uzyskaia Ŝądaego ciśieia, które odczytuje się a maometrze, MPa ( bar) e) zamkąć zawór butli po osiągięciu Ŝądaego ciśieia w bombie; f) odłączyć kapilarę od bomby. 5. Napełić aczyie kalorymetrycze dokładą ilością wody, która zostaie podaa przez prowadzącego. NaleŜy posłuŝyć się wagą techiczą (ajpierw zwaŝyć puste aczyie, a astępie dodać określoą ilość wody). WaŜeie aleŝy wykoać z dokładością do 0,5 g. 4

5 6. Umieścić bombę kalorymetryczą w aczyiu z wodą, a astępie ałoŝyć a elektrody końcówki przewodów od zapłou. Zamkąć pokrywę kalorymetru. 7. NaleŜy odczekać 5 miut przed załączeiem cyklu pomiarowego, aby temperatura układu ustabilizowała się 8. Włączyć komputer i uruchomić program sterujący kalorymetrem KL-M. 9. Uruchomić pomiar (przy uŝyciu programu). Dae pomiaru, które aleŝy wpisać: umer próby, rodzaj paliwa, operator, (opcjoalie: masa pastylki (po odliczeiu masy drutu oporowego) oraz pojemość cieplą (stała K) kalorymetru). Do obliczeń stosowae będą wyiki T -4 oraz. NaleŜy zwrócić uwagę, czy wprowadzoy jest umer bomby. 0. Pomiar powtórzyć kilkukrotie (przy ozaczaiu pojemości cieplej -5 spaleń substacji wzorcowej, przy badaiu substacji badaej - pomiarów). 5

6 Opracowaie wyików. Na podstawie pomiarów ciepła spalaia substacji wzorcowej wyzaczyć stałą K kalorymetru Lp T T T T 4 T m Obliczeia: mw W = Ki = m T ) ) ) ) ) ) W mw W kw. bezoesowy K i K śr. Obliczyć ciepło spalaia badaej substacji i a podstawie obliczoej wartości zidetyfikować ją. Lp T T T T 4 T m mb mbi Bśr badaa substacja Obliczeia: mb = T K mb B = m Badaa substacja.. Ciepło spalaia (z literatury). (podać źródło) Masa molowa.wzór chem. strukturaly: 6

7 Opracowaie wyików. Na podstawie pomiarów ciepła spalaia substacji wzorcowej wyzaczyć stałą K kalorymetru Lp T T T T 4 T m Obliczeia (przyjąć K w podaą w istrukcji aparatu): mw T K W = gdzie K W =560 J/ o C mw W kw. bezoesowy mw W = K W i = m T ) ) ) ) ) ) ) ) ) K i K śr 4. Obliczyć ciepło spalaia badaej substacji i a podstawie obliczoej wartości zidetyfikować ją. Lp T T T T 4 T m mb mbi Bśr badaa substacja Obliczeia: mb = T K mb B = m Badaa substacja.. Ciepło spalaia (z literatury). (podać źródło) Masa molowa.wzór chem. strukturaly: 7

KALORYMETRYCZNE WYZNACZANIE ENTALPII SPALANIA

KALORYMETRYCZNE WYZNACZANIE ENTALPII SPALANIA KALORYMETRYCZNE WYZNACZANIE ENTALPII SPALANIA 1. Cel ćwiczenia. Celem ćwiczenia jest obliczenie wartości entalpii spalania oraz tworzenia kwasu benzoesowego oraz wyznaczenie entalpii spalania oraz tworzenia

Bardziej szczegółowo

POMIARY CIEPŁA SPALANIA I WARTOŚCI OPAŁOWEJ MATERIAŁÓW

POMIARY CIEPŁA SPALANIA I WARTOŚCI OPAŁOWEJ MATERIAŁÓW POMIARY CIEPŁA SPALANIA I WARTOŚCI OPAŁOWEJ MATERIAŁÓW INSTRUKCJA DO LABORATORIUM M E T O D Y B A D A Ń M A T E R I A Ł Ó W PROWADZĄCY: Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ciepła spalania oraz

Bardziej szczegółowo

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16 KATEDRA INŻYNIERII CHEMICZNEJ I ROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, ROCESOWEJ I BIOROCESOWEJ Ćwiczeie r 16 Mieszaie Osoba odpowiedziala: Iwoa Hołowacz Gdańsk,

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 5-BK WYZNACZANIE CIEPŁA SPALANIA PALIW STAŁYCH ZA POMOCĄ KALORYMETRU

INSTRUKCJA LABORATORYJNA NR 5-BK WYZNACZANIE CIEPŁA SPALANIA PALIW STAŁYCH ZA POMOCĄ KALORYMETRU LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 5-BK WYZNACZANIE CIEPŁA SPALANIA PALIW STAŁYCH

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Badanie własności energetycznych

Badanie własności energetycznych KATEDRA TECHNIKI WODNO-MUŁOWEJ I UTYLIZACJI ODPADÓW INSTRUKCJA DO LABORATORIUM INŻYNIERIA PROCESOWA Badanie własności energetycznych KOSZALIN 2014 OGÓLNA CHARAKTERYSTYKA PROCESU Ważnymi parametrami, które

Bardziej szczegółowo

Kontakt,informacja i konsultacje. I Zasada Termodynamiki. Energia wewnętrzna

Kontakt,informacja i konsultacje. I Zasada Termodynamiki. Energia wewnętrzna Kotat,iformacja i osultacje Chemia A ; poój 37 elefo: 347-2769 E-mail: wojte@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizyczej http://www.pg.gda.pl/chem/dydatya/ lub http://www.pg.gda.pl/chem/katedry/fizycza

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Instrukcja wykonania ćwiczenia 31

Instrukcja wykonania ćwiczenia 31 Instrukcja wykonania ćwiczenia CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie ciepła spalania i wartości opałowej ciekłych i stałych substancji organicznych w tym paliw i biopaliw. Ćwiczenie składa się

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r.

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia 18 paździerika 2012 r. w sprawie szczegółowego zakresu obowiązków uzyskaia

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo

Równowaga reakcji chemicznej

Równowaga reakcji chemicznej Rówowaga reakcji chemiczej Sta i stała rówowagi reakcji chemiczej (K) Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń Ostwalda utodysocjacja wody p roztworów p roztworów. p roztworów mocych elektrolitów

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

Ćwiczenie nr 3. Bilans cieplny urządzenia energetycznego. Wyznaczenie sprawności cieplnej urządzenia kotłowego zasilanego gazem ziemnym

Ćwiczenie nr 3. Bilans cieplny urządzenia energetycznego. Wyznaczenie sprawności cieplnej urządzenia kotłowego zasilanego gazem ziemnym Termodyamika ćwiczeia laboratoryje Ćwiczeie r 3 Temat: Bilas cieply urządzeia eergetyczego. Wyzaczeie sprawości cieplej urządzeia kotłowego zasilaego gazem ziemym Miejsce ćwiczeń: Laboratorium Techologii

Bardziej szczegółowo

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9 Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 9 1. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie

Bardziej szczegółowo

Kalorymetria paliw stałych

Kalorymetria paliw stałych Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria paliw stałych Instrukcja do ćwiczenia nr 6 Opracowała: dr inż. Elżbieta Wróblewska Wrocław,

Bardziej szczegółowo

rok **: półrocze **: Podmiot korzystający ze środowiska Lp. Adres Gmina Powiat korzystania ze Miejsce/ miejsca ... środowiska

rok **: półrocze **: Podmiot korzystający ze środowiska Lp. Adres Gmina Powiat korzystania ze Miejsce/ miejsca ... środowiska WYKAZ ZAWIERAJĄCY INFORMACJE O ILOŚCI I RODZAJACH GAZÓW LUB PYŁÓW WPROWADZANYCH DO POWIETRZA, DANE, NA PODSTAWIE KTÓRYCH OKREŚLONO TE ILOŚCI, ORAZ INFORMACJE O WYSOKOŚCI NALEśNYCH OPŁAT WPROWADZANIE GAZÓW

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 2

Chłodnictwo i Kriogenika - Ćwiczenia Lista 2 Chłodictwo i Kriogeika - Ćwiczeia Lista 2 dr hab. iż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechika Wrocławska Wydział Mechaiczo-Eergetyczy Katedra Termodyamiki, Teorii Maszy i Urządzeń

Bardziej szczegółowo

Zagadnienia: Receptory (c.d.)

Zagadnienia: Receptory (c.d.) Receptory (c.d.) Gabriel Nowak, Małgorzata Dybała Zakład Cytobiologii i Histochemii, Pracowia Farmakobiologii Collegium Medicum Uiwersytet Jagielloński Zagadieia: Co zaczy Radioligad bidig assay? Działaie

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI Grupa: 1. 2. 3. 4. 5. LABORATORIUM ELEKTROENERGETYKI Data: Ocea: ĆWICZENIE 3 BADANIE WYŁĄCZNIKÓW RÓŻNICOWOPRĄDOWYCH 3.1. Cel ćwiczeia Celem ćwiczeia jest:

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

Chemiczne metody analizy ilościowej (laboratorium)

Chemiczne metody analizy ilościowej (laboratorium) Cheicze etody aalizy ilościowej (laboratoriu) Broiaoetria 9. Przygotowaie iaowaego roztworu broiau (V) potasu Broia(V) potasu ależy do stosowaych w aalizie cheiczej substacji podstawowych. oże być otrzyay

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdaie z laboratorium proekologiczych źródeł eergii Temat: Wyzaczaie współczyika efektywości i sprawości pompy ciepła. Michał Stobiecki, Michał Ryms Grupa 5;

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

Ćwiczenie III. Oznaczanie wartości kalorycznej produktów spożywczych metodą spalania w bombie kalorymetrycznej

Ćwiczenie III. Oznaczanie wartości kalorycznej produktów spożywczych metodą spalania w bombie kalorymetrycznej Ćwiczenie III. Oznaczanie wartości kalorycznej produktów spożywczych metodą spalania w bombie kalorymetrycznej Cel ćwiczenia Zapoznanie się z metodą wyznaczania ciepła spalania w warunkach stałej objętości.

Bardziej szczegółowo

( 0) ( 1) U. Wyznaczenie błędów przesunięcia, wzmocnienia i nieliniowości przetwornika C/A ( ) ( )

( 0) ( 1) U. Wyznaczenie błędów przesunięcia, wzmocnienia i nieliniowości przetwornika C/A ( ) ( ) Wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A Celem ćwiczeia jest wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A. Zając wartości teoretycze (omiale) i rzeczywiste

Bardziej szczegółowo

Model Bohra atomu wodoru

Model Bohra atomu wodoru Model Bohra atomu wodoru Widma liiowe pierwiastków. wodór hel eo tle węgiel azot sód Ŝelazo Aby odpowiedzieć a pytaie dlaczego wodór i ie pierwiastki ie emitują wszystkich częstotliwości fal elektromagetyczych

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

2. INNE ROZKŁADY DYSKRETNE

2. INNE ROZKŁADY DYSKRETNE Ie rozkłady dyskrete 9. INNE ROZKŁADY DYSKRETNE.. Rozkład dwumiaowy - kotyuacja Przypomijmy sobie pojęcie rozkładu dwumiaowego prawdopodobieństwa k sukcesów w próbach Beroulli ego: P k k k k = p q m =

Bardziej szczegółowo

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.

Bardziej szczegółowo

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół

Bardziej szczegółowo

Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5

Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5 Laboratorium odnawialnych źródeł energii Ćwiczenie nr 5 Temat: Badanie ogniw paliwowych. Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Fizyka i technika konwersji energii VI semestr

Bardziej szczegółowo

Wyznaczanie ciepła topnienia lodu za pomocą kalorymetru

Wyznaczanie ciepła topnienia lodu za pomocą kalorymetru Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 7 IV 2009 Nr. ćwiczenia: 212 Temat ćwiczenia: Wyznaczanie ciepła topnienia lodu za pomocą kalorymetru

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie momentu dipolowego cieczy polarnych. opracował dr P. Góralski

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie momentu dipolowego cieczy polarnych. opracował dr P. Góralski Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie momentu dipolowego cieczy polarnych opracował dr P. Góralski ćwiczenie nr 15 Zakres zagadnień obowiązujących do ćwiczenia 1. Polaryzacja jako

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

ZADANIA Z CHEMII Rozkład energii w stanie równowagi termicznej. Entropia (S) Kwantowanie energii

ZADANIA Z CHEMII Rozkład energii w stanie równowagi termicznej. Entropia (S) Kwantowanie energii ZADANIA Z CHEMII Rozkład eergii w staie rówowagi termiczej. Etropia (S) Kwatowaie eergii Eergia elemetów materii zmieia się skokowo, a ie w sposób ciągły. Elemety materii oddają lub pobieraja eergię tylko

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Liczba punktów Wyznaczenie pierwszej współrzędnej wierzchołka paraboli: x.

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Liczba punktów Wyznaczenie pierwszej współrzędnej wierzchołka paraboli: x. LUBELSKA PRÓBA PRZED MATURĄ 05 poziom podstawowy ZESTAW A ZADANIA ZAMKNIĘTE 5 6 7 8 9 0 5 6 7 8 9 0 A B D D A D B D A B C D C B A C A C B C A B D C ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI zadaia 5 6 7 puktów

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego

Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego 1. Temat ćwiczenia :,,Wyznaczanie współczynnika przenikania ciepła 2. Cel ćwiczenia : Określenie globalnego współczynnika przenikania ciepła k

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza Katedra Silików Saliowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyzaczaie cieła właściweo c dla owietrza Wrowadzeie teoretycze Cieło ochłoięte rzez ciało o jedostkowej masie rzy ieskończeie małym rzyroście

Bardziej szczegółowo

Pomiary ciepła spalania i wartości opałowej paliw gazowych

Pomiary ciepła spalania i wartości opałowej paliw gazowych Pomiary ciepła spalania i wartości opałowej paliw gazowych Ciepło spalania Q s jest to ilość ciepła otrzymana przy spalaniu całkowitym i zupełnym jednostki paliwa wagowej lub objętościowej, gdy produkty

Bardziej szczegółowo

Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek.

Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek. FUNKCJA KWADRATOWA. Zadaia zamkięte. Zadaie. Wierzchołek paraboli, która jest wykresem fukcji f ( x) ( x ) ma współrzęde: A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; ) Zadaie. Zbiorem rozwiązań ierówości: (x )(x

Bardziej szczegółowo

prędkości przy przepływie przez kanał

prędkości przy przepływie przez kanał Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Szacowanie niepewności oznaczania / pomiaru zawartości... metodą... Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził

Bardziej szczegółowo

Błędy kwantyzacji, zakres dynamiki przetwornika A/C

Błędy kwantyzacji, zakres dynamiki przetwornika A/C Błędy kwatyzacji, zakres dyamiki przetworika /C Celem ćwiczeia jest pozaie wpływu rozdzielczości przetworika /C a błąd kwatowaia oraz ocea dyamiki układu kwatującego. Kwatowaie przyporządkowaie kolejym

Bardziej szczegółowo

LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA

LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-6 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA ĆWICZENIE NR POMIAR CIEPŁA SPALANIA

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie

Bardziej szczegółowo

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia..

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia.. Projekt z dia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia.. w sprawie szczegółowego zakresu obowiązku uzyskaia i przedstawieia do umorzeia świadectw efektywości eergetyczej i uiszczaia

Bardziej szczegółowo

POMIAR WARTOŚCI SKUTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁU

POMIAR WARTOŚCI SKUTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁU POMIAR WARTOŚCI SKTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁ CEL ĆWICZENIA Celem ćwiczeia jest zwróceie uwagi a ograiczeie zakresu poprawego pomiaru apięć zmieych wyikające

Bardziej szczegółowo

WYKŁAD 3 TERMOCHEMIA

WYKŁAD 3 TERMOCHEMIA WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian

Bardziej szczegółowo

Termodynamiczne modelowanie procesów spalania i detonacji idealnych układów heterogenicznych. Cz. 2. Aplikacja numeryczna

Termodynamiczne modelowanie procesów spalania i detonacji idealnych układów heterogenicznych. Cz. 2. Aplikacja numeryczna BIULETY WAT VOL. LVIII, R 2, 2009 Termodyamicze modelowaie procesów spalaia i detoacji idealych układów heterogeiczych. Cz. 2. Aplikacja umerycza SEBASTIA GRYS, WALDEMAR A. TRZCIŃSKI Wojskowa Akademia

Bardziej szczegółowo

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,

Bardziej szczegółowo

Opis serii: Wilo-Jet WJ

Opis serii: Wilo-Jet WJ Opis serii: WJ 2 04 WJ 3 WJ 2 0 0 udowa Samozasysające jedostopiowe pompy wirowe Zastosowaie Tłoczeie wody ze studi Napełiaie, wypompowywaie, przepompowywaie, awadiaie i zraszaie Jako pompa awaryja w razie

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

KOROZJA. Korozja kontaktowa z depolaryzacja tlenową 1

KOROZJA. Korozja kontaktowa z depolaryzacja tlenową 1 KOROZJA Słowa kluczowe do ćwiczeń laboratoryjnych z korozji: korozja kontaktowa depolaryzacja tlenowa depolaryzacja wodorowa gęstość prądu korozyjnego natęŝenie prądu korozyjnego prawo Faradaya równowaŝnik

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

Procedura szacowania niepewności

Procedura szacowania niepewności DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Stron 7 Załączniki Nr 1 Nr Nr 3 Stron Symbol procedury PN//xyz Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

Podstawy chemii. Natura pomiaru. masa 20 ± 1 g

Podstawy chemii. Natura pomiaru. masa 20 ± 1 g Podstawy chemii ) Sposoby badań obiektów (6 h) pomiar i jego atura klasycza aaliza jakościowa i ilościowa obliczeia rówowagi i ph metody aalizy promieiowaie elektromagetycze kwatowa atura atomu oddziaływaie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

13. TERMODYNAMIKA WYZNACZANIE ENTALPII REAKCJI ZOBOJĘTNIANIA MOCNEJ ZASADY MOCNYMI KWASAMI I ENTALPII PROCESU ROZPUSZCZANIA SOLI

13. TERMODYNAMIKA WYZNACZANIE ENTALPII REAKCJI ZOBOJĘTNIANIA MOCNEJ ZASADY MOCNYMI KWASAMI I ENTALPII PROCESU ROZPUSZCZANIA SOLI Wykonanie ćwiczenia 13. TERMODYNAMIKA WYZNACZANIE ENTALPII REAKCJI ZOBOJĘTNIANIA MOCNEJ ZASADY MOCNYMI KWASAMI I ENTALPII PROCESU ROZPUSZCZANIA SOLI Zadania do wykonania: 1. Wykonać pomiar temperatury

Bardziej szczegółowo

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 1 WYZNACZANIE GĘSTOSCI CIECZY Autorzy:

Bardziej szczegółowo

AUTOMATYKA I POMIARY LABORATORIUM - ĆWICZENIE NR 15 WYMIENNIK CIEPŁA CHARAKTERYSTYKI DYNAMICZNE

AUTOMATYKA I POMIARY LABORATORIUM - ĆWICZENIE NR 15 WYMIENNIK CIEPŁA CHARAKTERYSTYKI DYNAMICZNE AUTOMATYKA I POMIARY LABORATORIUM - ĆWICZENIE NR 15 WYMIENNIK CIEPŁA CHARAKTERYSTYKI DYNAMICZNE Celem ćwiczenia jest wyznaczenie charakterystyk dynamicznych wymiennika ciepła przy zmianach obciążenia aparatu.

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 6 BADANIE TEMPERATUR TOPNIENIA Autorzy:

Bardziej szczegółowo

Zakład Podstaw Konstrukcji i Maszyn Przepływowych. Politechnika Wrocławska. Wydział Mechaniczno-Energetyczny INSTRUKCJA

Zakład Podstaw Konstrukcji i Maszyn Przepływowych. Politechnika Wrocławska. Wydział Mechaniczno-Energetyczny INSTRUKCJA Zakład Podstaw Konstrukcji i Maszyn Przepływowych Instytut InŜynierii Lotniczej, Procesowej i Maszyn Energetycznych Politechnika Wrocławska Wydział Mechaniczno-Energetyczny INSTRUKCJA 11.a. WYZNACZANIE

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo