POMIARY CIEPŁA SPALANIA I WARTOŚCI OPAŁOWEJ MATERIAŁÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "POMIARY CIEPŁA SPALANIA I WARTOŚCI OPAŁOWEJ MATERIAŁÓW"

Transkrypt

1 POMIARY CIEPŁA SPALANIA I WARTOŚCI OPAŁOWEJ MATERIAŁÓW INSTRUKCJA DO LABORATORIUM M E T O D Y B A D A Ń M A T E R I A Ł Ó W PROWADZĄCY: Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ciepła spalania oraz wartości opałowej materiałów głównie polimerów metodą spalania w bombie kalorymetrycznej. Wstęp Materiały polimerowe są najczęściej bardzo dobrymi paliwami. Wartości ciepła spalania tworzyw sztucznych są porównywalne do ciepła spalania typowych paliw, np. gazu ziemnego, oleju opałowego, węgla. Poniżej podano wartości ciepła spalania wybranych substancji w MJ/kg: polietylen 46,5; polipropylen 46,0; polistyren 41,6; węgiel kamienny 40,2; gaz ziemny 44,0. Tworzywa sztuczne, których nie można użyć ponownie w procesie produkcji odpady poprodukcyjne, opakowania, itp. mogą być z powodzeniem użyte jako komponenty do produkcji materiałów opałowych. W tym celu niezbędna jest znajomość ich ciepła spalania oraz wartości opałowej. Dodatkowo znajomość ciepła spalania polimerów jest niezbędna do obliczenia gęstości obciążenia ogniowego budynków oraz wyznaczenia względnego czasu trwania pożaru. Ciepło spalania i wartość opałowa Jednym z ważnych wskaźników technicznych wszystkich paliw jest ciepło spalania i związana z nim wartość opałowa. Ciepło spalania Q s jest to ilość ciepła, wydzielająca się podczas całkowitego spalania jednostki masy paliwa (zawierającego tylko węgiel, wodór, tlen, azot i siarkę) w atmosferze tlenu, przy czym produktami spalania są: CO 2, SO 2 i N 2 w stanie gazowym oraz woda w stanie ciekłym, a substancje wyjściowe i produkty spalania znajdują się w warunkach standardowych (1013,25 hpa, 298,15 K). Wartość opałowa Q j jest to ilość ciepła, wydzielająca się podczas całkowitego spalania jednostki masy paliwa (zawierającego tylko węgiel, wodór, tlen, azot i siarkę) w atmosferze tlenu, przy czym produktami spalania są: CO 2, SO 2, N 2 oraz woda w stanie gazowym, a substancje wyjściowe i produkty spalania znajdują się w warunkach standardowych (1013,25 hpa, 298,15 K). Spaliny uchodzące z komór spalania urządzeń technicznych mają wysoką temperaturę i para wodna uchodzi ze spalinami w postaci niewykroplonej unosząc ze sobą ciepło parowania, z tego powodu do praktycznych obliczeń bilansowych wykorzystuje się pojęcie wartości opałowej. Wartość opałowa jest liczbowo równa różnicy między ciepłem spalania a ilością ciepła potrzebną do odparowania wody zawartej w paliwie oraz powstałej ze spalania wodoru z tego paliwa. Można ją określić zależnością:

2 Q j = Q s r m w (1) gdzie: Q s, ciepło spalania paliwa, r ciepło parowania wody w temperaturze pomiaru, m w całkowita masa wody powstałej przy spalaniu jednostki masy paliwa. Dla paliw stałych i ciekłych przyjęto używać jednostek odnoszących ilość ciepła do jednostki masy paliwa. Dla paliw gazowych ilość ciepła uzyskanego ze spalania odnosi się także do objętości paliwa, jaką miałoby ono w określonych warunkach odniesienia. Wyznaczanie ciepła spalania metodą kalorymetryczną Wyznaczanie ciepła spalania związków ciekłych i stałych w warunkach stałej objętości przeprowadza się metodą kalorymetryczną, w tzw. bombie kalorymetrycznej. Pomiaru efektu cieplnego dokonuje się w przyrządzie zwanym kalorymetrem adiabatycznym. Składa się on z kalorymetru właściwego (naczynie wypełnione wodą wraz z bombą kalorymetryczną) oraz płaszcza o stałej temperaturze. W wyniku przebiegu reakcji chemicznej temperatura w układzie zmienia się. Kalorymetr adiabatyczny charakteryzuje się małą wymianą ciepła pomiędzy kalorymetrem właściwym, a otoczeniem. Wymianę tę uwzględnia się w obliczeniach w postaci tzw. poprawki na przekazywanie ciepła. Spalanie substancji w bombie kalorymetrycznej jest przemianą izochoryczną, w której układ nie wykonuje pracy objętościowej. Ciepło tej przemiany jest równe zatem zmianie energii wewnętrznej. Ponieważ energia wewnętrzna układu jest funkcją temperatury, więc pomiar ciepła przemiany izochorycznej polega na dokładnym oznaczeniu przyrostu temperatury. T n T 0 T 1 T 2 T 3 T 4 t Rysunek 1. Zmiany temperatury w kalorymetrze w cyklu pomiarowym. T 0 włączenie kalorymetru i ustabilizowanie temperatury wewnątrz kalorymetru, T 1 przedział wstępny rejestracja temperatury T 1, T 2 przedział główny rejestracja temperatury T 2 i zapłon próbki w bombie kalorymetrycznej, T 3 przedział końcowy rejestracja temperatury T 3 (kiedy funkcja jest liniowa lub maksymalnej), T 4 rejestracja temperatury T 4 i zakończenie pracy. Każdy pomiar kalorymetryczny można podzielić na trzy okresy czasowe. Przedział pierwszy, który nazywa się wstępnym, zaczyna się w chwili, gdy rozpoczyna się obserwację temperatury w kalorymetrze i kończy w chwili zainicjowania badanej przemiany. W tym przedziale (pomiędzy T 1 i T 2 ) temperatura wody, w której jest zanurzona bomba rośnie w wyniku pracy mieszadła). W momencie zainicjowania reakcji zaczyna się okres drugi, nazywany głównym (pomiędzy T 2 i T 3 ). Przedział ten kończy się w chwili, gdy temperatura w kalorymetrze osiągnie maksymalną wartość. Dalej zaczyna się przedział trzeci, zwany końcowym. Przedział

3 końcowy trwa przez cały czas odczytywania temperatury po osiągnięciu przez nią wartości, w której zmiany zachodzą liniowo, czasem równej wartości maksymalnej (pomiędzy T 3 i T 4 ). Poniższy rysunek przedstawia zmiany temperatury w kalorymetrze KL-12Mn. Gdyby układ był idealnie izolowany cieplnie, to temperatury w przedziale wstępnym i końcowym rosłyby liniowo w funkcji czasu (rosłyby w wyniku pracy mieszadła). Całkowity wzrost temperatury układu byłby wówczas równy różnicy tych dwóch temperatur. W rzeczywistości temperatura układu podczas pomiaru zmienia się nieznacznie w przedziale pierwszym i znaczniej w przedziale końcowym w wyniku wymiany energii na sposób ciepła między układem a otoczeniem. Wskutek tego maksymalna, zmierzona w kalorymetrze temperatura jest niższa od temperatury, jaką osiągnąłby układ, gdyby wyrównanie temperatury nastąpiło w nieskończenie krótkim czasie. W kalorymetrze adiabatycznym ciepło spalania wyznacza się metodą pomiarów porównawczych. Metoda polega na bezpośrednim porównaniu ciepła spalania substancji badanej z ciepłem spalania substancji wzorcowej. Oba wyniki muszą pochodzić z pomiarów wykonanych w identycznych warunkach. Podstawowym wzorcem termochemicznym, zatwierdzonym przez Międzynarodową Unię Chemii Czystej i Stosowanej (IUPAC), jest kwas benzoesowy. Oprócz wzorca podstawowego stosuje się jako wzorzec wtórny kwas bursztynowy. Za pomocą substancji wzorcowych można wyznaczyć pojemność cieplną kalorymetru (stałą kalorymetru). Stałą kalorymetru można wyznaczyć również na drodze pomiarów elektrycznych, przepuszczając przez grzejnik w czasie t prąd o natężeniu I ze źródła o napięciu U. Ilość ciepła wydzielonego w tym procesie obliczyć można ze wzoru: q = IUt. Bomba kalorymetryczna jest jednym z najbardziej precyzyjnych przyrządów używanych do pomiarów fizykochemicznych. Stosowana jest od 1881 r., w którym M. Berthelot zaproponował używanie szczelnie zamkniętego cylindra, napełnionego tlenem pod ciśnieniem około Pa do mierzenia ciepła spalania substancji organicznych. Bomba kalorymetryczna umożliwia wyznaczanie ciepła spalania substancji zawierających pierwiastki: C, H, O, N z dokładnością do 0,03%. Spalając substancje zakłada się, że jedynymi produktami spalania są: CO 2, H 2 O i N 2. Na powstający w niewielkich ilościach kwas azotowy wprowadza się poprawkę z tym, że po jej wprowadzeniu otrzymane ciepło spalania odpowiada takiemu schematowi spalania, jak podano, tzn. że produktem spalania jest wolny N 2. Obliczenia Ciepło spalania Q s badanej substancji można wyrazić za pomocą równania: Q s = K T (2) gdzie: K stała kalorymetru, T skorygowany przyrost temperatury w procesie głównym reakcji. Na ciepło wydzielane podczas spalania składa się ciepło spalania badanej substancji B oraz ciepło spalania lub powstawania innych substancji np.: spalania drucika, powstawania kwasu azotowego itp.: Qs mb QB miqi (3) gdzie: m B masa badanej substancji, Q B ciepło właściwe spalania badanej substancji, m i, Q i masy i ciepła spalania lub powstawania innych substancji.

4 Skorygowany przyrost temperatury w procesie głównym jest różnicą pomiędzy przyrostem temperatury okresu głównego (T 3 T 2 ) a poprawką na wymianę ciepła kalorymetru z otoczeniem: T = (T 3 T 2 ) T (4) gdzie poprawkę na wymianę ciepła można wyrazić na wiele sposobów. W przypadku programu obsługującego kalorymetr KL-12Mn poprawka zostaje wyliczona według wzoru: T =0,5 [0,2 (T 2 T 1 ) + 0,2 (T 4 T 3 )] + 0,2 (n 1) (T 4 T 3 ) (5) gdzie: n liczba minut okresu głównego, T 1-4 temperatury charakterystyczne bilansu. Jest to bardzo uproszczone przedstawienie poprawki na wymianę ciepła. Aby uzyskać wartość dokładną należy poprzez analityczne, lub graficzne całkowanie zależności temperatury od czasu wyznaczyć wartość T. Jednymi z najczęściej używanych poprawek są poprawki Regnault-Pfaundlera lub Dickinsona. Ponieważ K jest wielkością stałą (w tych samych warunkach, czyli ciśnienie w bombie, ilość wody w naczyniu kalorymetrycznym, temperatura układu itp.), to porównując wyniki spalań substancji wzorcowej (w) i badanej (B) otrzymujemy: Q ΔT sb sw (6) B Q ΔT w Reasumując: ciepło spalania substancji badanej będzie wyliczone ze wzoru: Q sw QsB ΔTB KΔTB (7) ΔTw gdzie Q sb i Q sw to ciepła spalania odpowiednio substancji badanej i wzorcowej w przeliczeniu na gram substancji oraz po uwzględnieniu poprawki na spalenie drutu oporowego, zaś T B i T w to skorygowany przyrost temperatury odpowiednio dla substancji badanej i wzorcowej, przy uwzględnieniu poprawki na wymianę ciepła pomiędzy kalorymetrem i otoczeniem. Stałą kalorymetru należy wyznaczać za każdym razem, kiedy zmienią się warunki wykonywania pomiarów. Ciepło spalania Q s w kj/kg, próbki na podstawie przeprowadzonego oznaczenia można obliczyć ze wzoru: K T Q m m 2 2 Q s (8) 0 gdzie: K stała kalorymetru, określona poprzez spalanie próbki paliwa wzorcowego (np. kwasu benzoesowego) w warunkach prowadzonego oznaczenia, kj/k; skorygowany przyrost temperatury, K; Q 2 ciepło spalania drutu oporowego w kj/kg; m 2 masa spalonego drutu oporowego, kg; m 0 masa próbki, kg. Q j Wartość opałową badanej próbki Q j oblicza się ze wzoru: Q 24,42 8, 94H W (9) s gdzie: Q s ciepło spalania wyznaczone ze wzoru 8, kj/kg; H zawartość wodoru w badanej próbce, %; W zawartość wilgoci w badanej próbce, %; 24,42 ciepło parowania wody w warunkach standardowych przypadająca na 1% (m/m) wody utworzonej podczas spalania lub zawartej w badanej próbce, kj/kg; 8,94 współczynnik przeliczeniowy zawartości wodoru na wodę.

5 Zawartość wodoru H, w %, można wyznaczyć metodą analizy elementarnej. Wykonanie pomiarów Przed wykonaniem pomiarów należy zapoznać się z instrukcją obsługi kalorymetru oraz ze wskazówkami podanymi przez prowadzącego. Wyznaczanie stałej kalorymetru 1. Pomiary należy przeprowadzać w temperaturze 25 o C (temperatura płaszcza). 2. Przygotować pastylkę kwasu benzoesowego według opisu podanego przez prowadzącego. 3. W czystym tyglu należy umieścić pastylkę, tak by drut oporowy nie dotykał do ścianek tygla. Końce drutu oporowego należy zamocować do elektrod. W tym celu należy podnieść tulejki zaciskowe, wsunąć końcówki drutu w nacięcia elektrod i nasunąć z powrotem zaciski. Niedokładne przyleganie drutu oporowego do elektrod może spowodować tworzenie łuku elektrycznego zniekształcającego w sposób bardzo istotny wynik pomiaru. 4. Do bomby należy wlać 2 cm 3 wody destylowanej, włożyć głowicę bomby i dokładnie zakręcić pierścień uszczelniający. Napełnienie bomby tlenem należy wykonywać w następującej kolejności (tylko w obecności prowadzącego): a) połączyć wylot butli z tlenem za pomocą przewodu z wlotem bomby, b) przedmuchać bombę tlenem w celu usunięcia powietrza należy przepuścić niewielką ilość tlenu przez bombę z otwartym zaworem, c) zamknąć zawór bomby, d) napełnić bombę tlenem aż do uzyskania żądanego ciśnienia, które odczytuje się na manometrze 2,8 MPa (28 bar), e) zamknąć zawór butli po osiągnięciu żądanego ciśnienia w bombie, f) odłączyć przewód od bomby. 5. Do naczynia kalorymetrycznego wlać 2700 g wody destylowanej. Należy posłużyć się wagą techniczną (najpierw zważyć puste naczynie, a następnie dodać określoną ilość wody) nie tarować wagi. Ważenie należy wykonać z dokładnością do 0,5 g. Woda powinna mieć temperaturę kilka dziesiątych części stopnia niższą niż temperatura pomiaru. 6. Umieścić bombę kalorymetryczną w naczyniu z wodą, a następnie nałożyć na elektrody końcówki przewodów od zapłonu. Zamknąć pokrywę kalorymetru. 7. Włączyć komputer i uruchomić program sterujący kalorymetrem KL-12Mn. 8. Należy odczekać 15 minut przed załączeniem cyklu pomiarowego, aby temperatura układu ustabilizowała się. 9. Uruchomić pomiar (przy użyciu programu). Dane pomiaru, które należy wpisać: numer próby, rodzaj paliwa, operator, (opcjonalnie: masa pastylki (po odliczeniu masy drutu oporowego) oraz pojemność cieplna (stała) K kalorymetru). Do obliczeń stosowane będą wyniki T 1-4 oraz n. Należy zwrócić uwagę, czy wprowadzony jest numer bomby. Czynności końcowe. Po dokonaniu pomiaru należy podnieść pokrywę zamykającą naczynie kalorymetryczne, odłączyć przewody z elektrod bomby, a następnie wyjąć bombę z naczynia trzymając ją początkowo za zawory a po zupełnym wynurzeniu z kalorymetru za korpus. Bombę należy osuszyć i wypuścić gazy spalinowe otwierając zawór wylotowy przez wkręcenie regulatora za-

6 woru wylotowego, zgodnie z ruchem wskazówek zegara aż do oporu. Wypuszczanie gazów spalinowych z bomby należy wykonać pod wyciągiem. Następnie należy odkręcić zakrętkę samouszczelniającą bomby i zdjąć ją, wyciągnąć głowicę bomby i ustawić na statywie. Kolejną czynnością jest sprawdzenie zarówno w tyglu jak i w bombie czy nastąpiło całkowite spalenie paliwa. Jeżeli widoczne są niespalone cząstki próbki, to oznaczanie należy powtórzyć. Należy wyjąć spod tulejek zaciskowych resztki niespalonego drutu oporowego, a następnie je zważyć. Tygiel należy wyczyścić. Obliczyć stałą kalorymetru stosując następujące wartości: ciepło spalania kwasu benzoesowego w temperaturze 298,15 K wynosi Q w = J g -1, ciepło spalania drutu oporowego wynosi Q ,9 J g -1 Wyznaczanie ciepła spalania i wartości opałowej substancji Pomiary należy wykonać analogicznie jak w przypadku wyznaczania stałej kalorymetru. W przypadku, gdy z badanej próbki nie można wykonać pastylki, rozdrobnioną próbkę należy umieścić w tyglu (uprzednio go ważąc) w ilości od 0,6 do 0,8 g. Środkową część drutu oporowego wygiąć w kształt litery U i zanurzyć w badanej próbce. Wyznaczyć ciepło spalania oraz wartość opałową według wzorów 8 i 9. Zawartość wodoru oraz wilgoci w badanej próbce poda prowadzący. Aparatura Kalorymetr KL-12 Mn. Wykonanie pomiarów Wyznaczyć stałą kalorymetru, używając jako wzorca kwasu benzoesowego. Wyznaczyć ciepło spalania i wartość opałową próbek podanych przez prowadzącego. Opracowanie wyników Obliczyć stałą kalorymetru. Obliczyć ciepło spalania oraz wartość opałową badanych próbek. Literatura [1] PN-EN ISO 1716:2010. Badania reakcji na ogień wyrobów -- Określanie ciepła spalania (wartości kalorycznej). [2] PN-ISO 1928:2002. Paliwa stałe -- Oznaczanie ciepła spalania metodą spalania w bombie kalorymetrycznej i obliczanie wartości opałowej. [3] PN-C-04062:1986. Przetwory naftowe -- Oznaczanie ciepła spalania paliw ciekłych w bombie kalorymetrycznej i obliczanie wartości opałowej. [4] PN-G-04513:1981. Paliwa stałe -- Oznaczanie ciepła spalania i obliczanie wartości opałowej. [5] PN-Z :1993. Odpady komunalne stałe -- Badania właściwości paliwowych -- Oznaczanie ciepła spalania i obliczanie wartości opałowej.

KALORYMETRYCZNE WYZNACZANIE ENTALPII SPALANIA

KALORYMETRYCZNE WYZNACZANIE ENTALPII SPALANIA KALORYMETRYCZNE WYZNACZANIE ENTALPII SPALANIA 1. Cel ćwiczenia. Celem ćwiczenia jest obliczenie wartości entalpii spalania oraz tworzenia kwasu benzoesowego oraz wyznaczenie entalpii spalania oraz tworzenia

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 5-BK WYZNACZANIE CIEPŁA SPALANIA PALIW STAŁYCH ZA POMOCĄ KALORYMETRU

INSTRUKCJA LABORATORYJNA NR 5-BK WYZNACZANIE CIEPŁA SPALANIA PALIW STAŁYCH ZA POMOCĄ KALORYMETRU LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 5-BK WYZNACZANIE CIEPŁA SPALANIA PALIW STAŁYCH

Bardziej szczegółowo

Badanie własności energetycznych

Badanie własności energetycznych KATEDRA TECHNIKI WODNO-MUŁOWEJ I UTYLIZACJI ODPADÓW INSTRUKCJA DO LABORATORIUM INŻYNIERIA PROCESOWA Badanie własności energetycznych KOSZALIN 2014 OGÓLNA CHARAKTERYSTYKA PROCESU Ważnymi parametrami, które

Bardziej szczegółowo

Pomiary ciepła spalania i wartości opałowej paliw gazowych

Pomiary ciepła spalania i wartości opałowej paliw gazowych Pomiary ciepła spalania i wartości opałowej paliw gazowych Ciepło spalania Q s jest to ilość ciepła otrzymana przy spalaniu całkowitym i zupełnym jednostki paliwa wagowej lub objętościowej, gdy produkty

Bardziej szczegółowo

Instrukcja wykonania ćwiczenia 31

Instrukcja wykonania ćwiczenia 31 Instrukcja wykonania ćwiczenia CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie ciepła spalania i wartości opałowej ciekłych i stałych substancji organicznych w tym paliw i biopaliw. Ćwiczenie składa się

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących

Bardziej szczegółowo

Kalorymetria paliw stałych

Kalorymetria paliw stałych Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria paliw stałych Instrukcja do ćwiczenia nr 6 Opracowała: dr inż. Elżbieta Wróblewska Wrocław,

Bardziej szczegółowo

Ćwiczenie III. Oznaczanie wartości kalorycznej produktów spożywczych metodą spalania w bombie kalorymetrycznej

Ćwiczenie III. Oznaczanie wartości kalorycznej produktów spożywczych metodą spalania w bombie kalorymetrycznej Ćwiczenie III. Oznaczanie wartości kalorycznej produktów spożywczych metodą spalania w bombie kalorymetrycznej Cel ćwiczenia Zapoznanie się z metodą wyznaczania ciepła spalania w warunkach stałej objętości.

Bardziej szczegółowo

WYKŁAD 3 TERMOCHEMIA

WYKŁAD 3 TERMOCHEMIA WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,

Bardziej szczegółowo

Polskie Normy opracowane przez Komitet Techniczny nr 277 ds. Gazownictwa

Polskie Normy opracowane przez Komitet Techniczny nr 277 ds. Gazownictwa Polskie Normy opracowane przez Komitet Techniczny nr 277 ds. Gazownictwa Podkomitet ds. Przesyłu Paliw Gazowych 1. 334+A1:2011 Reduktory ciśnienia gazu dla ciśnień wejściowych do 100 bar 2. 1594:2014-02

Bardziej szczegółowo

TERMOCHEMIA SPALANIA

TERMOCHEMIA SPALANIA TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie

Bardziej szczegółowo

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego CIEPŁO, PALIWA, SPALANIE CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego WYMIANA CIEPŁA. Zmiana energii wewnętrznej

Bardziej szczegółowo

LABORATORIUM SPALANIA I PALIW

LABORATORIUM SPALANIA I PALIW 1. Wprowadzenie 1.1. Skład węgla LABORATORIUM SPALANIA I PALIW Węgiel składa się z substancji organicznej, substancji mineralnej i wody (wilgoci). Substancja mineralna i wilgoć stanowią bezużyteczny balast.

Bardziej szczegółowo

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego CIEPŁO, PALIWA, SPALANIE CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego WYMIANA CIEPŁA. Zmiana energii wewnętrznej

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

TERMOCHEMIA SPALANIA

TERMOCHEMIA SPALANIA TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie

Bardziej szczegółowo

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. (1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego

Bardziej szczegółowo

Przemysłowe laboratorium technologii. ropy naftowej i węgla II. TCCO17004l

Przemysłowe laboratorium technologii. ropy naftowej i węgla II. TCCO17004l Technologia chemiczna Przemysłowe laboratorium technologii ropy naftowej i węgla II TCCO17004l Ewa Lorenc-Grabowska Ćwiczenie nr VI Wrocław 2011 1 Spis treści I. Wstęp 3 1.1. Paliwa stałe 3 1.2. Ciepło

Bardziej szczegółowo

Prowadzący: dr hab. inż. Agnieszka Gubernat (tel. (0 12) 617 36 96; gubernat@agh.edu.pl)

Prowadzący: dr hab. inż. Agnieszka Gubernat (tel. (0 12) 617 36 96; gubernat@agh.edu.pl) TRANSPORT MASY I CIEPŁA Seminarium Transport masy i ciepła Prowadzący: dr hab. inż. Agnieszka Gubernat (tel. (0 12) 617 36 96; gubernat@agh.edu.pl) WARUNKI ZALICZENIA: 1. ZALICZENIE WSZYSTKICH KOLOKWIÓW

Bardziej szczegółowo

ĆWICZENIE 3. Badanie paliw stałych

ĆWICZENIE 3. Badanie paliw stałych ĆWICZENIE 3 Badanie paliw stałych 1. Techniczna analiza paliwa stałego. Wstęp. Paliwo stałe składa się z palnej substancji organicznej i balastu, do którego zalicza się wilgoć oraz substancje mineralne,

Bardziej szczegółowo

Termochemia elementy termodynamiki

Termochemia elementy termodynamiki Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

WYZNACZANIE RÓWNOWAŻNIKA CHEMICZNEGO ORAZ MASY ATOMOWEJ MAGNEZU I CYNY

WYZNACZANIE RÓWNOWAŻNIKA CHEMICZNEGO ORAZ MASY ATOMOWEJ MAGNEZU I CYNY 14 WYZNACZANIE RÓWNOWAŻNIKA CHEMICZNEGO ORAZ MASY ATOMOWEJ MAGNEZU I CYNY CEL ĆWICZENIA: Wyznaczanie równoważnika chemicznego oraz masy atomowej magnezu i cyny na podstawie pomiaru objętości wodoru wydzielonego

Bardziej szczegółowo

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

Akademickie Centrum Czystej Energii. Ogniwo paliwowe Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody

Bardziej szczegółowo

Kontrola procesu spalania

Kontrola procesu spalania Kontrola procesu spalania Spalanie paliw polega na gwałtownym utlenieniu składników palnych zawartych w paliwie przebiegającym z wydzieleniem ciepła i zjawiskami świetlnymi. Ostatecznymi produktami utleniania

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM

RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM Cel ćwiczenia: wyznaczenie diagramu fazowego ciecz para w warunkach izobarycznych. Układ pomiarowy i opis metody: Pomiary wykonywane są metodą recyrkulacyjną

Bardziej szczegółowo

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych

Bardziej szczegółowo

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej

Bardziej szczegółowo

POLITECHNIKA RZESZOWSKA

POLITECHNIKA RZESZOWSKA POLITECHNIKA RZESZOWSKA Katedra Termodynamiki Instrukcja do ćwiczenia laboratoryjnego pt. WYZNACZANIE WYKŁADNIKA ADIABATY Opracowanie: Robert Smusz 1. Cel ćwiczenia Podstawowym celem niniejszego ćwiczenia

Bardziej szczegółowo

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0 2014 Katedra Fizyki Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg... Godzina... Ćwiczenie 425 Wyznaczanie ciepła właściwego ciał stałych Masa suchego kalorymetru m k = kg Opór grzałki

Bardziej szczegółowo

Wymagania gazu ziemnego stosowanego jako paliwo. do pojazdów

Wymagania gazu ziemnego stosowanego jako paliwo. do pojazdów Wymagania gazu ziemnego stosowanego jako paliwo mgr inż. Paweł Bukrejewski do pojazdów Kierownik Pracowni Analitycznej Starszy Specjalista Badawczo-Techniczny Laboratorium Produktów Naftowych i Biopaliw

Bardziej szczegółowo

dr Dariusz Wyrzykowski ćwiczenia rachunkowe semestr I

dr Dariusz Wyrzykowski ćwiczenia rachunkowe semestr I Podstawowe prawa i pojęcia chemiczne. Fizyczne prawa gazowe. Zad. 1. Ile cząsteczek wody znajduje się w 0,12 mola uwodnionego azotanu(v) ceru Ce(NO 3 ) 2 6H 2 O? Zad. 2. W wyniku reakcji 40,12 g rtęci

Bardziej szczegółowo

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej

Bardziej szczegółowo

ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA

ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA Aby parowanie cieczy zachodziło w stałej temperaturze należy dostarczyć jej określoną ilość ciepła w jednostce czasu. Wielkość równą

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Zależność napięcia powierzchniowego cieczy od temperatury. opracowała dr hab. Małgorzata Jóźwiak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Zależność napięcia powierzchniowego cieczy od temperatury. opracowała dr hab. Małgorzata Jóźwiak Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Zależność napięcia powierzchniowego cieczy od temperatury opracowała dr hab. Małgorzata Jóźwiak ćwiczenie nr 4 Zakres zagadnień obowiązujących do ćwiczenia

Bardziej szczegółowo

- 163 - - 0,0014) _. paliwa odniesioną do stanu roboczego obliczono z zależności (6.20) - 24,505 (8.94 4,05 + 13,15) 19 000 kj/kg

- 163 - - 0,0014) _. paliwa odniesioną do stanu roboczego obliczono z zależności (6.20) - 24,505 (8.94 4,05 + 13,15) 19 000 kj/kg - 163-6700 (0 >{ 0060 6-0,0014) _ paliwa odniesioną do stanu roboczego obliczono z zależności (6.20) 100-8,22 " - 24,505 (8.94 4,05 + 13,15) 19 000 kj/kg r - 21 o60 1 0 Q - 100-6,22-24,505 (8,94. 4,05

Bardziej szczegółowo

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ Absorpcja Osoba odiedzialna: Donata Konopacka - Łyskawa dańsk,

Bardziej szczegółowo

Badanie zależności temperatury wrzenia wody od ciśnienia

Badanie zależności temperatury wrzenia wody od ciśnienia Ćwiczenie C2 Badanie zależności temperatury wrzenia wody od ciśnienia C2.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności temperatury wrzenia wody od ciśnienia (poniżej ciśnienia atmosferycznego),

Bardziej szczegółowo

Inżynieria procesów przetwórstwa węgla, zima 15/16

Inżynieria procesów przetwórstwa węgla, zima 15/16 Inżynieria procesów przetwórstwa węgla, zima 15/16 Ćwiczenia 1 7.10.2015 1. Załóżmy, że balon ma kształt sfery o promieniu 3m. a. Jaka ilość wodoru potrzebna jest do jego wypełnienia, aby na poziomie morza

Bardziej szczegółowo

Instrukcja konserwacji

Instrukcja konserwacji Kocioł gazowy dwufunkcyjny z zamkniętą komorą spalania CGB-20 CGB-K-20 Wolf - Technika Grzewcza Sp. z o.o. Al.Stanów Zjednoczonych 61A 04-028 Warszawa Tel.: (22) 516 20 60 Fax: (22) 516 20 61 www.wolf-polska.pl

Bardziej szczegółowo

ĆWICZENIE NR 2 FILTRACJA PRASA FILTRACYJNA

ĆWICZENIE NR 2 FILTRACJA PRASA FILTRACYJNA ĆWICZENIE NR FILTRACJA PRASA FILTRACYJNA. Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie z filtracją prowadzoną pod stałym ciśnieniem. Ten sposób prowadzenia procesu występuje w prasach filtracyjnych

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1267

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1267 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1267 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 5, Data wydania: 25 czerwca 2015 r. Nazwa i adres AB 1267 MO-BRUK

Bardziej szczegółowo

Obiegi gazowe w maszynach cieplnych

Obiegi gazowe w maszynach cieplnych OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost

Bardziej szczegółowo

Forane 427A Procedura retrofitu. Centre de Recherche Rhônes-Alpes

Forane 427A Procedura retrofitu. Centre de Recherche Rhônes-Alpes Forane 427A Procedura retrofitu Centre de Recherche Rhônes-Alpes 17 February 2010 Forane 427A Procedura retrofitu Etapy retrofitu Porady techniczne Możliwe przyczyny w przypadku braku wydajności Wskazówki

Bardziej szczegółowo

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM Laboratorium z Konwersji Energii Ogniwo Paliwowe PEM 1.0 WSTĘP Ogniwo paliwowe typu PEM (ang. PEM FC) Ogniwa paliwowe są urządzeniami elektro chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii,

Bardziej szczegółowo

Poradnik instalatora VITOPEND 100-W

Poradnik instalatora VITOPEND 100-W Poradnik instalatora Vitopend 100-W, typ 10,7 do 24,8 kw i 13,2 do 31,0 kw Gazowy kocioł wiszący jednoi dwufunkcyjny z zamknietą komorą spalania Wersja na gaz ziemny i płynny VITOPEND 100-W Poradnik Instalatora

Bardziej szczegółowo

Przy prawidłowej pracy silnika zapłon mieszaniny paliwowo-powietrznej następuje od iskry pomiędzy elektrodami świecy zapłonowej.

Przy prawidłowej pracy silnika zapłon mieszaniny paliwowo-powietrznej następuje od iskry pomiędzy elektrodami świecy zapłonowej. TEMAT: TEORIA SPALANIA Spalanie reakcja chemiczna przebiegająca między materiałem palnym lub paliwem a utleniaczem, z wydzieleniem ciepła i światła. Jeżeli w procesie spalania wszystkie składniki palne

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 5 Temat: Wyznaczanie gęstości ciała stałego i cieczy za pomocą wagi elektronicznej z zestawem Hydro. 1. Wprowadzenie Gęstość

Bardziej szczegółowo

Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5

Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5 Laboratorium odnawialnych źródeł energii Ćwiczenie nr 5 Temat: Badanie ogniw paliwowych. Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Fizyka i technika konwersji energii VI semestr

Bardziej szczegółowo

K1. KONDUKTOMETRYCZNE MIARECZKOWANIE STRĄCENIOWE I KOMPLEKSOMETRYCZNE

K1. KONDUKTOMETRYCZNE MIARECZKOWANIE STRĄCENIOWE I KOMPLEKSOMETRYCZNE K1. KONDUKTOMETRYCZNE MIARECZKOWANIE STRĄCENIOWE I KOMPLEKSOMETRYCZNE Postępowanie analityczne, znane pod nazwą miareczkowania konduktometrycznego, polega na wyznaczeniu punktu końcowego miareczkowania

Bardziej szczegółowo

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Reakcja między substancjami A i B zachodzi według

Bardziej szczegółowo

KATEDRA APARATURY I MASZYNOZNAWSTWA CHEMICZNEGO Wydział Chemiczny POLITECHNIKA GDAŃSKA ul. G. Narutowicza 11/12 80-952 GDAŃSK

KATEDRA APARATURY I MASZYNOZNAWSTWA CHEMICZNEGO Wydział Chemiczny POLITECHNIKA GDAŃSKA ul. G. Narutowicza 11/12 80-952 GDAŃSK KATEDRA APARATURY I MASZYNOZNAWSTWA CHEMICZNEGO Wydział Chemiczny POLITECHNIKA GDAŃSKA ul. G. Narutowicza 11/12 80-952 GDAŃSK LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ 6. WYMIENNIK CIEPŁA

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1280

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1280 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1280 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 4 Data wydania: 24 marca 2015 r. AB 1280 Nazwa i adres CENTRUM

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów

Bardziej szczegółowo

pętla nastrzykowa gaz nośny

pętla nastrzykowa gaz nośny METODA POPRAWY PRECYZJI ANALIZ CHROMATOGRAFICZNYCH GAZÓW ZIEMNYCH POPRZEZ KONTROLOWANY SPOSÓB WPROWADZANIA PRÓBKI NA ANALIZATOR W WARUNKACH BAROSTATYCZNYCH Pracownia Pomiarów Fizykochemicznych (PFC), Centralne

Bardziej szczegółowo

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Jaka jest średnia masa atomowa miedzi stanowiącej mieszaninę izotopów,

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych opracował dr P. Góralski ćwiczenie nr 2 Zakres zagadnień obowiązujących do

Bardziej szczegółowo

PRZEWODNOŚĆ ROZTWORÓW ELEKTROLITÓW

PRZEWODNOŚĆ ROZTWORÓW ELEKTROLITÓW PRZEWODNOŚĆ ROZTWORÓW ELEKTROLITÓW Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przewodności elektrolitycznej κ i molowej elektrolitu mocnego (HCl) i słabego (CH3COOH), graficzne wyznaczenie wartości

Bardziej szczegółowo

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika - Dobór siłownika i zaworu - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika OPÓR PRZEPŁYWU W ZAWORZE Objętościowy współczynnik przepływu Qn Przepływ oblicza się jako stosunek

Bardziej szczegółowo

Instrukcja konserwacji

Instrukcja konserwacji Kocioł gazowy dwufunkcyjny z zamkniętą komorą spalania CGB-20 CGB-K-20 Wolf GmbH, Postfach 1380, D-84048 Mainburg, Tel.: +49 (0)8751/74-0, Fax: +49 (0)8751/74-1600, www.wolf-heiztechnik.de Art-Nr. 3061152_201602

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

Opracowała : Beata Adamczyk. 1 S t r o n a

Opracowała : Beata Adamczyk. 1 S t r o n a Opracowała : Beata Adamczyk 1 S t r o n a Do rozwiązania poniższych zadań niezbędna jest znajomość wzoru na gęstość: d = Potrzebne są również wzory na masę (m) i objętość (V), które możemy otrzymać po

Bardziej szczegółowo

Ćwiczenie 1. Dozymetria kalorymetryczna w reaktorze sonochemicznym

Ćwiczenie 1. Dozymetria kalorymetryczna w reaktorze sonochemicznym Sonochemia Ćwiczenie 1. Dozymetria kalorymetryczna w reaktorze sonochemicznym Celem ćwiczenia jest wyznaczenie mocy ultradźwięków w reaktorze sonochemicznym i porównanie uzyskanej wartości z mocą prądu

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1120

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1120 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1120 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 15 Data wydania: 25 listopada 2016 r. AB 1120 Nazwa i adres

Bardziej szczegółowo

ĆWICZENIE 3 CIEPŁO ROZPUSZCZANIA I NEUTRALIZACJI

ĆWICZENIE 3 CIEPŁO ROZPUSZCZANIA I NEUTRALIZACJI ĆWICZENIE 3 CIEPŁO ROZPUSZCZANIA I NEUTRALIZACJI Przybory i odczynniki Kalorymetr NaOH w granulkach Mieszadło KOH w granulkach Cylinder miarowy 50 ml 4n HCl 4 Szkiełka zegarowe 4N HNO 3 Termometr (dokładność

Bardziej szczegółowo

(Tekst mający znaczenie dla EOG) (2017/C 076/02) (1) (2) (3) (4) Miejscowe ogrzewacze pomieszczeń na paliwo stałe

(Tekst mający znaczenie dla EOG) (2017/C 076/02) (1) (2) (3) (4) Miejscowe ogrzewacze pomieszczeń na paliwo stałe C 76/4 PL Dziennik Urzędowy Unii Europejskiej 10.3.2017 Komunikat Komisji w ramach wykonania rozporządzenia Komisji (UE) 2015/1188 w sprawie wykonania dyrektywy Parlamentu Europejskiego i Rady 2009/125/WE

Bardziej szczegółowo

ZAŁĄCZNIK. (1) Obiekty energetycznego spalania, które należy ująć w przejściowym planie krajowym

ZAŁĄCZNIK. (1) Obiekty energetycznego spalania, które należy ująć w przejściowym planie krajowym ZAŁĄCZNIK (1) Obiekty energetycznego spalania, które należy ująć w przejściowym planie krajowym Części obiektów energetycznego spalania (np. jedna lub więcej indywidualnych jednostek energetycznego spalania

Bardziej szczegółowo

Laboratorium z Konwersji Energii SILNIK SPALINOWY

Laboratorium z Konwersji Energii SILNIK SPALINOWY Laboratorium z Konwersji Energii SILNIK SPALINOWY 1. Wstęp teoretyczny Silnik spalinowy to maszyna, w której praca jest wykonywana przez gazy spalinowe, powstające w wyniku spalania paliwa w przestrzeni

Bardziej szczegółowo

ANALIZA PALIW CIEKŁYCH

ANALIZA PALIW CIEKŁYCH - 299 - sie dokładności, np«gazomierze bębnowe, kryzy ISA i dysze ISA normalne, przepływomierze z owalnymi wirnikami itd# Przy sprawdzania przyrządów należy odróżnić dwie metody wykonywania pomiarów kontrolnych:

Bardziej szczegółowo

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Ćwiczenie 5 Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Wstęp Ogniwo paliwowe jest urządzeniem elektrochemicznym, które wytwarza energię użyteczną

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

HERZ-TS-98-VH, HERZ-TS-90-H, HERZ TS-FV, TS-98-VH, TS-90-H

HERZ-TS-98-VH, HERZ-TS-90-H, HERZ TS-FV, TS-98-VH, TS-90-H HERZ-Changefix HERZ - Przyrząd do wymiany wkładki termostatycznej HERZ-TS-90 Instrukcja dla 7780 / 7780 H, Wydanie 0711 Zastosowanie: HERZ-Changefix jest urządzeniem szczelnym, które może być zamontowane

Bardziej szczegółowo

OCENA CZYSTOŚCI WODY NA PODSTAWIE POMIARÓW PRZEWODNICTWA. OZNACZANIE STĘŻENIA WODOROTLENKU SODU METODĄ MIARECZKOWANIA KONDUKTOMETRYCZNEGO

OCENA CZYSTOŚCI WODY NA PODSTAWIE POMIARÓW PRZEWODNICTWA. OZNACZANIE STĘŻENIA WODOROTLENKU SODU METODĄ MIARECZKOWANIA KONDUKTOMETRYCZNEGO OCENA CZYSTOŚCI WODY NA PODSTAWIE POMIAÓW PZEWODNICTWA. OZNACZANIE STĘŻENIA WODOOTLENKU SODU METODĄ MIAECZKOWANIA KONDUKTOMETYCZNEGO Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu

Bardziej szczegółowo

Jak mierzyć i jak liczyć efekty cieplne reakcji?

Jak mierzyć i jak liczyć efekty cieplne reakcji? Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub do produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie

Bardziej szczegółowo

Klucz odpowiedzi. Konkurs Fizyczny Etap Rejonowy

Klucz odpowiedzi. Konkurs Fizyczny Etap Rejonowy Klucz odpowiedzi Konkurs Fizyczny Etap Rejonowy Zadania za 1 p. TEST JEDNOKROTNEGO WYBORU (łącznie 20 p.) Nr zadania 1 2 3 4 5 6 7 8 9 10 Odpowiedź B C C B B D C A D B Zadania za 2 p. Nr zadania 11 12

Bardziej szczegółowo

Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej

Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej Ćwiczenie 2. Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej 1. Przygotowanie do wykonania ćwiczenia. 1.1. Włączyć zasilacz potencjostatu i nastawić go na

Bardziej szczegółowo

T e r m o d y n a m i k a

T e r m o d y n a m i k a Pracownia dydaktyki fizyki T e r m o d y n a m i k a Instrukcja dla studentów Tematy ćwiczeń: I. Pokazy: II. Doświadczenia kalorymetryczne Doświadczenie 1. Wyznaczanie ciepła właściwego wybranej substancji

Bardziej szczegółowo

POMIARY WILGOTNOŚCI POWIETRZA

POMIARY WILGOTNOŚCI POWIETRZA Politechnika Lubelska i Napędów Lotniczych Instrukcja laboratoryjna POMIARY WILGOTNOŚCI POWIETRZA Pomiary wilgotności /. Pomiar wilgotności powietrza psychrometrem Augusta 1. 2. 3. Rys. 1. Psychrometr

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Wiktor Hibner Marian Rosiński. laboratorium techniki cieplnej

Wiktor Hibner Marian Rosiński. laboratorium techniki cieplnej Wiktor Hibner Marian Rosiński laboratorium techniki cieplnej WYDAWNICTWA POLITECHNIKI WARSZAWSKIEJ WARSZAWA 1980 Opiniodawca prof. dr hab. inź. Leon Kołodziejczyk Wydano za zgodą Rektora Politechniki Warszawskiej

Bardziej szczegółowo

Pracownia Polimery i Biomateriały. Spalanie i termiczna degradacja polimerów

Pracownia Polimery i Biomateriały. Spalanie i termiczna degradacja polimerów Pracownia Polimery i Biomateriały INSTRUKCJA DO ĆWICZENIA Spalanie i termiczna degradacja polimerów Opracowała dr Hanna Wilczura-Wachnik Uniwersytet Warszawski Wydział Chemii Zakład Dydaktyczny Technologii

Bardziej szczegółowo

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń

Bardziej szczegółowo

KOROZJA. Korozja kontaktowa z depolaryzacja tlenową 1

KOROZJA. Korozja kontaktowa z depolaryzacja tlenową 1 KOROZJA Słowa kluczowe do ćwiczeń laboratoryjnych z korozji: korozja kontaktowa depolaryzacja tlenowa depolaryzacja wodorowa gęstość prądu korozyjnego natęŝenie prądu korozyjnego prawo Faradaya równowaŝnik

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2019 Nazwa kwalifikacji: Eksploatacja instalacji i urządzeń do wytwarzania i przesyłania energii cieplnej

Bardziej szczegółowo

Termograwimetryczne badanie dehydratacji pięciowodnego siarczanu (VI) miedzi (II)

Termograwimetryczne badanie dehydratacji pięciowodnego siarczanu (VI) miedzi (II) 1 Termograwimetryczne badanie dehydratacji pięciowodnego siarczanu (VI) miedzi (II) I. Wstęp teoretyczny Termograwimetria (ang. thermogravimetry, thermogravimetric analysis) /A - technika analizy termicznej,

Bardziej szczegółowo

Wersja z dnia: Metoda piknometryczna jest metodą porównawczą. Wyznaczanie gęstości substancji ciekłych

Wersja z dnia: Metoda piknometryczna jest metodą porównawczą. Wyznaczanie gęstości substancji ciekłych Wersja z dnia: 2008-02-25 Wyznaczanie gęstości metodą piknometryczną Gęstości ciała (ρ) jest definiowana jako masa (m) jednostkowej objętości tego ciała (V). Jeśli ciało jest jednorodne, to jego gęstość

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 2-OP BADANIE OGNIW PALIWOWYCH

INSTRUKCJA LABORATORYJNA NR 2-OP BADANIE OGNIW PALIWOWYCH LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR -OP BADANIE OGNIW PALIWOWYCH Cel i zakres ćwiczenia

Bardziej szczegółowo

Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego

Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego 1. Temat ćwiczenia :,,Wyznaczanie współczynnika przenikania ciepła 2. Cel ćwiczenia : Określenie globalnego współczynnika przenikania ciepła k

Bardziej szczegółowo

Sprawdzian z fizyki na zakończenie nauki w pierwszej klasie gimnazjum (1 godzina tygodniowo) Wersja A

Sprawdzian z fizyki na zakończenie nauki w pierwszej klasie gimnazjum (1 godzina tygodniowo) Wersja A Wypełnia uczeń Kod ucznia Informacje dla ucznia Sprawdzian z fizyki na zakończenie nauki w pierwszej klasie gimnazjum (1 godzina tygodniowo) Wersja A 1. Upewnij się, czy sprawdzian ma 5 stron. Ewentualny

Bardziej szczegółowo

WYZNACZANIE STOSUNKU c p /c v

WYZNACZANIE STOSUNKU c p /c v Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 33 WYZNACZANIE STOSUNKU c p /c v I WSTĘP Układ termodynamiczny Rozważania dotyczące przekazywania energii poprzez wykonywanie

Bardziej szczegółowo

Poradnik instalatora VITOPEND 100-W

Poradnik instalatora VITOPEND 100-W Poradnik instalatora Vitopend 100-W, typ 10,5 do 24,0 kw i 13,5 do 30,0 kw Gazowy kocioł wiszący jednoi dwufunkcyjny z otwarta komorą spalania Wersja na gaz ziemny i płynny VITOPEND 100-W Poradnik Instalatora

Bardziej szczegółowo

Warszawa, dnia 5 sierpnia 2014 r. Poz. 1035

Warszawa, dnia 5 sierpnia 2014 r. Poz. 1035 Warszawa, dnia 5 sierpnia 2014 r. Poz. 1035 OBWIESZCZENIE ministra gospodarki z dnia 4 czerwca 2014 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Gospodarki w sprawie sposobu pobierania

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 35: Elektroliza

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 35: Elektroliza Nazwisko i imię: Zespół: Data: Ćwiczenie nr 35: Elektroliza Cel ćwiczenia: Wyznaczenie stałej Faradaya oraz równoważnika elektrochemicznego miedzi metodą elektrolizy. Literatura [1] Kąkol Z., Fizyka dla

Bardziej szczegółowo