POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
|
|
- Zdzisław Kaźmierczak
- 7 lat temu
- Przeglądów:
Transkrypt
1 KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy, L, dostarczonej do układu lub wykonanej przez układ w czasie przemiany: U= Q+ L () Energia wewnętrzna układu jest funkcją stanu, gdyż jej zmiana w czasie trwania przemiany nie zależy od drogi przemiany, lecz od stanu końcowego i początkowego. Ciepło i praca nie są w każdej przemianie funkcjami stanu. Gdy jedyną pracą wykonywaną przez układ podczas przemiany jest praca objętościowa, to I zasada termodynamiki przyjmie postać: du = Q - pdv (2) Dla często występującej w chemii przemiany izobarycznej (p = ciśnienie atmosferyczne = const.), dogodnie jest wprowadzić do opisu procesów funkcję zwaną entalpią, H, będącą z definicji funkcją stanu: H = U + pv (3) Różniczka zupełna H równa się: dh = du + pdv + Vdp () Uwzględniając w równaniu (9.) wartość du daną równaniem (9.2) otrzymuje się: dh = Q + Vdp (5) Dla przemiany izobarycznej Vdp = 0, czyli: dh = Q dla p = const (6) Równanie (9.6) wyrażające prawo Hessa mówi, iż w przemianie izobarycznej ciepło reakcji jest równe zmianie entalpii, nie zależy więc od drogi przemiany. Dla procesów izochorycznych otrzymuje się z równania (2) wyrażenie: du = Q dla V = const (7) Z równania (7) wynika, iż w przemianie izochorycznej ciepło przemiany również nie zależy od drogi przemiany (prawo Hessa). Z równań (6) oraz (7) wynika, iż ciepło przemiany jest dla przemiany izochorycznej równe zmianie energii wewnętrznej układu, zaś w przemianie izobarycznej równe zmianie entalpii układu. Różnica między H oraz U dla danej przemiany zależy od zmiany objętości występującej gdy reakcja zachodzi pod stałym ciśnieniem i od wartości tego ciśnienia. Dla reakcji gazowych (gaz doskonały), zachodzi związek: H U + n RT (faza gazowa) (8) str.
2 Dla reakcji przebiegających w roztworze U jest praktycznie równe H ze względu na zaniedbywalnie małą zmianę objętości układu w procesie izobarycznym. Ciepło zobojętniania Podczas reakcji zobojętniania kwasu zasadą lub odwrotnie, wywiązuje się ciepło zwane ciepłem zobojętniania; dla procesu prowadzonego izobarycznie jest ono równe entalpii zobojętniania: H + + OH - H 2 O ciepło = H (9) Wartość H posiada dla mocnych kwasów i zasad wartość stałą, niezależną od rodzaju kwasu i zasady, równą ok.-65,6 kj/ mol. Efekt cieplny (entalpię) tej reakcji wyznaczyć można przez pomiar efektów cieplnych następujących procesów: -rozcieńczania kwasu siarkowego: 2 H 2SO + H 2 O H SO 2 + H 2 O ciepło = H 2 (0) -zobojętniania zasady sodowej kwasem siarkowym: 2 H 2SO + H 2 O + Na + + OH - Na SO 2 +2H 2 O ciepło = H 3 () -rozpuszczania gliceryny w wodzie (wyznaczanie pojemności cieplnej kalorymetru): C 3 H 5 (OH) 3 + H 2 O C 3 H 5 (OH) 3 (H 2 O) ciepło = H (2) Szukana wartość H równa jest: H = H 3 - H 2 (3) gdyż w reakcji () oprócz ciepła zobojętniania ( H ) występuje ciepło rozcieńczania, H 3, kwasu siarkowego wprowadzonego do roztworu zasady sodowej. Wartość ciepła rozpuszczania gliceryny w wodzie, H, potrzebna jest do wyznaczenia pojemności cieplnej kalorymetru, c, zgodnie z równaniem: c H = T () Ciepło molowe rozpuszczania gliceryny w wodzie wynosi: H M = -5,98 kj / mol.[ ] Wartość molowej entalpii zobojętniania, H M, obliczyć można z równania: Poradnik fizykochemiczny, Praca zbiorowa. WNT, 97 str. 2
3 n T 0,2 T M M 3 2 H = H (5) 2 n3 T gdzie: H M - molowe ciepło rozpuszczania gliceryny w wodzie H M - molowe ciepło zobojętniania n 3 - ilość moli H SO 2 użytego w reakcji (0) n - ilość moli gliceryny użytej w reakcji (2), T 2, T 3 i T - temperatury układu spowodowane przebiegiem odpowiednio reakcji : (0), () i (2). CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie entalpii zobojętniania kwasu zasadą. APARATURA Komora termostatująca. Uniwersalny miernik METEX. Czujnik termistorowy. Mieszadełko mechaniczne. Zasilacz i układ sterujący mieszadłem. SPRZĘT Zlewka 00 ml (pomiarowa). Zlewka 50 ml. Mikropipeta 0,05 ml. Pipety szklane 2 ml, 5 ml i 25 ml ODCZYNNIKI Roztwór H 2 SO 3 mol dm -3. Roztwór NaOH 0,2 mol dm -3. Gliceryna. Butla z wodą destylowaną 3 dm 3. PRZEBIEG ĆWICZENIA. Uruchomić komputer. 2. Uruchomić program METEX SCOPEVIEW znajdujący się na pulpicie oraz miernik METEX. 3. W programie METEX SCOPEVIEW nacisnąć przycisk POWER w celu sprawdzenia komunikacji z miernikiem (program powinien zacząć rejestrować wskazania miernika). mastępnie nacisnąć przycisk SCOPE w celu uruchomienia panelu sterującego układem. ustawić odpowiedni zakres oporów (zgodnie ze wskazaniami prowadzącego), str. 3
4 nadać nazwę plikowi przed rozpoczęciem pomiaru (naciskając przycisk RECORD) nacisnąć przycisk SCOPE w celu uruchomienia panelu rejestrującego rozpoczęcie rejestracji pomiaru następuje po naciśnięciu przycisku RUN, a zakończenie po naciśnięciu przycisku STOP Postępować zgodnie z instrukcją obsługi programu znajdującą się przy ćwiczeniu i wskazaniami prowadzącego.. Do naczynia pomiarowego (zlewka) wlać 37,5 ml wody destylowanej, umieścić je w komorze termostatu i przykryć pokrywą z wbudowanym czujnikiem termistorowym. 5. Zanurzyć mieszadełko, uruchomić je i wyregulować jego prędkość. 6. Po kilku minutach rozpocząć rejestrację oporu (temperatury) naciskając przycisk RUN. 7. Po ok. minucie dodać 0,25 ml 3 mol dm -3 H 2 SO. Obserwować zmiany oporności wywołane efektem cieplnym ( T 2 ) rozcieńczania kwasu siarkowego. 8. Po kolejnej minucie zakończyć pomiar naciskając przycisk STOP (za koniec procesu należy uznać brak znacznych wahań rejestrowanych wartości oporu). 9. Następnie wyłączyć mieszadełko i zdjąć pokrywę komory termostatującej wraz z mieszadełkiem i czujnikiem termistorowym. Pokrywę umieścić na zlewce (50 ml) z wodą destylowaną.umyć naczynie pomiarowe. Zestawić układ ponownie. 0. Pomiary wykonać również dla efektów cieplnych wywołanych dodaniem: a) 0,05 ml 3 mol dm -3 H 2 SO do roztworu ustabilizowanego (36 ml H 2 O destylowanej +,5 ml 0,2 mol dm -3 NaOH), efekt ( T 3 ) b) 0,25 ml gliceryny do 37,5 ml H 2 O destylowanej, efekt ( T ).. Pomiary dla każdego układu wykonać dwukrotnie. OPRACOWANIE WYNIKÓW. Z uzyskanych pomiarów wykonać wykresy zależności oporu (termistora) od czasu trwania reakcji. 2. Wartości zmian temperatury (oporu termistora), występujące w równaniu (5), zastąpić można wysokościami odcinków (wyliczonymi z różnic wartości max i min) proporcjonalnymi do wielkości zmian temperatury. 3. Korzystając ze wzoru (5) obliczyć wartość entalpii zobojętniania. Do obliczeń liczby moli gliceryny zawartej w ml przyjąć wartość gęstości gliceryny równą d =,263 g/cm 3.[ 2 ] 2 Poradnik fizykochemiczny, WNT, 97 str.
5 Opór termistora /kohm T H Czas /s Rys. Przykład wyznaczania wartości różnic temperatur. T str. 5
6 Wzór tabeli i schematu opracowania Nr grupy:.. Wydział. Kierunek Studia niestacjonarne Nr zespołu:. Imię i Nazwisko studenta.. Nr ćwiczenia:... Data wykonywania ćwiczenia:. Nazwisko Prowadzącego:. Temat ćwiczenia: 2. Cel ćwiczenia: 3. Pomiary:. Obliczenia: 5. Wykresy: 6. Wnioski: str. 6
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
ZALEŻNOŚĆ STAŁEJ SZYBKOŚCI REAKCJI OD TEMPERATURY WSTĘP Szybkość reakcji drugiego rzędu: A + B C (1) zależy od stężenia substratów A oraz B v = k [A][B] (2) Gdy jednym z reagentów jest rozpuszczalnik (np.
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
ANALIZA TERMICZNA WSTĘP Zespół ciał (substancji) stanowiący w danej chwili przedmiot naszych badań nazywamy układem, a wszystko co znajduje się na zewnątrz niego, otoczeniem. Poszczególne jednolite części
Bardziej szczegółowo13. TERMODYNAMIKA WYZNACZANIE ENTALPII REAKCJI ZOBOJĘTNIANIA MOCNEJ ZASADY MOCNYMI KWASAMI I ENTALPII PROCESU ROZPUSZCZANIA SOLI
Wykonanie ćwiczenia 13. TERMODYNAMIKA WYZNACZANIE ENTALPII REAKCJI ZOBOJĘTNIANIA MOCNEJ ZASADY MOCNYMI KWASAMI I ENTALPII PROCESU ROZPUSZCZANIA SOLI Zadania do wykonania: 1. Wykonać pomiar temperatury
Bardziej szczegółowoZadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
Bardziej szczegółowoZadanie 1. Zadanie: Odpowiedź: ΔU = 2, J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
Bardziej szczegółowoPodstawowe pojęcia 1
Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko
Bardziej szczegółowoKatedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących
Bardziej szczegółowoJak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub do produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie
Bardziej szczegółowoĆWICZENIE 3 CIEPŁO ROZPUSZCZANIA I NEUTRALIZACJI
ĆWICZENIE 3 CIEPŁO ROZPUSZCZANIA I NEUTRALIZACJI Przybory i odczynniki Kalorymetr NaOH w granulkach Mieszadło KOH w granulkach Cylinder miarowy 50 ml 4n HCl 4 Szkiełka zegarowe 4N HNO 3 Termometr (dokładność
Bardziej szczegółowo1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA
. PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:
Bardziej szczegółowoPodstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Bardziej szczegółowoTermochemia elementy termodynamiki
Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.
Bardziej szczegółowoWyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru
Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną Cel ćwiczenia Celem ćwiczenia jest wyznaczenie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną. Zakres wymaganych
Bardziej szczegółowoJak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie siła/powierzchnia
Bardziej szczegółowoPodstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Bardziej szczegółowoTermochemia efekty energetyczne reakcji
Termochemia efekty energetyczne reakcji 1. Podstawowe pojęcia termodynamiki chemicznej a) Układ i otoczenie Układ, to wyodrębniony obszar materii, oddzielony od otoczenia wyraźnymi granicami (np. reagenty
Bardziej szczegółowoKatedra Chemii Fizycznej Uniwersytetu Łódzkiego. Entalpia rozpuszczania elektrolitu w wodzie
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Entalpia rozpuszczania elektrolitu w wodzie ćwiczenie nr 36 opracowanie ćwiczenia: prof. dr hab. B. Pałecz, dr S. Belica Zakres zagadnień obowiązujących
Bardziej szczegółowoTermodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny
Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem
Bardziej szczegółowo(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego
Bardziej szczegółowoDRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Bardziej szczegółowoBufory ph. Pojemność buforowa i zakres buforowania
Bufory ph. Pojemność buforowa i zakres buforowania 1. Wstęp Roztworami buforowymi nazywane są roztwory wodne, składające się z mieszaniny słabego kwasu i sprzężonej z nim zasady (protonodawca protonobiorca),
Bardziej szczegółowo13 TERMODYNAMIKA. Sprawdzono w roku 2017 przez A. Chomickiego
13 TERMODYNAMIKA Zagadnienia teoretyczne Układ i otoczenie. Wielkości intensywne i ekstensywne. Pojęcie energii, ciepła, pracy, temperatury. Zasady termodynamiki (pierwsza, druga, trzecia). Funkcje termodynamiczne
Bardziej szczegółowoENTALPIA ZOBOJĘTNIANIA
Ćwiczenie nr 2 ENTALPIA ZOBOJĘTNIANIA I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie molowej entalpii tworzenia wody podczas reakcji zobojętniania z jonów pochodzących z: mocnej zasady - mocnego kwasu,
Bardziej szczegółowo13 TERMODYNAMIKA. Sprawdzono w roku 2015 przez A. Chomickiego
13 TERMODYNAMIKA Zagadnienia teoretyczne Układ i otoczenie. Wielkości intensywne i ekstensywne. Pojęcie energii, ciepła, pracy, temperatury. Zasady termodynamiki (pierwsza, druga, trzecia). Funkcje termodynamiczne
Bardziej szczegółowoWYKŁAD 3 TERMOCHEMIA
WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian
Bardziej szczegółowoA4.05 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.05 nstrukcja wykonania ćwiczenia Wyznaczanie współczynników aktywności soli trudno rozpuszczalnej metodą pomiaru rozpuszczalności Zakres zagadnień obowiązujących
Bardziej szczegółowoHYDROLIZA SOLI. ROZTWORY BUFOROWE
Ćwiczenie 9 semestr 2 HYDROLIZA SOLI. ROZTWORY BUFOROWE Obowiązujące zagadnienia: Hydroliza soli-anionowa, kationowa, teoria jonowa Arrheniusa, moc kwasów i zasad, równania hydrolizy soli, hydroliza wieloetapowa,
Bardziej szczegółowoKatedra Chemii Fizycznej Uniwersytetu Łódzkiego. Adsorpcja kwasu octowego na węglu aktywnym. opracowała dr hab. Małgorzata Jóźwiak
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Adsorpcja kwasu octowego na węglu aktywnym opracowała dr hab. Małgorzata Jóźwiak ćwiczenie nr Zakres zagadnień obowiązujących do ćwiczenia 1. Charakterystyka
Bardziej szczegółowoĆwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych
Bardziej szczegółowoWykład 10 Równowaga chemiczna
Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości
Bardziej szczegółowoPRZEWODNOŚĆ ROZTWORÓW ELEKTROLITÓW
PRZEWODNOŚĆ ROZTWORÓW ELEKTROLITÓW Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przewodności elektrolitycznej κ i molowej elektrolitu mocnego (HCl) i słabego (CH3COOH), graficzne wyznaczenie wartości
Bardziej szczegółowoWYZNACZANIE ZMIAN ENTROPII
Ćwiczenie nr 1 WYZNACZANIE ZMIAN ENROPII I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie zmian entropii w układzie zamkniętym podczas topnienia lodu. II. Zagadnienia wprowadzające 1. Sformułowanie II
Bardziej szczegółowoTermodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej
Bardziej szczegółowoK03 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K03 Instrukcja wykonania ćwiczenia Wpływ środowiska na ciepło pęcznienia żelatyny i rozpuszczania glicyny Zakres zagadnień obowiązujących do ćwiczenia 1.
Bardziej szczegółowoWYZNACZANIE STOSUNKU c p /c v
Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 33 WYZNACZANIE STOSUNKU c p /c v I WSTĘP Układ termodynamiczny Rozważania dotyczące przekazywania energii poprzez wykonywanie
Bardziej szczegółowoZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa
Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem
Bardziej szczegółowoAkademickie Centrum Czystej Energii. Ogniwo paliwowe
Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody
Bardziej szczegółowoChemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
WARTOŚĆ ph ROZTWORÓW WODNYCH WSTĘP 1. Wartość ph wody i roztworów Woda dysocjuje na jon wodorowy i wodorotlenowy: H 2 O H + + OH (1) Stała równowagi tej reakcji, K D : wyraża się wzorem: K D = + [ Η ][
Bardziej szczegółowoKryteria samorzutności procesów fizyko-chemicznych
Kryteria samorzutności procesów fizyko-chemicznych 2.5.1. Samorzutność i równowaga 2.5.2. Sens i pojęcie entalpii swobodnej 2.5.3. Sens i pojęcie energii swobodnej 2.5.4. Obliczanie zmian entalpii oraz
Bardziej szczegółowoĆwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne
Bardziej szczegółowoPodstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
Bardziej szczegółowoKatedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Temperaturowa charakterystyka termistora typu NTC ćwiczenie nr 37 Opracowanie ćwiczenia: dr J. Woźnicka, dr S. elica Zakres zagadnień obowiązujących do ćwiczenia
Bardziej szczegółowoTermodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,
Bardziej szczegółowoAKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie OLIMPIADA O DIAMENTOWY INDEKS AGH 2017/18 CHEMIA - ETAP I
Związki manganu i manganometria AKADEMIA GÓRNICZO-HUTNICZA 1. Spośród podanych grup wybierz tą, w której wszystkie związki lub jony można oznaczyć metodą manganometryczną: Odp. C 2 O 4 2-, H 2 O 2, Sn
Bardziej szczegółowoDRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Bardziej szczegółowoc. Oblicz wydajność reakcji rozkładu 200 g nitrogliceryny, jeśli otrzymano w niej 6,55 g tlenu.
Zadanie 1. Nitrogliceryna (C 3H 5N 3O 9) jest środkiem wybuchowym. Jej rozkład można opisać następującym schematem: 4 C 3 H 5 N 3 O 9 (c) 6 N 2 (g) + 12 CO 2 (g) + 10 H 2 O (g) + 1 O 2 (g) H rozkładu =
Bardziej szczegółowoĆwiczenie 1. Wyznaczanie molowego ciepła rozpuszczenia i ciepła reakcji zobojętnienia
Ćwiczenie 1. Wyznaczanie molowego ciepła rozpuszczenia i ciepła reakcji zobojętnienia Niemal wszystkim przemianom fizycznym i chemicznym zwykle towarzyszy wymiana ciepła, a w niektórych także wymiana pracy.
Bardziej szczegółowoa. Dobierz współczynniki w powyższym schemacie tak, aby stał się równaniem reakcji chemicznej.
Zadanie 1. Nitrogliceryna (C 3 H 5 N 3 O 9 ) jest środkiem wybuchowym. Jej rozkład można opisać następującym schematem: C 3 H 5 N 3 O 9 (c) N 2 (g) + CO 2 (g) + H 2 O (g) + O 2 (g) H rozkładu = - 385 kj/mol
Bardziej szczegółowoPorównanie precyzji i dokładności dwóch metod oznaczania stężenia HCl
Porównanie precyzji i dokładności dwóch metod oznaczania stężenia HCl Metoda 1: Oznaczanie stężenia HCl metodą miareczkowania potencjometrycznego (strąceniowe) Wyposażenie: - miernik potencjału 1 szt.
Bardziej szczegółowoWYZNACZANIE CZĄSTKOWEGO MOLOWEGO CIEPŁA
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNACZANIE CZĄSTKOWEGO MOLOWEGO CIEPŁA ROZPUSZCZANIA WYBRANYCH SOLI Opiekun: Miejsce ćwiczenia: Katarzyna Piwowar Katedra
Bardziej szczegółowoPrzemiana izochoryczna. Prawo Charlesa
COACH 29 Przemiana izochoryczna Program: Coach 6 Projekt: na ZMN060c CMA Coach Projects\PTSN Coach 6\ Termodynamika/PCharlesa_3.cma Przykład wyników: PCharlesa_6.cmr Cel ćwiczenia - Badanie zaleŝności
Bardziej szczegółowoOCENA CZYSTOŚCI WODY NA PODSTAWIE POMIARÓW PRZEWODNICTWA. OZNACZANIE STĘŻENIA WODOROTLENKU SODU METODĄ MIARECZKOWANIA KONDUKTOMETRYCZNEGO
OCENA CZYSTOŚCI WODY NA PODSTAWIE POMIAÓW PZEWODNICTWA. OZNACZANIE STĘŻENIA WODOOTLENKU SODU METODĄ MIAECZKOWANIA KONDUKTOMETYCZNEGO Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu
Bardziej szczegółowoTRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI
Ćwiczenie nr 7 TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Celem ćwiczenia jest zapoznanie się z podstawami teorii procesów transportu nieelektrolitów przez błony.
Bardziej szczegółowoTERMODYNAMIKA I TERMOCHEMIA
TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami
Bardziej szczegółowoĆwiczenie 1. Wyznaczanie molowego ciepła rozpuszczenia i ciepła reakcji zobojętnienia
Ćwiczenie 1. Wyznaczanie molowego ciepła rozpuszczenia i ciepła reakcji zobojętnienia Niemal wszystkim przemianom fizycznym i chemicznym zwykle towarzyszy wymiana ciepła, a w niektórych przypadkach także
Bardziej szczegółowoFizyka Termodynamika Chemia reakcje chemiczne
Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych
Bardziej szczegółowoChemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Bardziej szczegółowoPrzedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu
Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej
Bardziej szczegółowoTERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
Bardziej szczegółowoBadanie kinetyki inwersji sacharozy
Badanie kinetyki inwersji sacharozy Cel ćwiczenia: Celem ćwiczenia jest wyznaczenie stałej szybkości, energii aktywacji oraz czynnika przedwykładniczego reakcji inwersji sacharozy. Opis metody: Roztwory
Bardziej szczegółowo1 Równanie stanu gazu doskonałego
1 Równanie stanu gazu doskonałego Celem ćwiczenia jest zbadanie przemian stanu gazu doskonałego(powietrza) oraz wyznaczenie uniwersalnej stałej gazowej, współczynnika rozszerzalności cieplnej, współczynnika
Bardziej szczegółowoZasady termodynamiki
Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest
Bardziej szczegółowoDoświadczenie B O Y L E
Wprowadzenie teoretyczne Doświadczenie Równanie Clapeyrona opisuje gaz doskonały. Z dobrym przybliżeniem opisuje także gazy rzeczywiste rozrzedzone. p V = n R T Z równania Clapeyrona wynika prawo Boyle'a-Mario
Bardziej szczegółowoKatedra Chemii Fizycznej Uniwersytetu Łódzkiego. Zależność napięcia powierzchniowego cieczy od temperatury. opracowała dr hab. Małgorzata Jóźwiak
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Zależność napięcia powierzchniowego cieczy od temperatury opracowała dr hab. Małgorzata Jóźwiak ćwiczenie nr 4 Zakres zagadnień obowiązujących do ćwiczenia
Bardziej szczegółowoWarunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Bardziej szczegółowoĆWICZENIE 2 KONDUKTOMETRIA
ĆWICZENIE 2 KONDUKTOMETRIA 1. Oznaczanie słabych kwasów w sokach i syropach owocowych metodą miareczkowania konduktometrycznego Celem ćwiczenia jest ilościowe oznaczenie zawartości słabych kwasów w sokach
Bardziej szczegółowoKontakt,informacja i konsultacje
Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna
Bardziej szczegółowoWyznaczanie stałej dysocjacji i masy molowej słabego kwasu metodą potencjometryczną
1. Wprowadzenie Wyznaczanie stałej dysocjacji i masy molowej słabego kwasu metodą potencjometryczną W wodzie, kwasy ulegają dysocjacji zgodnie z poniższym (uproszczonym) równaniem: Stałą równowagi tej
Bardziej szczegółowoTERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.
1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w
Bardziej szczegółowoGAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.
TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:
Bardziej szczegółowoTemperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
Bardziej szczegółowoWYZNACZANIE CIEPŁA TOPNIENIA LODU METODĄ BILANSU CIEPLNEGO
ĆWICZENIE 21 WYZNACZANIE CIEPŁA TOPNIENIA LODU METODĄ BILANSU CIEPLNEGO Cel ćwiczenia: Wyznaczenie ciepła topnienia lodu, zapoznanie się z pojęciami ciepła topnienia i ciepła właściwego. Zagadnienia: Zjawisko
Bardziej szczegółowoKatedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych opracował dr P. Góralski ćwiczenie nr 2 Zakres zagadnień obowiązujących do
Bardziej szczegółowoLABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA JONÓW TIOSIARCZANOWYCH Miejsce ćwiczenia: Zakład Chemii Fizycznej, sala
Bardziej szczegółowoA4.04 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.04 Instrukcja wykonania ćwiczenia Wyznaczanie cząstkowych molowych objętości wody i alkoholu Zakres zagadnień obowiązujących do ćwiczenia 1. Znajomość
Bardziej szczegółowoLaboratorium Podstaw Biofizyki
CEL ĆWICZENIA Celem ćwiczenia jest zbadanie procesu adsorpcji barwnika z roztworu oraz wyznaczenie równania izotermy Freundlicha. ZAKRES WYMAGANYCH WIADOMOŚCI I UMIEJĘTNOŚCI: widmo absorpcyjne, prawo Lamberta-Beera,
Bardziej szczegółowoWYZNACZANIE RÓWNOWAŻNIKA CHEMICZNEGO ORAZ MASY ATOMOWEJ MAGNEZU I CYNY
14 WYZNACZANIE RÓWNOWAŻNIKA CHEMICZNEGO ORAZ MASY ATOMOWEJ MAGNEZU I CYNY CEL ĆWICZENIA: Wyznaczanie równoważnika chemicznego oraz masy atomowej magnezu i cyny na podstawie pomiaru objętości wodoru wydzielonego
Bardziej szczegółowo6. ph i ELEKTROLITY. 6. ph i elektrolity
6. ph i ELEKTROLITY 31 6. ph i elektrolity 6.1. Oblicz ph roztworu zawierającego 0,365 g HCl w 1,0 dm 3 roztworu. Odp 2,00 6.2. Oblicz ph 0,0050 molowego roztworu wodorotlenku baru (α = 1,00). Odp. 12,00
Bardziej szczegółowoWykład 6. Klasyfikacja przemian fazowych
Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału
Bardziej szczegółowoKOROZJA. Korozja kontaktowa z depolaryzacja tlenową 1
KOROZJA Słowa kluczowe do ćwiczeń laboratoryjnych z korozji: korozja kontaktowa depolaryzacja tlenowa depolaryzacja wodorowa gęstość prądu korozyjnego natęŝenie prądu korozyjnego prawo Faradaya równowaŝnik
Bardziej szczegółowoKatedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wpływ stężenia kwasu na szybkość hydrolizy estru ćwiczenie nr 25 opracowała dr B. Nowicka, aktualizacja D. Waliszewski Zakres zagadnień obowiązujących do
Bardziej szczegółowoK05 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K05 Instrukcja wykonania ćwiczenia Wyznaczanie punktu izoelektrycznego żelatyny metodą wiskozymetryczną Zakres zagadnień obowiązujących do ćwiczenia 1. Układy
Bardziej szczegółowoĆwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych
CHEMI FIZYCZN Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych W ćwiczeniu przeprowadzana jest reakcja utleniania jonów tiosiarczanowych za pomocą jonów żelaza(iii). Przebieg
Bardziej szczegółowoProjekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Bardziej szczegółowoRÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH
8 RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH CEL ĆWICZENIA Wyznaczenie gramorównoważników chemicznych w procesach redoks na przykładzie KMnO 4 w środowisku kwaśnym, obojętnym i zasadowym z zastosowaniem
Bardziej szczegółowoPrawo Hessa. Efekt cieplny reakcji chemicznej lub procesu fizykochemicznego
Tomasz Lubera Prawo Hessa Efekt cieplny reakcji chemicznej lub procesu fizykochemicznego prowadzonego: Izobarycznie Q p = ΔH Izochorycznie Q V = ΔU nie zależy od drogi przemiany a jedynie od stanu początkowego
Bardziej szczegółowoWYZNACZANIE STAŁEJ DYSOCJACJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII ABSORPCYJNEJ
Ćwiczenie nr 13 WYZNCZNIE STŁEJ DYSOCJCJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII BSORPCYJNEJ I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie metodą spektrofotometryczną stałej dysocjacji słabego kwasu,
Bardziej szczegółowoPODSTAWY TERMODYNAMIKI
ODAWY ERMODYNAMIKI ( punkty (OŚ_3--7 Zad.. W zbiorniku zamkniętym tłokiem znajduje się moli metanu, który można z powodzeniem potraktować jako az doskonały. emperatura początkowa metanu wynosi 5 C a ciśnienie
Bardziej szczegółowoKrótki przegląd termodynamiki
Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.
Bardziej szczegółowoWAGI I WAŻENIE. ROZTWORY
Ćwiczenie 2 WAGI I WAŻENIE. ROZTWORY Obowiązujące zagadnienia: Dokładność, precyzja, odtwarzalność, powtarzalność pomiaru; Rzetelność, czułość wagi; Rodzaje błędów pomiarowych, błąd względny, bezwzględny
Bardziej szczegółowoWYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
Bardziej szczegółowoRÓWNOWAGI REAKCJI KOMPLEKSOWANIA
POLITECHNIK POZNŃSK ZKŁD CHEMII FIZYCZNEJ ĆWICZENI PRCOWNI CHEMII FIZYCZNEJ RÓWNOWGI REKCJI KOMPLEKSOWNI WSTĘP Ważną grupę reakcji chemicznych wykorzystywanych w chemii fizycznej i analitycznej stanowią
Bardziej szczegółowoOdpowiedź:. Oblicz stężenie procentowe tlenu w wodzie deszczowej, wiedząc, że 1 dm 3 tej wody zawiera 0,055g tlenu. (d wody = 1 g/cm 3 )
PRZYKŁADOWE ZADANIA Z DZIAŁÓW 9 14 (stężenia molowe, procentowe, przeliczanie stężeń, rozcieńczanie i zatężanie roztworów, zastosowanie stężeń do obliczeń w oparciu o reakcje chemiczne, rozpuszczalność)
Bardziej szczegółowoWyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej
Ćwiczenie 2. Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej 1. Przygotowanie do wykonania ćwiczenia. 1.1. Włączyć zasilacz potencjostatu i nastawić go na
Bardziej szczegółowoMateriał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych
Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych I. Reakcje egzoenergetyczne i endoenergetyczne 1. Układ i otoczenie Układ - ogół substancji
Bardziej szczegółowoUtylizacja i neutralizacja odpadów Międzywydziałowe Studia Ochrony Środowiska
Utylizacja i neutralizacja odpadów Międzywydziałowe Studia Ochrony Środowiska Instrukcja do Ćwiczenia 14 Zastosowanie metod membranowych w oczyszczaniu ścieków Opracowała dr Elżbieta Megiel Celem ćwiczenia
Bardziej szczegółowoPrzemiany termodynamiczne
Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość
Bardziej szczegółowoKatedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie lepkości wodnych roztworów sacharozy. opracowała dr A. Kacperska
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie lepkości wodnych roztworów sacharozy opracowała dr A. Kacperska ćwiczenie nr 20 Zakres zagadnień obowiązujących do ćwiczenia 1. Oddziaływania
Bardziej szczegółowoK1. KONDUKTOMETRYCZNE MIARECZKOWANIE STRĄCENIOWE I KOMPLEKSOMETRYCZNE
K1. KONDUKTOMETRYCZNE MIARECZKOWANIE STRĄCENIOWE I KOMPLEKSOMETRYCZNE Postępowanie analityczne, znane pod nazwą miareczkowania konduktometrycznego, polega na wyznaczeniu punktu końcowego miareczkowania
Bardziej szczegółowo