3. Zjawisko wzmocnienia i nasycenia. Rozkład mocy w przekroju poprzecznym (TEM)
|
|
- Kacper Kamiński
- 8 lat temu
- Przeglądów:
Transkrypt
1 3. Zjawisko wzmocieia i asyceia. Rozkład mocy w przekroju poprzeczym (TEM) 3.. Zjawisko wzmocieia i asyceia W staie rówowagi termodyamiczej obsadzaie staów eergetyczych opisae jest rozkładem Boltzmaa. Ozacza to, że dla każdej temperatury większość cząsteczek przebywa w iższych staach eergetyczych tylko dla poziomów rotacyjych stwierdzeie to ie jest zawsze prawdziwe. Tak więc, przy jedakowym prawdopodobieństwie przejść wymuszoych ze stau o iższej eergii do stau o wyższej eergii (absorpcja) i ze stau o wyższej eergii do stau o iższej eergii (emisja), całkowita liczba przejść z poziomów iższych a wyższe jest większa iż liczba przejść odwrotych, czyli układ pochłaia eergię promieiowaia ρ ω < 0. (3.) t ρ Aby padające promieiowaie zostało wzmocioe (czyli ω > 0 ), musi astąpić, t jak już powiedzieliśmy wcześiej, iwersja obsadzeń czyli >. (3.) g g α l = I e Z prawa Lamberta - Beera I 0 musiałoby więc wyikać, że współczyik absorpcji α jest ujemy. Ozacza to, że tradycyje rówaie Lamberta - Beera traci tutaj ses, jest oo bowiem wyprowadzoe dla α = cost, czyli dla zakresu optyki liiowej, gdy atężeie padającego promieiowaia jest małe. Promieiowaie o iewielkim atężeiu ie powoduje odchyleń od stau rówowagi termodyamiczej dla obsadzaia poziomów eergetyczych przez cząsteczki. Gdy a układ pada promieiowaie o dużym atężeiu, arusza oo paującą rówowagę termodyamiczą. Ilość pochłaiaej eergii zmiejsza się, a współczyik absorpcji maleje, coraz więcej bowiem cząsteczek zostaje przeiesioych a wyższy poziom eergetyczy. Gdy atężeie padającego promieiowaia adal rośie, układ osiąga sta asyceia czyli =. (3.3) g g 30
2 Ozacza to, że układ wybiela się, ie ma bowiem ai pochłaiaia, ai emitowaia eergii (α = 0). Przy dalszym wzroście atężeia padającego promieiowaia układ osiąga sta zway iwersją obsadzeń, czyli >. Układ zaczya emitować więcej g g eergii iż absorbować (α<0). Rys. 3.. Zależość współczyika absorpcji od atężeia padającego promieiowaia w zakresie optyki ieliiowej Oszacujmy, jak duże muszą być moce wiązki pompującej, aby został osiągięty sta asyceia. Rozważmy układ dwupoziomowy m. Jak już powiedzieliśmy wcześiej, w warukach rówowagi w układzie dwupoziomowym możemy osiągąć jedyie sta asyceia =, ie moża zaś osiągąć stau iwersji obsadzeń. g g Niech N 0 =N +N m będzie liczbą cząsteczek w jedostce objętości, N i N m są liczbami cząsteczek a poziomie i poziomie m. Zmiaa obsadzaia poziomu m w czasie wyosi dnm N ( ) m = W N Nm, (3.4) dt τ gdzie W = B m ρ ω. (3.5) We wzorze (3.4) pierwszy czło charakteryzuje procesy absorpcji wymuszoej, zaś czło drugi spotaicze opróżiaie poziomu wyższego m w sposób promieisty lub bezpromieisty z czasem życia a poziomie wzbudzoym τ. Wyraźmy N m za pomocą N=N -N m, czyli ( N Nm ) + Nm = N Nm N = (3.6) 0 N + Nm = + i podstawmy do wzoru (3.4). Otrzymujemy: d N N0 N N = W N + = N W (3.7) dt τ τ τ τ d N Załóżmy, że osiągięty został sta stacjoary = 0. Z rówaia (3.7) dt otrzymujemy więc 3
3 N N W τ τ =, (3.8) czyli N0 N =. (3.9) Wτ + Gdy wzrasta atężeie światła wywołującego przejścia, rośie W, a maleje N. Prawdopodobieństwo W związae jest z gęstością promieiowaia padającego zgodie ze wzorem (3.5). Moża pokazać, że W wiąże się z atężeiem promieiowaia I (czyli strumieiem eergii a powierzchię cm w czasie s) astępująco: σ I W =, (3.0) gdzie σ jest przekrojem czyym a absorpcję. Przekrój czyy σ jest związay ze współczyikiem absorpcji α zależością α =σν, gdzie N jest liczbą cząsteczek w cm 3. Jedostką przekroju czyego σ jest cm, a typowe przekroje czye mieszczą się w zakresie cm w zależości od zakresu widmowego. Dla obszaru widzialego są oe rzędu 0-6 cm. Podstawiając (3.0) do (3.9), otrzymujemy N0 N =. (3.) σ I τ + Ozaczając =, (3.) στ otrzymujemy N0 N =. (3.3) I + Wielkość osi azwę parametru asyceia i jest ważym parametrem pozwalającym określić wartość atężeia wiązki pompującej I, przy której rozpoczya się efekt asyceia, choć jest to oczywiście graica umowa. Gdy I=, ze wzoru (3.3) 3 otrzymujemy N = N 0, czyli N = N 0, N = N 0. Ozacza to, że choć 4 4 iwersja obsadzeń jeszcze ie astąpiła, to jedak zacząca część cząsteczek zajduje się a poziomie wzbudzoym N. Sta pełego asyceia osiągamy przy dalszym wzroście wartości I, gdy bowiem I>> wówczas, N 0 i N =N. Parametr asyceia ma prostą iterpretację fizyczą, wzór (3.) bowiem moża przekształcić tak, aby σ =. (3.4) τ I σ Czło s ozacza średią szybkość absorpcji a jedostkę eergii, zaś opisuje τ średią szybkość relaksacji spotaiczej. Parametr asyceia ozacza więc takie 3
4 atężeie padającego światła, przy którym szybkość pompowaia układu (przejścia do staów o wyższej eergii) zdołała się zrówać z szybkością opróżiaia poziomu wyższego (przejścia do stau o iższej eergii). Gdy to się staie, sta asyceia zaczya być dostrzegaly. Zakładając, że σ = 0-6 cm, a szybkość relaksacji jest rzędu τ = 0-6 s, otrzymamy atężeie asyceia około - kw/cm. Tak więc a przykład typowy laser argoowy o iezbyt dużej mocy 4 W używay do pomiarów spotaiczego rozpraszaia Ramaa wysyła wiązkę o atężeiu rzędu I = 4 W/(0, mm) = 0,4 kw/cm. Natężeie to jest więc za małe, aby wywoływać iwersję obsadzeń i pompować p. laser barwikowy lub szafirowy, ale lasery argoowe o mocy W mogą już być użyte do takich celów. Waruek (3.4) określa parametr asyceia dla laserów pracujących w reżimie pracy ciągłej. Waruek asyceia dla laserów pracujących jako lasery impulsowe jest trochę iy, miaowicie τ imp =, (3.5) σ gdzie τ imp jest czasem trwaia impulsu. Wyika to z faktu, że τ imp jest dużo krótszy od τ i dlatego czas charakteryzujący relaksację układu τ przestaje być istoty. 3.. Rozkład mocy w przekroju poprzeczym Do tej pory zakładaliśmy, że rezoator optyczy jest rezoatorem płaskim (rys.3.a). W rezoatorze płaskim powstaje fala płaska, tworząca z falą odbitą falę stojącą. O rozkładzie atężeia wzdłuż osi rezoatora decyduje waruek geeracji fali stojącej λ q = L, (3.6) gdzie q jest liczbą całkowitą. Aby powstała fala stojąca o długości λ, w rezoatorze optyczym o długości L musi się zmieścić wielokrotość połówek długości fali. Ozacza to, że dla różych liczb całkowitych q powstają fale o różej częstotliwości, zwae modami podłużym lub osiowymi charakteryzowae liczbą q (we wcześiejszych ozaczeiach używao symbolu, patrz wzór (.)). Trzeba zdawać sobie jedak sprawę, że w rzeczywistości rozkład atężeia promieiowaia wewątrz rezoatora jest bardziej skomplikoway. Przede wszystkim akcja laserowa rozpoczya się w dowolym miejscu rezoatora (w środku lub w pobliżu lustra) i dociera do lustra jako fala płaska lub fala kulista. Płaszczyza zwierciadła staje się źródłem promieiowaia i wskutek dyfrakcji wiązka ulega poszerzeiu. Stabilość rezoatora zależy od jego zdolości do utrzymaia promiei świetlych w jego wętrzu po wielokrotych odbiciach od zwierciadeł. Budowa rezoatorów optyczych decyduje o sposobie odbijaia światła we węce. Najczęściej spotykae rezoatory to: a) płaski, b) kofokaly (współogiskowy), c) hemisferyczy, d) iestabily (rys. 3.). W rezoatorze płaskim i kofokalym akcja rozwija się główie w obszarze przyosiowym. W rezoatorze kofokalym czoło fali kulistej jest dobrze dopasowae do kształtu zwierciadła, w 33
5 rezoatorze iestabilym zaś akcja rozwija się w całym obszarze czyym lasera. Rezoator iestabily ie ma więc zdolości do utrzymaia promiei świetlych we wętrzu przez dłuższy czas, ale pozwala a wysyłaie impulsu o gigatyczej mocy, poieważ akcja rozwija się w całym obszarze czyym. Rys.3.. Typy rezoatorów: a) płaski, b) kofokaly, c) hemisferyczy, d) iestabily Dotychczas iteresowaliśmy się rozkładem atężeia wzdłuż osi z. Należy jedak pamiętać, że wiązka wychodząca z lasera jest rozbieża (rys. 3.3) (choć odchyleie kątowe jest zwykle iewielkie) i ma pewie rozkład atężeia wzdłuż osi x i y, czyli w płaszczyźie prostopadłej do kieruku propagacji. Na rysuku 3.4 przedstawioo ajbardziej typowe rozkłady atężeń światła w płaszczyźie prostopadłej do kieruku rozchodzeia się wiązki laserowej. Rys Rozkład atężeia w kieruku poprzeczym 34
6 Rys Róże typy rozkładu atężeń w kieruku poprzeczym: a) TEM 00, b)tem 0, TEM 0, c) TEM 0, TEM 0 Rozkład atężeia w płaszczyźie xy prostopadłej do kieruku propagacji wiązki jest róży dla różego typu rezoatorów i wiele z takich rozkładów zostało policzoych przez Li i Foxa (teoria rezoatorów optyczych Li i Foxa). Omówieie teorii rezoatorów optyczych Li i Foxa zajdzie czytelik w podręcziku F. Kaczmarka, Wstęp do fizyki laserów, PWN, Warszawa 986. Uwzględieie rozkładu atężeń w płaszczyźie xy powoduje, że a mody geerowae w rezoatorze ałożoe są ie waruki iż dla fali stojącej. Moża pokazać, że dla rezoatora kofokalego (rys. 3.b) rozkład atężeń określoy jest astępującym warukiem 4L q m λ = + ( + + ), (3.7) zamiast waruku, który obowiązywał dla modów podłużych 4L q λ =. (3.8) Wielkości m i przybierają wartości całkowite, q zaś ozacza, jak poprzedio, liczbę połówek długości fali mieszczących się w długości rezoatora L. Mody charakteryzowae za pomocą liczb m i azywa się modami poprzeczymi i ozacza symbolem TEM m (ag. trasverse electromagetic mode). Mody określoe za pomocą tych samych m i, a różiące się q (czyli częstotliwościami) są różymi modami podłużymi o tym samym rozkładzie w kieruku poprzeczym. Mody poprzecze o różych wartościach ideksów m i różią się rozkładem atężeia w przekroju poprzeczym. Tak więc dla modu TEM 00 a ekraie umieszczoym prostopadle do kieruku rozchodzeia się wiązki widzimy okrągłą plamkę o malejącym atężeiu względem środka okręgu, dla modu TEM 0 i TEM 0 otrzymujemy a ekraie dwie plamki, dla modu TEM 0 i TEM 0 cztery itd. Na rysuku 3.5 przedstawioo rozkład atężeia pola elektryczego S(x,y) w płaszczyźie xy dla rezoatora kofokalego. Mod podstawowy TEM 00 jest symetryczy względem osi rezoatora i jego atężeie ma rozkład gaussowski. W płaszczyźie xy prostopadłej do kieruku propagacji wiązki obserwujemy w tym wypadku okrągłą plamkę o atężeiu malejącym w kieruku zewętrzym w sposób opisay przez fukcję Gaussa. Dla wyższych modów otrzymujemy rozkład kilku plamek i efekt te jest ajczęściej iepożąday. Poieważ dla modów wyższych iż TEM 00 atężeie w pukcie przecięcia płaszczyzy xy z osią z wyosi zero, więc ajprostszym sposobem wydzieleia TEM 00 i usuięcia wyższych modów jest diafragmowaie wiązki laserowej. Podsumujmy zagadieia omawiae w tym rozdziale: ) Parametrem, który charakteryzuje iwersję obsadzeń układu jest parametr asyceia = dla pracy w reżimie ciągłym, (3.9) στ τ imp = dla pracy w reżimie impulsowy. (3.0) σ 35
7 ) W rezoatorze optyczym lasera wyróżia się dwa typy modów: mody osiowe (podłuże) i mody poprzecze. Mody podłuże różią się od siebie jedyie wartościami częstotliwości. Różym modom podłużym odpowiadają te same rozkłady pól w przekroju poprzeczym. Mody poprzecze różią się między sobą ie tylko częstotliwością, ale rówież rozkładami pól w przekroju poprzeczym. Do tego samego modu poprzeczego ależy pewa liczba modów podłużych, które różią się częstotliwościami, ale rozkład pola w płaszczyźie poprzeczej jest dla tych modów jedakowy. Rys Rozkład amplitudy pola elektryczego dla różych modów poprzeczych 36
Podstawy działania laserów
Prof. Dr Halia Abramczyk Techical Uiversity of Lodz, Faculty of Chemistry Istitute of Applied Radiatio Chemistry Polad, 93-59 Lodz, Wroblewskiego 15 Phoe:(+ 48 4) 631-31-88; fax:(+ 48 4) 684 43 E-mail:abramczy@mitr.p.lodz.pl,
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji
VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
Promieniowanie atomów wzbudzonych
Achorage, USA, May 2002 W-27 (Jaroszewicz) 23 slajdy Na podstawie prezetacji prof. J. Rutkowskiego Promieiowaie atomów wzbudzoych Promieiowaie spotaicze Promieiowaie wymuszoe Promieiowaie retgeowskie 3/23-W27
= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC
4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc Drgaia i fale II rok Fizyka C Polaryzacja światła ( b a) arc tg - eliptyczość Prawo Selliusa daje kąt. Co z amplitudą i polaryzacją? 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc
u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY
Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe
Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE.
W S E i Z WYDZIAŁ. L A B O R A T O R I U M F I Z Y C Z N E Nr ćwicz. 9 Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. Semestr Grupa Zespół Ocea Data / Podpis Warszawa,
WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ
Ć w i c z e i e 6 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ 6.1 Opis teoretyczy W ośrodkach sprężystych wytrąceie pewego obszaru z położeia rówowagi powoduje drgaia wokół tego położeia.
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
ELEMENTY OPTYKI GEOMETRYCZNEJ
ELEMENTY OPTYKI GEOMETRYCZNEJ Optyka to dział fizyki, zajmujący się badaiem atury światła, początkowo tylko widzialego, a obecie rówież promieiowaia z zakresów podczerwiei i adfioletu. Optyka - geometrycza
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Rysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi
Aaliza fal złożoych Autorzy: Zbigiew Kąkol, Bartek Wiedlocha Przyjrzyjmy się drgaiu poprzeczemu struy. Jeżeli strua zamocowaa a obu końcach zostaie ajpierw wygięta, a astępie puszczoa, to wzdłuż struy
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa
Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
Fotometria. F. obiektywna = radiometria: Jaka ENERGIA dopływa ze źródła. F. subiektywna: Jak JASNO świeci to źródło? (w ocenie przeciętnego człowieka)
Fotometria F. obiektywa = radiometria: Jaka NRGIA dopływa ze źródła F. subiektywa: Jak JASNO świei to źródło? (w oeie przeiętego złowieka) Potrzebujemy kilku defiiji: defiija Gęstość spektrala (widmo)
ν = c/λ [s -1 = Hz] ν = [cm -1 ] ZASADY ZALICZENIA PRZEDMIOTU MBS c = m/s cos x H = H o E = E o cos x c = λν 1 ν = _ λ
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM Z MBS. ROZWIĄZYWANIE WIDM kolokwium NMR 23 kwietia 208 IR maja 208 złożoe czerwca 208 poiedziałek czwartek piątek 9.3 22.3 23.3 26.3 5. 6. 9. 2. 3. H NMR 23.
Podstawowe pojęcia optyki geometrycznej. c prędkość światła w próżni v < c prędkość światła w danym ośrodku
Optyka geometrycza Podstawowe pojęcia optyki geometryczej Bezwzględy współczyik załamaia c prędkość światła w próżi v < c prędkość światła w daym ośrodku c v > 1 Aksjomaty Światło w ośrodku jedorodym propaguje
Wykład XI. Light Amplification by Stimulated Emission of Radiation (LASER) laser półprzewodnikowy
Wykład XI Light Amplificatio by Stimulated Emissio of Radiatio (LASER) laser półprzewodikowy Emisja spotaicza Emisja spotaicza i wymuszoa Fotoy emitowae są we wszystkich kierukach z jedakowym prawdopodobieństwem
sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,
Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku
Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol Piotr Morawski 207 Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol, Piotr Morawski Jeżeli światło pada a graicę dwóch ośrodków, to ulega zarówo odbiciu a
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Zasada działania, właściwości i parametry światłowodów. Sergiusz Patela Podstawowe właściwości światłowodów 1
Zasada działaia, właściwości i parametry światłowodów Sergiusz Patela 1999-003 Podstawowe właściwości światłowodów 1 Parametry światłowodów - klasyfikacja Parametry włókie światłowodowych: 1. Optycze tłumieie,
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα
EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPULSY LASEROWE. prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy
EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPUSY ASEROWE T t N t Dwa główe mehaizmy powoująe ziekształeie impulsów laserowyh: ) GVD-group veloity isspersio ) SMP-self phase moulatio 3 E E τ () 0 t /
Termodynamika defektów sieci krystalicznej
Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski
Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się
2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora
. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora Gdy na ośrodek czynny, który nie znajduje się w rezonatorze optycznym, pada
Numeryczny opis zjawiska zaniku
FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.
W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch
Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi
Uniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER
CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady
ZASADA DZIAŁANIA LASERA
ZASADA DZIAŁANIA LASERA Rozkład promieniowania lasera w kierunku podłużnym Dwa podstawowe zjawiska: emisja wymuszona i rezonans optyczny. Jeżeli wiązkę promieniowania o długości fali λ wprowadzimy miedzy
Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe.
Ćwiczeie 10/11 Holografia sytetycza - płytki strefowe. Wprowadzeie teoretycze W klasyczej holografii optyczej, gdzie hologram powstaje w wyiku rejestracji pola iterferecyjego, rekostruuje się jedyie takie
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
PODSTAWY FIZYKI LASERÓW Wstęp
PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Metody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
O2. POMIARY KĄTA BREWSTERA
O. POMIARY KĄTA BREWSTERA tekst opracowała: Bożea Jaowska-Dmoch Polaryzacja światła jest zjawiskiem, które potwierdza falową aturę światła. Światło jest falą elektromagetyczą, w której cyklicze zmiay pól
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
POMIAR APERTURY NUMERYCZNEJ
ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia
Widmo promieniowania elektromagnetycznego
Widmo promieiowaia elektromagetyczego Czułość oka człowieka Płaska fala elektromagetycza w próżi Ciało doskoale czare Prawo promieiowaia Kirchhoffa: Stosuek zdolości emisyjej do zdolości absorpcyjej jest
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS 1. Absorpcja i emisja światła w układzie dwupoziomowym. Absorpcję światła można opisać jako proces, w którym
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
1. DO CZEGO POTRZEBNE SĄ LASERY FEMTOSEKUNDOWE?
1. DO CZEGO POTRZEBNE SĄ LASERY FEMTOSEKUNDOWE? Nagroda Nobla w 1999 dla Ahmeda Zewaila w dziedziie chemii jest uhoorowaiem 3 letiego okresu badań ultraszybkich procesów badaych metodami spektroskopii
5. Zasada indukcji matematycznej. Dowody indukcyjne.
Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją
Fale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
Chemia Teoretyczna I (6).
Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH
Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.
Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej
Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
Propagacja światła we włóknie obserwacja pól modowych.
Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów
Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody
Budowa i zasada działania lasera
Budowa i zasada działaia lasera Budowa atomu Demokryt (460 370 p..e.) materia składa się z iepodzielych elemetów; (atom, gr. atomos - iepodziely). Sta wiedzy o atomie w drugiej połowie XIX stulecia: Atom
WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa
Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Właściwości światła laserowego
Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich
O2. POMIARY KĄTA BREWSTERA
O. POMIARY KĄTA BREWSTERA tekst opracowały: Bożea Jaowska-Dmoch i Jadwiga Szydłowska Polaryzacja światła jest zjawiskiem, które potwierdza falową aturę światła. Światło jest falą elektromagetyczą, w której
Solitony i zjawiska nieliniowe we włóknach optycznych
Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.
Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych
PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE
4. PRZEŁDN PRĄDOWE NPĘOWE 4.. Wstęp 4.. Przekładiki prądowe Przekładikie prądowy prądu zieego azywa się trasforator przezaczoy do zasilaia obwodów prądowych elektryczych przyrządów poiarowych oraz przekaźików.
Metody Optyczne w Technice. Wykład 3 Optyka geometryczna
Metody Optycze w Techice Wykład 3 Optyka geometrycza Promień świetly Potraktujmy światło jako trumień czątek eergii podróżujących w przetrzei Trajektorie takich czątek to promieie świetle W przypadku wiązki
WYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY
ĆWICZENIE 103 WYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY Cel ćwiczenia: Wyznaczenie gęstości materiału, z którego jest wykonana badana struna. Zagadnienia: definicja fali, parametry opisujące falę (położenie
Zmiany Q wynikające z przyrostu zlewni
uch wody w korytach rzeczych Klasyfikacja ruchu. uch ieustaloy zmiey przepływ Q a długości rzeki i w czasie: ruch fal wezbraiowych ruch wody a długim odciku rzeki Q fala wezbraiowa obserwowaa w przekroju
Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny
Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny
Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG
Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności
Badanie efektu Halla w półprzewodniku typu n
Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.
I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n
I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.
Pomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU