Geometria przestrzenna. Stereometria
|
|
- Adrian Łukasik
- 6 lat temu
- Przeglądów:
Transkrypt
1 1 Geometria przestrzenna. Stereometria 0.1 Graniastos lupy Graniastos lup to wielościan, którego dwie ściany, zwane podstawami, s a przystaj cymi wielok atami leż acymi w p laszczyznach równoleg lych, a pozosta le ściany s a równoleg lobokami. Wśród graniastos lupów, wyróżniami graniastos lupy proste, w tym prostopad loṡciany i graniastos lupy pochy le. Niżej na rysunku mamy graniastos lup prosty o podstawie trȯjk ata oraz graniastos lup prosty - prostopad loṡcian o podstawie prostok ata h h Granistos lup o podsawie trȯjk ata Granistos lup o podsawie prostok ata Pole powierzchni calkowitej granistoslupa o podstawie wielok ata sk lada siȩ pola podstawy dolnej i podstawy gȯrnej, to znaczy z wielok atȯw przystaj acych o rȯwnych odpowiednich bokach. Na przyk lad, obliczmy pole powierzchni ca lkowitej graniastos lupa o podstawie trȯjk ata rȯwnobocznego P pole podstawy dolnej i gornej trojkata rownobocznego = a 3 pole powierzchni bocznej o wysokoṡci h graniastos lupa = a 3 P pole powierzchni bocznej = 3 a h Sk ad obliczamy pole ca lkowitej powierzchni graniastos lupa o podstawie trȯjk ata
2 rȯwnobocznego P c = a h a. Objetoṡċ graniastos lupa o podstawie trȯjk ata rȯwnobocznego o boku a rȯwne jest pole podstawy razy wysokoṡċ h V c = a 3 Natomiast objȩtoṡċ graniastos lupa o podstawie trȯjk ata o bokach a, b, c, ze wzoru Herona, rȯwne jest pole podstawy razy wysokoṡċ h a + b + c V = p(p a)(p b)(p c) h, p =. }{{ } pole podstawy polowa obwodu podstawy h Graniastos lup pochy ly o podstawie trȯjk ata i prostok ata h h Pole powierzchni ca lkowitej graniastos lupȯw pochy lych i ich objȩtoṡċ obliczamy podobnie jak graniastos lupȯw prostych. 0. Bry ly platoṅskie Wṡrȯd wieloṡcianȯw wyrȯżniamy bry ly platoṅskie, ktȯrych wszystkie ṡciany s a figurami foremnymi, to znaczy maj a wszystkie boki i wszystkie k aty rȯwne. Od czasȯw Euklidesa wiadomo, że figur platoṅskich w przestrzeni jest dok ladnie piȩċ. czworoṡcian foremny, ktȯrego cztery ṡcieny s a trȯjk atami rȯwnobocznymi
3 3 szeṡcian foremny, ktȯrego wszystkie szeṡċ ṡcian s a kwadratami oṡmioṡcian foremny, ktȯrego wszystkie osiem ṡcian s a trȯjk atami rȯwnobocznymi dwunastṡcian foremny, ktȯrego wszystkie dwanaṡcie ṡcian s a piȩciok atami foremnymi dwudziestoṡcian foremny, ktȯrego wszystkie dwadzieṡcia ṡcian s a trȯjk atami rȯwnobocznymi 0..1 Czworoṡcian foremny Powierzchnia czworoṡcianu foremnego sk lada siȩ z czterech ṡcian, ktȯre s a trȯjk atami rȯwnobocznymi o boku a. C H a 0 A a B Czworościan foremny o krawȩdzi a Pole powierzchni ca lkowitej czworoṡcianu foremnego o krawȩdzi a sk lada siȩ z pola czeterech trȯjk atȯw rownobocznych o bokach a. P pole powierzchni calkowitej = a 3 = a 3. Objȩtoṡċ czworoṡcianu foremnego, jak każdego ostros lupa, rȯwna jest iloczynowi 1 wysokoṡci H czworoṡcianu razy pole podatstawy. Pole podstawy to jest pole 3 trȯjk ata rȯwnobocznego P pole podstawy = a 3 Zatem objȩtoṡċ czworoṡcianu foremnego V = 1 3 H a 3 = a 3 1 H Teraz zajmiejmy siȩ obliczeniem wysokoṡci H. Otȯż, wysokoṡċ H obliczymy z trȯjk ata prostok atnego OBC. Mianowicie, z twierdzenia Pitagorasa mamy OC = BC OB, OC = H, BC = a, OB = a 3 = a 3 3 3
4 Sk ad obliczamy H = a ( a 3 3 ) = a 3, H = a 3 Zatem, objȩtoṡ.c czworoṡcianu foremnego V = 1 3 a 3 a 3 = a Sześcian foremny Sześcian foremny jest prostopad lościanem, który ma wszystkie sześć ścian kwadratami o boku a. Szeṡcian foremny o krawȩdzi a a 3 Latwo obliczamy a } {{} a Pole powierzchni calkowitej szescianu P c = 6a. Objetosc szescianu V = a 3. Przekatna podstawy d p = a. Przekatna szescianu d = a 3. Przyk lad 0.1 Dla sześcianu o boku a =, oblicz (i) pole ca lkowitej powierzchni sześcianu, (ii) objȩtość sześcianu.
5 5 (iii) przek atn a podstawy sześcianu. (iv) przek atna sześcianu. Rozwi azanie. Podstawiaj ac do wzorów, obliczamy (i) pole ca lkowitej powierzchni sześcianu P c = 6a = 6 = 96, (ii) objȩtość sześcianu V c = a 3 = 3 = 6. (iii) przek atn a podstawy sześcianu d p = a =. (iv) przek atna sześcianu d = a 3 = 3. Zadanie 0.1 Dla sześcianu o boku a = 5, oblicz (i) pole ca lkowitej powierzchni sześcianu, (ii) objȩtość sześcianu. (iii) przek atn a podstawy sześcianu. (iv) przek atna sześcianu Oṡmioṡcian foremny Trzeci a bry l a platoṅsk a jest oṡmioṡcian foremny, ktȯrego osiem ṡcian s a trȯjk atami rȯwnobocznymi o boku a. a a a } {{} a Pole powierzchni ca lkowitej oṡmioṡcianu foremnego o krawȩdzi a rȯwne jest 8 razy pole trȯjk ata rȯwnobocznego o boku a P pole powierzchni calkowitej = 8 a 3 = a 3 P
6 6 Objȩtoṡċ oṡmioṡcianu foremnego o krawȩdzi a rȯwne jest razy objȩtoṡċ ostros lupa o podstawie kwadratu o boku a i wysokoṡci h = a 0.. Dwunastoṡcian foremny V objetosc = 1 3 a h = 1 3 a a = a3 3 V Czwart a bry l a platoṅsk a jest dwunastoṡcian foremny, ktȯrego dwanaṡcie ṡcian to s a piȩciok aty rȯwnoboczne o boku a. Powierrzchnia ca lkowita dwunastoṡcianu foremnego rȯwna jest dwanaṡcie razy pole piȩciok ata foremnego P pole powierzchni calkowitej = 1 a 3 Objȩtoṡċ dwunastoṡcianu foremnego = 3a 3 P 0..5 Dwudziestoṡcian foremny V = a3 ( ) Pi at a bry l a platoṅsk a jest dwundziestoṡcian foremny, ktȯrego dwadzieṡcia ṡcian to s a trȯjkaty rȯwnoboczne o boku a.
7 7 Powierrzchnia ca lkowita dwunastoṡcianu foremnego rȯwna jest dwanaṡcie razy pole piȩciok ata foremnego P powierzchnia calkowita = 0 a 3 Objȩtoṡċ dwundziestoṡcianu foremnego o krawȩdzi a 0.3 Ostros lupy = 5a 3 P V objetosc dwudziestoscianu foremnego = 5 1 a3 ( 3 + 5) V Ostros lupem nazywamy wielościan, którego podstaw a jest dowolny wielok at a ściany boczne s a trójk ami o wspólnym wierzcho lku. Wśród ostros lupów wyróżniamy ostros lupy foremne, których podstaw a jest wielok ad foremny i spodek wysokości leży w środku okrȩgu opisanego na podstawie ostros lupa Ostros lup prawid lowy o podstawie kwadratu Oznaczenia: a bok kwadratu w podstawie ostros lupa H wysokość ostros lupa h wysokość ściany bocznej ostros lupa l krawȩdź boczna ostros lupa P a pole podstawy ostros lupa P 0 pole ściany bocznej ostros lupa P c pole powierzcni ca lkowitej ostros lupa V objȩtość ostros lupa Pole podstawy ostros lupa foremnego równa siȩ polu kwadratu o boku a P a = a. Pole pobocznicy ostros lupa foremnego P l równe jest polu czterech trójk atów równoramiennych o podstawie a i wysokości h. Natomiast, pole ściany bocznej ostros lupa P 0 równe jest polu trójk ata równoramiennego o podstwie a i wysokości h. P 0 = 1 a h.
8 8 Wysokść ściany bocznej wyrażamy w zależności od boku a i krawȩdzi l. Mianowicie, z twierdzenia Pitagorasa oblicamy wysokość h = l ( a ), h = l a, h = 1 l a. Wtedy pole ściany bocznej P 0 = 1 a l a. Pole ca lkowitej powierzchni ostros lupa równe jest polu czterech trójk atów w podstawie o boku a plus pola cztery trójk atów równoramiennych o podstawie a i ramionach l. Pole powierzchni ca lkowitej ostros lupa foremnego P c = a + P 0, P c = a + a l a }{{ } pole powierzchni i objȩtość ostros lupa foremnego V = 1 3 a H l H a a 0.3. Ostros lup foremny o podstawie sześciok ata foremnego Oznaczenia: a bok sześciok ata w podstawie ostros lupa H wysokość ostros lupa h wysokość ściany bocznej ostros lupa l krawȩdź boczna ostros lupa P a pole podstawy ostros lupa P 0 pole ściany bocznej ostros lupa P c pole powierzcni ca lkowitej ostros lupa
9 9 V objȩtość ostros lupa Jasne, że pole podstawy ostros lupa foremnego równa siȩ polu P a sześciok ata foremnego o boku a P a = 6 a 3 = 3a 3 Pole pobocznicy ostros lupa foremnego P l równe jest polu sześciu trójk atów równoramiennych o podstawie a i wysokości h. Pole ściany bocznej ostros lupa P 0 równe jest polu trójk ata równoramiennego o podstwie a i wysokości h. P 0 = 1 a h. Wysokść ściany bocznej wyrażamy w zależności od boku a i krawȩdzi l. Mianowicie, z twierdzenia Pitagorasa oblicamy wysokość h = l ( a ), h = l a, h = 1 l a. Wtedy pole ściany bocznej P 0 = 1 a l a. Pole ca lkowitej powierzchni ostros lupa równe jest polu sześciok ata foremnego w podstawie o boku a plus pola sze{sciu trójk atów równoramiennych o podstawie a i ramionach l. Pole powierzchni ca lkowitej ostros lupa foremnego P c = P a + 6P 0, P c = 3a 3 i objȩtość ostros lupa foremnego + 6 a l a P c = 3 [a 3 + a l a ] pole powierzchni V = 1 3a 3 H = a 3 H 3 } {{} objetosc V l H h a.
10 10 0. Bry ly Obrotowe Wśród bry l obrotowych wyróżniamy walec, stożek i kulȩ Walec Walec powstaje z obrotu prostok ata wokó l jednego z jego boków. Prosty kszta lt walca prowadzi do oczywistych wzorów na jego ca lkowit a powierzchnie i objȩtość. Powierzchnia ca lkowita P c walca sk lada siȩ z pola podstawy dolnej S = πr, podstawy gȯrnej S = πr oraz powierzchni bocznej P b = πrh i wyrażona jest przez promień r i wysokość h. P powierzchnia calkowita = πr + πrh = πr(r + h). P c i objȩtość walca V = πr h. 0.. Stożek Stożek powstaje z obrotu trójk ata prostok atnego wokó l jednej z jego przyprostok atnych.
11 11. Oznaczenia: r promień podstawy stożka l tworz aca stożka h wysokść stożka P l powierzchna boczna stożka P c powierzchnia ca lkowita stożka V objȩtość stożka Obliczamy powierzchnia podstawy S = πr, powierzchna boczna stożka P l = πr l powierzchnia ca lkowita stożka P c = πr(r + h) objȩtość stożka 1 3 πr h Kula Kula o promieniu r ma powierzchnie P = πr i objȩtość V = 3 πr3 Prof. dr Tadeusz STYṠ Warszawa, 8 marzec, 019.
SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA
SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 z y 0 x Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA Prof. dr. Tadeusz STYŠ Warszawa 2018 1 1 Projekt trzynasty
Geometria odwzorowań inżynierskich Zadania 01
Scriptiones Geometrica Volumen I (2007), No. Z1, 1 4. Geometria odwzorowań inżynierskich Zadania 01 Edwin Koźniewski Instytut Inżynierii Budowlanej, Politechnika Bia lostocka 1. Twierdzenie o punkcie wȩz
Stereometria bryły. Wielościany. Wielościany foremne
Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
Geometria odwzorowań inżynierskich Zadania 02
Scriptiones Geometrica Volumen I (2007), No. Z2, 1 3. Geometria odwzorowań inżynierskich Zadania 02 1. Odwzorowania w rzucie równoleg lym. Przekroje cd. Konstrukcje p laskie 1.1. Przekszat lcenia na p
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017
MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017 Nr z wniosku ID: 3313 Tytuł projektu edukacyjnego: Jakie bryły przestrzenne spotykamy na
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C
Scriptiones Geometrica Volumen I (2014), No. 6C, 1 8. Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa czo lowa wnȩtrza Rys. 6C-01:
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna
Geometria odwzorowań inżynierskich Zadania 06
Scriptiones Geometrica Volumen I (2014), No. Z6, 1 9. Geometria odwzorowań inżynierskich Zadania 06 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Przenikanie siȩ figur (bry l) w rzutach Monge a
Geometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
Geometria odwzorowań inżynierskich rzut środkowy 06A
Scriptiones Geometrica Volumen I (2014), No. 6A, 1 10. Geometria odwzorowań inżynierskich rzut środkowy 06A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzut środkowy i jego niezmienniki Przyjmijmy
Trigonometria. Funkcje trygonometryczne
1 Trigonometria. Funkcje trygonometryczne Trigonometria to wiedza o zwi azkach miarowych pomiedzy bokami i k atami trójk atów. Takie znaczenie s lowa Trigonometria by lo używane w czasach starożytnych
MATURA 2012. Przygotowanie do matury z matematyki
MATURA 01 Przygotowanie do matury z matematyki Część IX: Stereometria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,
Matematyka podstawowa IX. Stereometria
Zadania wprowadzające: Matematyka podstawowa IX Stereometria 1. Pole powierzchni całkowitej sześcianu jest równe 54. Oblicz objętość sześcianu. 2. Pole powierzchni sześcianu jest równe 96.Oblicz długość
Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D
Scriptiones Geometrica Volumen I (2014), No. 6D, 1 9. Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie w perspektywie i perspektywie
Skrypt 33. Powtórzenie do matury:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F
Scriptiones Geometrica Volumen I (2014), No. 6F, 1 10. Geometria odwzorowań inżynierskich Perspektywa odbić w zwierciad lach p laskich 06F Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa
Geometria odwzorowań inżynierskich Wyk lad 03B
Scriptionis Geometrica Volumen I (2014), No. 3B, 1 9. Geometria odwzorowań inżynierskich Wyk lad 03B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie wzajemne w aksonometrii Przyk lad 1 Wyznaczyć
Klasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
STEREOMETRIA. Poziom podstawowy
STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola
ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a.
ZADANIE 1 (5 PKT) Czworościan foremny o krawędzi a rozcięto płaszczyzna prostopadła do jednej z krawędzi, przechodzac a w odległości 0, 25a od jednego końca tej krawędzi. Oblicz objętość otrzymanych brył.
Geometria odwzorowań inżynierskich. Zadania 10A
Scriptiones Geometrica Volumen I (2014), No. Z10A, 1 7. Geometria odwzorowań inżynierskich. Zadania 10A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Twierdzenia o rozpadzie linii przenikania W
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania
Stereometria (geometria przestrzenna)
Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy
0.1 Kombinatoryka. n! = (n 1) n. Przyjmujemy umownie że 0! = 1 Wypiszmy silnie kolejnych liczb naturalnych
1 0.1 Kombinatoryka Kombinatoryka obejmuje takie pojȩcia jak silnia liczby naturalnej n, permutacje, wariacje bez powtȯrzeṅ i wariacje z powtȯrzeniami oraz kombinacje. Niżej podajemy opis tych pojȩċ z
b) Obliczyć pole trójkąta o bokach a, b, c. Dla kolejnych a, b, c równych:
Zadanie 1. a) Czworościan foremny. Oblicz: powierzchni wielościanu b) Obliczyć pole trójkąta o bokach a, b, c. Dla kolejnych a, b, c równych: a b c 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12
=, wariacje bez powtorzen. (n k)! = n k, wariacje z powtorzeniami.
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 Silnia, Kombinacje i Wariacje n! = 1 2 3 (n 1) n, silnia Cn k n! = k!(n k)!, kombinacje Vn k n! =, wariacje bez powtorzen. (n k)! = n k, wariacje
ELEMENTARZ MATEMATYKA ARYTMETYKA I GEOMETRIA
i SZKO LA PODSTAWOWA HELIANTUS 02-892 Warszawa ul. Bażancia 16 ELEMENTARZ MATEMATYKA ARYTMETYKA I GEOMETRIA KLASA I, II, III TADEUSZ STYŠ Warszawa, Październik 2017 ii Contents 0.1 Wstȩp............................
Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.
1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 4 MARCA 205 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 3 25 2 : 5
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 13 Zadania stereometria
1 TEST WSTĘPNY 1. (1p) Graniastosłup ma 12 wierzchołków. Liczba krawędzi tego graniastosłupa to: A. 12 B. 18 C. 24 D. 36 2. (1p) Pole powierzchni jednej ściany sześcianu jest równe 9. Objętość tego sześcianu
Przedmiotowe Zasady Oceniania
Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Matematyka III 2. M. Dobrowolska, M. Karpiński, J. Lech 3. GWO Forma 1. Formy sprawdzania wiedzy
Plan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,
Przyk³adowe zdania. Wydawnictwo Szkolne OMEGA. Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. Zadanie 8. Zadanie 9.
Zadanie. Przyk³adowe zdania Napisz równanie prostej przechodz¹cej przez punkty A (, ) i B (, 4 ). Zadanie. Napisz równanie prostej, której wspó³czynnik kierunkowy równy jest, wiedz¹c, e przechodzi ona
Z przestrzeni na płaszczyznę
Z przestrzeni na płaszczyznę Wstęp W naszej pracy zajęłyśmy się nietypowymi parkietażami. Zwykle parkietaże związane są z wielokątami i innymi figurami płaskimi. Postanowiłyśmy zbadać jakie parkietaże
Geometria odwzorowań inżynierskich. Zadania 10
Scriptiones Geometrica Volumen I (2014), No. Z10, 1 12. Geometria odwzorowań inżynierskich. Zadania 10 Edwin Koźniewski Zak lad Infoemacji Przestrzennej 1. Cień sfery na p lszczyznȩ 1.1. Jeszcze o kolineacji
Geometria odwzorowań inżynierskich Zadania 04
Scriptiones Geometrica Volumen I (2014), No. Z4, 1 3. Geometria odwzorowań inżynierskich Zadania 04 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Punkt przebicia p laszczyzny prost a w aksonometrii
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:
b) Obliczyć pole trójkąta o bokach a, b, c. Dla kolejnych a, b, c równych:
Zadanie 1. a) Czworościan foremny. Oblicz: powierzchni wielościanu b) Obliczyć pole trójkąta o bokach a, b, c. Dla kolejnych a, b, c równych: a b c 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
KLASA CZWARTA TECHNIKUM WYMAGANIA NA POSZCZEGÓLNE OCENY
KLASA CZWARTA TECHNIKUM WYMAGANIA NA POSZCZEGÓLNE OCENY Wymagania stawiane przed uczniem podzielone są na trzy grupy: Wymagania podstawowe ( zawierają wymagania koniczne ) Wymagania dopełniające ( zawierają
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
MiNI Akademia Matematyki na Politechnice Warszawskiej
MiNI Akademia Matematyki na Politechnice Warszawskiej Krzysztof Che lmiński Okr egi i styczne MiNI PW, 14.10.2017 Podstawowe twierdzenia wykorzystywane w zadaniach z ćwiczeń Twierdzenie 1 (najmocniesze
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 KWIETNIA 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych
Własności walca, stożka i kuli.
Własności walca, stożka i kuli. 1. Cele lekcji a) Wiadomości Uczeń: - zna pojęcie bryły obrotowej, - zna definicje: walca, stożka, kuli, - zna budowę brył obrotowych, - zna pojęcia związane z symetrią
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
5. Oblicz pole powierzchni bocznej tego graniastosłupa.
11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x 3 x 4 jest równe A. 94 B. 60 C. 47 D. 20
STEREOMETRIA - ZADANIA MATURALNE lata 2010-2017 Zadanie 1. (0-1) Maj 2010 [I. Wykorzystanie i tworzenie informacji] Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x x 4 jest równe A. 94 B.
Geometria odwzorowań inżynierskich Wyk lad 03A
Scriptionis Geometrica Volumen I (2014), No. 3A, 1 17. Geometria odwzorowań inżynierskich Wyk lad 03A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Elementy wspólne prostej i p laszczyzny (okrȩgu
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
WYMAGANIA EDUKACYJNE Z MATEMATYKI
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę w postaci potęgi o wykładniku ujemnym porządkuje
PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO SPRAWDZIAN 2
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI IMIE I NAZWISKO PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO SPRAWDZIAN 2 SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Trzej robotnicy pracujacy dziennie
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości
=, =, =, = Funkcje trygonometryczne kąta skierowanego określa się wzorami:
Matematyka to nauka o naszych wspólnych urojeniach. Ale urojenia jak to urojenia, jak się je nieco usystematyzuje to stają się rzeczywistością. To już druga część słynnego kompendium czyli funkcje trygonometryczne,
Plan wynikowy klasa 3
Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji
Funkcje trygonometryczne. sinus (sin) cosinus (cos) tangens (tg) kotangens (ctg) secans (sec) cosecans (cosec)
Matematyka to nauka o naszych wspólnych urojeniach. Ale urojenia jak to urojenia, jak się je nieco usystematyzuje to stają się rzeczywistością. To już druga część słynnego kompendium czyli funkcje trygonometryczne,
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań
A. 4, 5, 6 B. 3, 4, 5 C. 6, 8, 12 D. 5, 12, 14
OSTROSŁUPY i GRANIASTOSŁUPY - test grupa A 1 Ile wynosi objętość ostrosłupa prawidłowego trójkątnego o = 27 cm 2 i wysokości 10 cm A 270 cm 3 B 27 cm 3 C 90 cm 3 D 81 cm 3 2 Ile wynosi powierzchnia całkowita
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:
KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca
Sprawdzian całoroczny kl. II Gr. A x
. Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Geometria odwzorowań inżynierskich rzut środkowy 06B
Scriptiones Geometrica Volumen I (2014), No. 6B, 1 17. Geometria odwzorowań inżynierskich rzut środkowy 06B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. K lad p laszczyzny Rys. 6B-01: Konstrukcja
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na
Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na www.swiatmatematyki.pl 1. Wypiszmy początkowe potęgi liczby Zestaw podstawowy
Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D
Matematyka Wymagania edukacyjne dla uczniów klas VIII Rok szkolny 2018/2019. Dział Ocena Umiejętności Potęgi i pierwiastki. Na ocenę dopuszczającą
Matematyka Wymagania edukacyjne dla uczniów klas VIII Rok szkolny 2018/2019 Dział Ocena Umiejętności Potęgi i pierwiastki Uczeń: - oblicza wartości potęg o wykładniku całkowitym dodatnim i całkowitej podstawie
Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.
KARTA PRACY NAUCZYCIELA
KARTA PRACY NAUCZYCIELA Przedmiot: Klasa: Temat: Data Uwagi: Matematyka III gimnazjum Objętość brył podobnych Nie wszystkie zadania muszą zostać wykonane. Wszystko zależy od poziomu wiadomości danej klasy.
Planimetria 1 12 godz.
Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie
= a + 1. b + 1. b całkowita?
9 ALGEBRA Liczby wymierne Bukiet 1 1. Oblicz wartość wyrażenia 1+ 1 1+ 1 1+ 1 1. 2. Znajdź liczby naturalne a, b, c i d, dla których 151 115 = a + 1 b + 1. c + 1 d 3. W podobny sposób spróbuj przekształcić
Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik
Rozwiązania zadań Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY Zadanie 1 (5pkt) Równanie jest kwadratowe, więc Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik /:4 nierówności
Geometria odwzorowań inżynierskich perspektywa boczna wnȩtrza 06E
Scriptiones Geometrica Volumen I (2014), No. 6E, 1 14. Geometria odwzorowań inżynierskich perspektywa boczna wnȩtrza 06E Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa boczna wnȩtrza
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
1 Odległość od punktu, odległość od prostej
24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14
I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu