INFORMATYKA W SELEKCJI
|
|
- Zdzisław Wójtowicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 INFORMATYKA W SELEKCJI
2 INFORMATYKA W SELEKCJI - zdnini. Dn w prc hodowlnj prc z dużm zbiorm dnch (Excl). Podstw prc z rlcjną bzą dnch w prormi MS Accss 3. Sstm sttstczn n przkłdzi pkitu SAS i bzpłtno pkitu R Z pomocą nrzędzi prormów Excl, SAS, R: 4. Wkorzstni zlżności zminnch w slkcji rrsj 5. Anliz wrincji z modlm stłm i losowm (ocn h ) 6. Ocn wrtości hodowlnj z modlm misznm 7. Ocn fktów slkcji (m.in. trndu ntczno)
3 INFORMATYKA W SELEKCJI Modl klsfikcji pojdnczj ij i ij Tki modl to oóln zpis ukłdu wilu równń. Np. dl pięciu obsrwcji z dwóch rup, tn ukłd wląd tk: = =
4 INFORMATYKA W SELEKCJI Zpis klsczn ukłdu równń Zpis mcirzow ukłdu równń wktor obsrwcji wktor fktów wktor cznników spcficznch mcirz wstąpiń X = X +
5 INFORMATYKA W SELEKCJI ANOVA jdnocznnikow ij i ij Anliz wrincji zlż od tpu modlu: fkt moż bć stł (std, psz) lub losow (rup ojcowski) Struktur populcji w hodowli jst njczęścij brdzij złożon Klsfikcj krzżow dwukirunkow ijk h i s j ijk Dwucznnikową nlizę wrincji możn stosowć jśli ob ocnin fkt są stł lub losow! ijk h i s j ijk modl MIESZANY fkt stł fkt losow
6 Zpis mcirzow równń modlu miszno s s s h h wktor obsrwcji wktor fktów stłch wktor fktów spcficznch wktor fktów losowch mcirz wstąpiń fktów stłch mcirz wstąpiń fktów losowch X Z ijk j i ijk s h INFORMATYKA W SELEKCJI modl miszn
7 X Z = X + Z Zpis mcirzow równń modlu miszno s s s h h = ijk j i ijk s h INFORMATYKA W SELEKCJI modl miszn Nsz pięć krów w dwóch stdch to córki trzch ojców A jk ocnić fkt modlu miszno?
8 INFORMATYKA W SELEKCJI modl miszn Ocn fktów modlu miszno moż bć oprt n mtodzi njmnijszch kwdrtów. Uzskujm wtd stmtor fktów stłch (BLUE) prdktor fktów losowch (BLUP) możliw jst wkorzstni zlżności wwnątrz fktów (włączni do obliczń mcirz kowrincji) Dodtkowo, mtod REML umożliwi uzskni nibciążonch stmtorów wrincji/kowrincji i użci ich do ocn BLUE i BLUP = X + Z + są on poprwion n sibi nwzjm Zbiór mtod stosownch w nowoczsnj ocni wrtości hodowlnj nosi nzwę mtod BLUP
9 INFORMATYKA W SELEKCJI mtod BLUP Njoólnijsz zpis modlu miszno = X + Z + stł fkt (std, rup żwiniowj, roku urodzni itp.) losow fkt (ntczn, np. ojcowski, osobnicz) Sir modl ijk h i s j ijk Animl modl ij h i j ij Mtod BLUP umożliwi: stmcję fktów stłch (BLUE) prdkcję fktów losowch (BLUP) poprwionch n sibi wkorzstni zlżności wwnątrz fktów (np. przz włączni do obliczń mcirz spokrwniń)
10 MACIERZ SPOKREWNIEŃ Mcirz spokrwniń A: mcirz smtrczn jj lmnt ij to współcznniki pokrwiństw jj lmnt dionln jj są równ + wsp. inbrdu jśli rodzic osobnik j ni są spokrwnini to jj = Przkłd prostch mcirz spokrwniń dl trzch osobników: A,5,5,5,5,5,5 A,5,5,5,5,5,5 A 3 I A płn rodzństwo A półrodzństwo T mcirz tk wlądją jśli rodzic ni uczstniczą w ocni! A 3 zwirzęt nispokrwnion (mcirz idntczności)
11 MACIERZ SPOKREWNIEŃ Elmnt mcirz spokrwniń to współcznniki pokrwiństw Współcznnik pokrwiństw z dfinicji: prz złożniu i j ij ij cov( cov( i i j Ztm: lmnt mcirz spokrwniń to ilorz kowrincji i wrincji ntcznch, np. i j ) j ) A cov cov 3 cov cov 3 cov cov 3 3
12 MACIERZ KOWARIANCJI Jśli pomnożm mcirz spokrwniń przz wrincję ntczną otrzmm mcirz kowrincji ocninch wrtości hodowlnch G cov cov 3 cov cov 3 cov cov 3 A cov cov 3 G cov3 cov 3 cov 3 cov 3 G A Prz brku spokrwniń G I
13 METODA BLUP Oóln postć modlu miszno zpis klsczn ijk i j ijk zpis mcirzow = X + Z + dzi fkt stł (std, rup, roku itp.), fkt losow (ntczn; ocnin wrtości hodowln), X, Z mcirz wstąpiń. Co z wktorm? Zkłd się, ż fkt mją rozkłd normln o tj smj wrincji i są prmi niskorlown. Do obliczń birz się tlko
14 METODA BLUP Modl: = X + Z + Złożni: fkt mją rozkłd normln o wrincji i są prmi niskorlown. Rozwiązni: stmtor fktów orz prdktor wrtości hodowlnch uzskuj się w wniku rozwiązni nstępująco ukłdu równń modlu miszno, Mixd Modl Eutions, MME): X'X Z' X Z'Z X'Z σ G ˆ ˆ X' Z' dzi mcirz G to mcirz kowrincji dl lmntów wktor.
15 METODA BLUP Z' X' G Z'Z Z'X X'Z X'X ˆ ˆ σ Ukłd równń oólni Jśli ocnin zwirzęt są nispokrwnion: Z' X' I Z'Z Z'X X'Z X'X ˆ ˆ σ σ wtd, σ I G I G Jśli ocnin zwirzęt są spokrwnion: Z' X' A Z'Z Z'X X'Z X'X _ ˆ ˆ σ σ wtd, σ A G A G
16 METODA BLUP Zwirzęt są spokrwnion: Z' X' A Z'Z Z'X X'Z X'X ˆ ˆ σ σ Zwirzęt ni są spokrwnion: Z' X' I Z'Z Z' X X'Z X'X ˆ ˆ σ σ h h k 4 h h k Wrżni oznczm jko k. Ocn BLUP oprt n modlu ojcowskim: Ocn BLUP oprt n modlu osobniczm: Skąd m to znm?
17 METODA BLUP Ukłd równń MME oólni X'X Z' X Z'Z X'Z σ G ˆ ˆ X' Z' L b = r L b r A jk rozwiązć tki ukłd równń??? No, jśli L b = r to b = L - r X'X Z'X Z'Z X'Z σ G X' ˆ Z' ˆ b = L - r
18 METODA BLUP Ukłd równń Rozwiązni X'X Z' X Z'Z X'Z σ G ˆ ˆ X' Z' X'X Z' X Z' Z X'Z σ G X' ˆ Z' ˆ L b = r b = L - r Tk po prostu?! Nistt, uzskni odwrotności mcirz L to sporo prc; ni dość, ż bw wilk, to jst w dodtku osobliw Spdj! Sm jstś osobliw!!! W prktc rozwiązni uzskuj się nkłdjąc n ukłd równń pwn wrunki orniczjąc, np. łącząc fkt stł lub przjmując zrową wrtość jdno z nich
19 INFORMATYKA W SELEKCJI modl miszn Ocn fktów modlu miszno możliw jst w spcjlistcznch pkitch sttstcznch
20 MODEL STAŁY, A MODEL MIESZANY PRÓBA DANYCH. Bonitcj młodch koni rs śląskij kwlifikownch do hodowli. Punkt przznwn w różnch ktorich Nzw Nr Nr ojc Nr ojc_o Nr mtki-o Sum punktów Prób Rok ur Misiąc ur NIWA BERNIKLA DELTA ABISYNIA IWA ELEGIA BELA Oprc. n podst. wkłdu dr T. Suchockio
21 Nzw Nr Nr ojc Nr ojc_o Nr mtki-o Sum punktów Prób Rok ur Misiąc ur NIWA BERNIKLA DELTA ABISYNIA MODEL STAŁY, A MODEL MIESZANY 4 3 *4 *3 *55 *73 * X m X Zo urodzni misiąi ojcic punktów sum ojcic misiąc Oprc. n podst. wkłdu dr T. Suchockio
22 MODEL STAŁY, A MODEL MIESZANY R R X m X Zo vr vr vr modl stł zkłd brk powiązń międz fktmi (ojcmi) stł fkt ojc Oprc. n podst. wkłdu dr T. Suchockio
23 MODEL STAŁY, A MODEL MIESZANY R ZGZ o R G o X m X Zo o ' vr vr vr vr 4 4 vr modl miszn wkorzstni informcji o podobiństwi międz fktmi uwzlędnini spokrwnini międz ojcmi losow fkt ojc Oprc. n podst. wkłdu dr T. Suchockio
24 MODEL STAŁY, A MODEL MIESZANY mcirz wrincji ddtwni ntcznj ojców współcznniki mcirz obliczon n podstwi spokrwniń część idntcznch przz pochodzni nów u dnj pr ojców prwdopodobiństwo, ż dn lll jst idntczn przz pochodzni u dnj pr ojców o = wrincj ddtwni ntczn fktu ojc obliczon wrtości fktu ojc = wrtości hodowln 4 G 4 o Oprc. n podst. wkłdu dr T. Suchockio
25 PRZYGOTOWANIE DANYCH /* wcztwni dnch o bonitcji koni */ dt KONIE; infil 'd:/krolin/klcz.prn' firstobs= ; input IMIE $ - NROGIERA NROJCA NROJCA_OJCA NRMATKI_OJCA SUMAPKT ROKPR ROKUR MIEUR; run ; Nzw Nr Nr ojc Nr ojc_o Nr mtki-o Sum punktów Prób Rok ur Misiąc ur NIWA BERNIKLA /* wcztwni mcirz spokrwnin */ dt POKREWIENSTWO ; infil 'd:krolin/g.txt' ; input ROW COLUMN VALUE ; PARM= ; output ; run ; Oprc. n podst. wkłdu dr T. Suchockio
26 ZASTOSOWANIE PROCEDURY MIXED /* modl miszn */ proc mixd dt=konie ordr=dt ; clss NROJCA MIEUR ; modl SUMAPKT= MIEUR / solution ; rndom NROJCA / tp=lin() ldt=pokrewienstwo solution ; prms (.3) (.7) / noitr rtios ; run ; Zo X m X o.3.7 Oprc. n podst. wkłdu dr T. Suchockio
27 PROCEDURA MIXED - WYNIKI Modl Informtion Dt St Dpndnt Vribl Covrinc Structurs Estimtion Mthod Rsidul Vrinc Mthod Fixd Effcts SE Mthod Drs of Frdom Mthod Dimnsions Covrinc Prmtrs Columns in X Columns in Z 3 Subjcts Mx Obs Pr Subjct 66 WORK.OGIERY SUMAPKT Linr, Vrinc Componnts REML Prmtr Modl-Bsd Continmnt Liczb wsp. wrincji: i o Liczb kolumn mcirz X = liczb misięc + Liczb kolumn mcirz Z = liczb ojców Cłkowit liczb obsrwcji Oprc. n podst. wkłdu dr T. Suchockio
28 PROCEDURA MIXED - WYNIKI Numbr of Obsrvtions Numbr of Obsrvtions Rd 66 Numbr of Obsrvtions Usd 66 Numbr of Obsrvtions Not Usd Prmtr Srch Liczb obsrwcji CovP CovP Rs Lo Lik - Rs Lo Lik Covrinc Prmtr Estimts Cov Prm Estimt LIN(). Rsidul.7 Złożon wrtości wsp. wrincji Obliczon wrtości wsp. wrincji Oprc. n podst. wkłdu dr T. Suchockio
29 PROCEDURA MIXED - WYNIKI Solution for Fixd Effcts wniki dl fktów stłch Stndrd Effct MIEUR Estimt Error DF t Vlu Pr > t Intrcpt <. MIEUR <. MIEUR <. MIEUR <. MIEUR <. MIEUR <. MIEUR <. MIEUR <. MIEUR nr misiąc Ocn fktu misiąc błąd stndrdow prwdopodobiństwo błędu prz odrzucniu H Oprc. n podst. wkłdu dr T. Suchockio
30 PROCEDURA MIXED - WYNIKI Solution for Rndom Effcts wniki dl fktów losowch Std Err Effct NROJCA Estimt Prd DF t Vlu Pr > t NROJCA NROJCA <. NROJCA NROJCA NROJCA NROJCA <. NROJCA <. NROJCA NROJCA <. NROJCA <. nr ojc wrtość hodowln błąd stndrdow prwdopodobiństwo błędu prz odrzucniu H Oprc. n podst. wkłdu dr T. Suchockio
31 PODSUMOWANIE Mtod BLUP (przkłd zstosowni szcowni fktów modlu miszno w prc hodowlnj) oprt jst n rchunku mcirzowm wm dużj moc obliczniowj (ocn wilu zwirzt nrz, odwrcni dużch mcirz) pozwl n dobr dopsowni modlu: możn uwzlędnić wil fktów, w tm dodtkow fkt ntczn umożliwi jdnoczsną ocnę fktów stłch i losowch, przz co są on n sibi nwzjm poprwion dopuszcz i wkorzstuj zlżności fktów; poprzz włączni do obliczń mcirz kowrincji ntcznch wkorzstuj dodtkow źródł informcji dj ocn o wsokij dokłdności
32 INFORMATYKA W SELEKCJI modl miszn Ocn fktów modlu miszno możliw jst w pkitch sttstcznch Do ocn wrtości hodowlnj mtod BLUP stworzono wil spcjlistcznch prormów EXCEL? Cz możn ocnić wrtość hodowlną w oprciu o modl miszn prz pomoc Excl? N pwno możn spróbowć ZAPRASZAM n ćwiczni!
INFORMATYKA W SELEKCJI 9 MODELE MIESZANE
INFORMATYKA W SELEKCJI 9 MODELE MIESZANE SAS WYKORYSTANIE PAKIETU SAS DO ESTYMACJI EFEKTÓW MODELI MIESZANYCH. Modl stały, a modl miszany. Macirz spokrwniń addytywni polignicznych 3. Przygotowani danych
METODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zaadninia. Matmatczn podtaw mtod odowlanc. Wartość cc ilościow i dfinic paramtrów ntcznc. Mtod zacowania paramtrów ntcznc 4. Wartość odowlana cc ilościow (ocna wartości
Ekonometryczne modele nieliniowe
Ekonomrczn mod niiniow Wkłd Włsności smorów i s . dodk do wkłdu Słb zbiżność convrgnc in disribuion { X } Ciąg zminnch osowch x - dsrbun X FX Isnij dsrbun F X x, k ż im FX x FX x w kżdm punkci x, F X w
± - małe odchylenie od osi. ± - duże odchylenie od osi
TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.
Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników
Wyznacznik macierzy. - wyznacznik macierzy A
Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
Ć W I C Z E N I E N R E-14
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach
PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j
Izotopy stabilne lub podlegające samorzutnym rozpadom
Izotopy stbiln lub podlgjąc smorzutnym rozpdom Izotopy - jądr o jdnkowj liczbi protonów, różniąc się liczbą nutronów t 1/ =14 s t 1/ =5730 lt Mp nuklidów stbilność jądr Frgmnt mpy nuklidów w obszrz otrzymywnych
sin b) Wyznaczyć taką funkcję pierwotną do funkcji sin ( =, która przechodzi przez punkt (0,0)
Kolokwium z mmki 7.. Tm A godz.. Imię i nzwisko Nr indksu Zdni Wznczć cłkę d cos sin Wznczć ką unkcję pirwoną do unkcji cos sin kór przchodzi przz punk Odp. c cos cos F Zdni Nrsowć wrswic unkcji ln odpowidjąc
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ
MGR INŻ. LSZK CHYBOWSKI Politchnik Szczcińsk Wydził Mchniczny Studium Doktorncki ANALIZA PRACY SYSTMU NRGTYCZNO-NAPĘDOWGO STATKU TYPU OFFSHOR Z WYKORZYSTANIM MTODY DRZW USZKODZŃ STRSZCZNI W mtril przdstwiono
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7
Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
MODEL EKONOMETRYCZNY KLASYFIKACJA MODELI EKONOMETRYCZNYCH
Ekoomri mrił ( foli ) do wkłdu D.Miszczńsk, M.Miszczński MODEL EKONOMERYCZNY Modl js o schmcz uproszczi, pomijjąc iiso spk w clu wjśii wwęrzgo dziłi, form lub kosrukcji brdzij skomplikowgo mchizmu. (Lwrc
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Rachunek prawdopodobieństwa i statystyka matematyczna.
Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne
Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe
lgbr liio gomtrią litcą / WYKŁD. PRZEKSZTŁCENIE LINIOWE WRTOŚCI I WEKTORY WŁSNE Prkstłci liio Diicj Prporądkoi ktorom R ktoró k R, : jst prkstłcim liiom td i tlko td gd: k k k k c c c c c Postć prkstłci
A. Zaborski, Rozciąganie proste. Rozciąganie
. Zborski, Rozciągnie proste Rozciągnie rzkłd Zprojektowć pręt i tk, b przemieszczenie węzł nie przekroczło dopuszczlnej wrtości mm. Dne: R = 50 M, E = 0 G. 5 m m 4 m 80 k Rozwiąznie: równni sttki: sin
12. CZWÓRNIKI PARAMETRY ROBOCZE I FALOWE CZWÓRNIK U
OBWODY SYGNAŁY Wykłd : Czwórniki prmtry robocz i flow. CWÓRN PARAMETRY ROBOCE FALOWE.. PARAMETRY ROBOCE Jżli do jdnych wrót czwórnik dołączono źródło wymuszń, ntomist drui wrot iążono dwójnikim bzźródłowym,
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań
MTMTYK Przed próbną mturą. Sprwdzin. (poziom podstwow) Rozwiązni zdń Zdnie. ( pkt) 0,() < P.. Uczeń przedstwi liczb rzeczwiste w różnch postcich. Odpowiedź:., czli < Zdnie. ( pkt) P.. Uczeń rozwiązuje
CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że
MATEMATYKA II - Lucjn Kowlski CAŁKA NIEOZNACZONA - unkcj okrślon w przdzil E. Funkcją pirwotną unkcji w przdzil E nzwm unkcję F tką, ż F Np. unkcją pirwotną unkcji + R jst unkcj F + o F +, Zuwżm, ż unkcj
Analiza matematyczna i algebra liniowa
Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy
Przykład 2.5. Figura z dwiema osiami symetrii
Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl
WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach
Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,
Grafy hamiltonowskie, problem komiwojażera algorytm optymalny
1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999 2
W praktycznym doświadczalnictwie, a w szczególności w doświadczalnictwie polowym, potwierdzono występowanie zależności pomiędzy wzrastającą liczbą
W prktyczym doświdczlictwi, w zczgólości w doświdczlictwi polowym, potwirdzoo wytępowi zlżości pomiędzy wzrtjącą liczą oiktów doświdczlych w lokch, wzrotm orwowgo łędu ytmtyczgo. Podcz plowi doświdczń
ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1
ELEKTRONIKA CYFROWA Mteriły y pomocnicze do wykłd dów Dl AiZ zoczne inŝynierskie, sem Wykorzystne mteriły Łub T Ukłdy logiczne, PW 26 Wenck A NOTATKI Z TECHNIKI CYFROWEJ PW 26 wwwelektronikorgpl Wprowdzenie
Uogólnione wektory własne
Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Ł Ą ż ż Ś Ą ż ż Ń Ę ż Ą ż ż Ą ć Ą ż ż Ą Ń ż ż Ę ż ż ż ż ćż ż Ś Ź ż Ź ć ż ż ż ż ż ć ż ż ć ż ć ż ż Ś ż ć ż ż ż ć ż ż ż ż ż ż ż Ź ż ć ż ż ż ć Ź ćż ż ć ż ż ż ż Ż Ń ż ż ż ż Ź ć ż ć ż ć ż ż ż ż ż ć ż ż ż Ź ć
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i
ź ż ć ć Ę ż ż ż ż ż ż ż ć ż ź Ę ć ż ż ż Ę ż ż ż ż ż ż ż ź ź ż ż ć ź ź ż ź ź ć ź ż ź ć ź ź ć ź Ę ź ż ź ż ć Ę ż ż ż ć ż ż ż ź ż ż ż ż ż ż ż ć ć ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ć ć ć ć ć ć Ę ż Ę ż ż
< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego
Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych
Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni
SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ. Ocena wartości hodowlanej bydła mlecznego wprowadzenie
SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Ocen wrtości hodowlnej bydł mlecznego wprowdzenie WSTĘP. Modele oceny wrtości hodowlnej. Ocen konwencjonlnej wrtości hodowlnej w Polsce 3. Ocen genomowej wrtości
Układy równań liniowych Macierze rzadkie
wr zesie ń SciLb w obliczenich numerycznych - część Sljd Ukłdy równń liniowych Mcierze rzdkie wr zesie ń SciLb w obliczenich numerycznych - część Sljd Pln zjęć. Zdnie rozwiązni ukłdu równń liniowych..
STYLE. TWORZENIE SPISÓW TREŚCI
STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub
Zapis wskaźnikowy i umowa sumacyjna
Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn
Ekonometryczne modele nieliniowe
Ekonomrczn mod nnow Wkłd Włsnośc smorów s . dodk do wkłdu Słb zbżność convrgnc n dsrbuon Cąg zmnnch osowch FX x - dsrbun Isnj dsrbun F X x, k ż m FX x FX x w kżdm punkc x, F X w kórm X js cągł. X X zbg
Modelowanie danych hodowlanych
Modelowanie danych hodowlanych 1. Wykład wstępny. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami
Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji
Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0
( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.
Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()
1 Definicja całki oznaczonej
Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x
Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A
Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna
lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.
R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10
Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:
MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A
INVERTER SERIA MXZ Typoszereg MXZ gwrntuje cicy, wysokowydjny i elstyczny system, spełnijący wszystkie wymgni w zkresie klimtyzcji powietrz. 6 MXZ-2C30VA MXZ-2C40VA MXZ-2C52VA MXZ-3C54VA MXZ-3C68VA MXZ-4C71VA
Mechanika i wytrzymałość materiałów
1 k trmłość mtrłó Wkłd Nr 9 rktrstk gomtr fgur płsk momt stt, środk ężkoś fgur jgo, momt błdoś, głó trl os błdoś, głó trl momt błdoś, prom błdoś, trd Str Wdł Iżr j Robotk Ktdr Wtrmłoś, Zmę trłó Kostrukj
ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł
TRZECI SEMESTR LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRACA KONTROLNA Z MATEMATYKI ROZSZERZONEJ O TEMACIE: Liczby rzeczywiste i wyrżeni lgebriczne Niniejsz prc kontroln skłd się z zdń zmkniętych ( zdń)
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9
ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone
Stereochemia. Izomeria konformacyjna obrót wokół wiązania pojedynczego etan projekcja Newmana
Uniwrsytt Jgilloński, Collgium Mdicum, Ktdr Chmii rgnicznj Strochmi Izomri konformcyjn obrót wokół wiązni pojdynczgo tn projkcj Nwmn konformcj: nprzminlgł nprzciwlgł kąt torsyjny w ukłdzi cztrch tomów
Modelowanie 3 D na podstawie fotografii amatorskich
Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne
FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.
Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,
PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f
ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.
ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania =
Vdemecum GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* Mtemtyk - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi KRYTERIA OCENIANIA ODPOWIEDZI Prón Mtur z OPERONEM Operon 00% MATURA 07 VA D EMECUM
Podstawy układów logicznych
Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.
Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty
Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów
Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa
Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d
Pierwiastek z liczby zespolonej
Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa
Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut
Temat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny
Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
KARTA KURSU (realizowanego w module specjalności)
Złącznik nr 7 do Zrządzni Nr.. KARTA KURSU (rlizongo modul spcjlności) MATMATYKA Z INFORMATYKĄ Nz Nz j. ng. Sici kompuro Compur Norks Kod Punkcj CTS* 2 Koornor dr Wojcich Fol Zspół dkczn: dr Wojcich Fol
x y x y y 2 1-1
Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().
LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
Badania symulacyjne efektywności kompensacji mocy biernej odbiorów nieliniowych w oparciu o teorię składowych fizycznych prądu TSFP
mgr ż. JULIN WOIK dr ż. MRIN KLU Istytt Tchk Iowcyjych EMG prof. dr h. ż. OGDN MIEDZIŃKI Poltchk Wrocłwsk d symlcyj fktywośc kompscj mocy rj odorów lowych w oprc o torę skłdowych fzyczych prąd TFP W rtykl
Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y
Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =
RBD Relacyjne Bazy Danych
Wykłd 6 RBD Relcyjne Bzy Dnych Bzy Dnych - A. Dwid 2011 1 Bzy Dnych - A. Dwid 2011 2 Sum ziorów A i B Teori ziorów B A R = ) ( Iloczyn ziorów A i B ( ) B A R = Teori ziorów Różnic ziorów ( A) i B Iloczyn
Ł Ł Ó Ś Ż Ł Ń Ż Ż ć Ż Ł Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż Ł ć Ż Ż ć ć Ź Ł Ż Ż Ż ć ź Ż ń Ż Ż Ż Ż ć ń ć ń ć Ł Ż ć Ż Ł Ś ŻŻ Ł Ż Ń Ł ź Ź Ż Ź Ł Ż Ł Ł Ń ć Ó Ż Ń Ń Ł ź ź Ż Ż Ż Ś Ć Ż Ć Ł Ł Ł Ż Ż Ś ŚĆ Ś Ś ć ć Ż Ż ŚĆ Ś Ś ŚĆ
1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY
. Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest
Równania róniczkowe liniowe. = 2. dx x. dy dy. dx y. y dx. dy y. dy 2
Równni róniczkow liniow Równni róniczkow, kór mon zpis w posci + p( q(, gdzi p ( i q ( s funkcjmi cigłmi, nzwm równnim liniowm pirwszgo rzdu Jli q (, o równni nzwm liniowm nijdnorodnm W przciwnm przpdku
Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.
Analiza danych jakościowych
Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA
kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej
Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak
Mtod numrczn Wład nr 6 Różnczowan dr ab. Potr Froncza Różnczowan numrczn Wzor różnczowana numrczngo znajdują zastosowan wtd, gd trzba wznaczć pocodn odpowdngo rzędu uncj, tóra orślona jst tablcą lub ma
Rezystancyjne czujniki temperatury do zastosowań wewnętrznych, zewnętrznych i kanałowych
Krt ktlogow 902520 Stron 1//9 Rezystncyjne czujniki tempertury do zstosowń wewnętrznych, zewnętrznych i knłowych Dl tempertur od -50 do +200 C Do stosowni w technice klimtyzcyjnej Stopień ochrony od IP20
Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.
1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi
Projekt 3 3. APROKSYMACJA FUNKCJI
Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle
K A R T A P R Z E D M I O T U ( S Y L L A B U S ) W Y D R U K Z S Y S T E M U
K A R T A P R Z E D M I O T U ( S Y L L A B U S ) W Y D R U K Z S Y S T E M U Kod Wrsj Wydził Kirunk Spcjlność Nzw Wszystki Wszystki Wszystki filozofi philosophy Rok kdm icki 2012 /2013 Spcjlizcj/kir.