IX. ZAGADNIENIA TEORII PLASTYCZNOŚCI

Wielkość: px
Rozpocząć pokaz od strony:

Download "IX. ZAGADNIENIA TEORII PLASTYCZNOŚCI"

Transkrypt

1 Koerla P. Metoa Elemetów Skończoych, teora zastosowaa 67 IX. ZAGANIENIA EORII PLASYCZNOŚCI Oraczymy sę o cał sprężysto-plastyczych.. Zaaee jeowymarowe Postawowe moele cała sprężysto plastycze oraz ch aalo mechacze pokazao a rys. 9.. Rys. 9.. Moele sprężysto-plastycze materału; raca plastyczośc

2 Kurs a Stuach oktorackch Poltechk Wrocławskej (wersja: luty 7) 68. Zaaee trójwymarowe założea. Materał zachowuje sę sprężyśce opók e osąe powerzch plastyczośc (powerzcha racza).. la materału aa jest powerzcha plastyczośc w przestrze aprężeń: ( ) f ( ) ( ; ) f ( ) ( κ) bez wzmocea, (9.) la wzmocea, (9.) κ ze raca plastyczośc w próbe jeoosoweo ścskaa, κ - parametr wzmocea.. Całkowte okształcea jako superpozycja okształcea sprężysteo plastyczeo (waże la małych ftezymalych okkształceń) ( e) ( p) ε ε + ε (9.) ze: ( e) ε - okształcea sprężyste, ( p) ε - okształcea plastycze. 4. Prawo plastyczeo płyęca: a) stowarzyszoe prawo plastyczeo płyęca: ( ) ε p λ, (9.4) ze: λ przyrost eokreśloeo parametru, Rys. 9. b) estowarzyszoe prawo plastyczeo płyęca: ( ) ε p λ, (9.5) ze: λ przyrost eokreśloeo parametru, () potecjał plastyczy. Rys. 9.

3 Koerla P. Metoa Elemetów Skończoych, teora zastosowaa 69. Powerzcha plastyczośc Jest to powerzcha oraczająca pole aprężeń w trakce procesu obcążaa ( ) ( ) ( ) ; κ κ f. (9.6) Różczkując powyższa zależość κ κ +, (9.7) κ κ +. (9.8) Przyjmjmy ozaczee λ κ κ λ κ κ A A. (9.9) Po postaweu o () mamy λ A. (9.) Całkowte okształcee a powerzch plastyczej ( ) ( ) p e ε ε ε +, (9.) przyrost okształcea ( ) ( ) λ + + p e ε ε ε. (9.) Rówaa () (4) w zapse macerzowym λ ε A. (9.) Z powyższeo ukłau ależy wyzaczyć zwązek kostytutywy e zawerający eokreśloej zmeej λ. W tym celu możąc lewostroe rówae perwsze przez wyzaczamy λ ε, (9.4) postawając astępe powyższe wyrażee o rueo rówaa mamy

4 Kurs a Stuach oktorackch Poltechk Wrocławskej (wersja: luty 7) 7 ε + A λ λ. (9.5) I ostatecze rówae kostytutywe la stau a powerzchę plastyczośc otrzymujemy jeżel o rówaa (5) postawmy λ, tak ε, (9.6) ze: ep ep A +. (9.7) 4. Rówae kostytutywe la procesu sprężysteo procesu bereo (zejśce z powerzch plastyczośc) ( e) ε ε lub ε. (9.8) la procesu czyeo (a powerzch plastyczośc) ( e) ( p) ε ε + ε lub ep ε. (9.9) ep Macerz ep : symetrycza la stowarzyszoeo prawa płyęca, esymetrycza la estowarzyszoeo prawa płyęca. Zaczee parametru A: a) eala plastyczość (bez wzmocea) A, (9.) b) plastyczość ze wzmoceem. W rówau powerzch plastyczośc (, κ ) parametr κ zwązay jest ze zmaą powerzch plastyczośc: parametr κ wyraża eerę okształceń plastyczych (p) (p) (p) ε + ε ε6 κ ε, (9.) po postaweu: ε λ mamy: κ λ κ, oraz, λ (9.) wracając o wcześejszeo ozaczea mamy: κ A A. κ λ κ (9.) Parametr A moża tak wyzaczyć, jeżel zaa jest jawa fukcja (, κ ) (p) wzlęem κ.

5 Koerla P. Metoa Elemetów Skończoych, teora zastosowaa 7 5. eora plastyczośc Pratla Reuss a Założea: a) małe okształcea, b) materał eale sprężysto plastyczy z warukem HMH (może być z zotropowym wzmoceem), c) waże jest stowarzyszoe prawo płyęca. Powerzcha plastyczośc:, ( κ ) ( ) + ( ) + ( ) + ( + + ) ( κ), (9.4) lub, ( κ ) ( s + s + s ) + s + s + s s s, (9.5) ze: m m m m m m + s +, (9.6) aksjator tesora aprężea, s ewator tesora aprężea, m ( + + ). Jeoosowy sta aprężea baae ośwaczale Rys. 9.4 Nech parametr κ ozacza pracę aprężeń a okształceach plastyczych: Wówczas (p) (p) ( ε ) ε κ. (9.7)

6 Kurs a Stuach oktorackch Poltechk Wrocławskej (wersja: luty 7) 7 κ κ (p) ε ( p) (p) ε κ ε H, (9.8) ze (p) ε (p) ukłaze ε ). (p) H jest taesem kata achylea wykresu ( ) w trakce uplastyczea (w ε Z rysuku H E. E / E 6. Powerzche plastyczośc wyrażoe przez ezmek tesora aprężea Zwykle powerzchę plastyczośc wyrażamy przez ezmek: I - perwszy ezmek tesora aprężea, + + m ( s + s + s ) + s + s s J ru ezmek ewatora aprężea, J s s s + s4 s5 s6 s s5 s s6 s s4 - trzec ezmek ewatora. Powerzche plastyczośc w przestrze aprężeń łówych oraz a płaszczyźe ewatorowej: Płaszczyza ewatorowa jest prostopała o os hyrostatyczej patrz rysuek Rys Ops przestrze Hah- Westeraar Parametram (współrzęym) przestrze Hah- Westeraar są: (ξ,ρ,θ). Zwązk trasformacyje: ξ ρ ( s + + s + + s ) J τ oct (9.9)

7 Koerla P. Metoa Elemetów Skończoych, teora zastosowaa 7 Powerzcha plastyczośc w hpoteza resk (, κ ) ( J, θ, κ ) J s( θ + π) ( κ) (9.) ρ (9.) lub (, θ, κ ) ρs( θ + π) ( κ) la θ 6 Rys Powerzcha plastyczośc resk; (a) w przestrze aprężeń, (b) Przekrój płaszczyzą, (c) a płaszczyźe ewatorowej Powerzcha plastyczośc w hpoteza Hubera-Mssesa-Heckeo ( J, κ ) J ( κ). (9.) Rys Powerzcha plastyczośc Hubera-Mssesa-Heckeo; (a) w przestrze aprężeń, (b) Przekrój płaszczyzą, (c) a płaszczyźe ewatorowej Powerzcha plastyczośc w hpotezy Coloumba Mohra

8 Kurs a Stuach oktorackch Poltechk Wrocławskej (wersja: luty 7) 74 I π π ( I, J, θ, κ ) s φ( κ) + J s θ + s φ( κ) cos θ + c( κ) cosφ( κ) (9.) lub π ( ξ, ρ, θ, κ) ξs φ( κ) + ρs θ + + ρcos θ + s φ( κ) 6c( κ) cos φ( κ) (9.4) π la θ ze parametry zależe o κ: c(κ), φ(κ). J π, Rys Powerzcha plastyczośc Coloumba Mohra; (a) w przestrze aprężeń, (b) a płaszczyźe ewatorowej Powerzcha plastyczośc w hpotezy rucker a Praer a: ( I J, κ ) a I + J b,, (9.5) Rys Powerzcha plastyczośc rucker a Praer a; (a) w przestrze aprężeń, (b) a płaszczyźe ewatorowej

9 Koerla P. Metoa Elemetów Skończoych, teora zastosowaa 75 ze: a s φ( κ) ( s φ( κ) ), b 6c ( κ) cosφ( κ) ( s φ( κ) ), parametry: c(κ), φ(κ) zależe o κ. 7. Graet fukcj plastyczośc Przy formułowau alorytmów umeryczych występuje zawsze koeczość wyzaczea raetu fukcj plastyczośc. Jeżel ta fukcja jest wyrażoa przez ezmek tesora aprężea, wówczas ( I, J, J ) I + I J M () I + M () J + J J + M J () J la poszczeólych hpotez macerze M (), M (), M () są wyzaczoe poae w lteraturze. (9.6) 8. Materał sprężysto plastyczy. Uoóloa teora Zakłaa sę, że la owoleo pozomu aprężea materał okształca sę sprężyśce plastycze e ma wyraźej powerzch plastyczośc. Ozacza to, że przez każy pukt przestrze aprężeń przechoz powerzcha plastyczośc o zmeającym sę współczyku wzmocea. Wektory ormale jeostkowe: Rys. 9. o powerzch (, κ), (9.7)

10 Kurs a Stuach oktorackch Poltechk Wrocławskej (wersja: luty 7) 76 o powerzch ( ) cost. (9.8) Rys. 9. Wyróżamy trzy stay obcążea: obcążee: >, ocążee: <, sta eutraly. Zakłaa sę, że zae są macerze sprężysto plastycze la każeo ze stau obcążea ocążea, stą: L ε la obcążea, U ε la ocążea. la stau eutraleo: przyjmuje sę zwykle jako Macerze sprężysto plastycze: L U ( H L + ), ( H + ). U L. (9.9) W jakm stopu macerz jest róża o macerzy sprężystej ecyują współczyk H L H U. Jeżel mamy o czyea z okształceam sprężystym to H. Jeżel H to materał staje sę eale plastyczy. Uwaa: take założea są la wększośc materałów realstycze (zwykle brak wyraźej racy plastyczośc) oraz łatwejsze są la ch alorytmy komputerowe. 9. Alorytmy oblczeń komputerowych Stosujemy metoy przyrostowe.

11 Koerla P. Metoa Elemetów Skończoych, teora zastosowaa 77. Przyjmujemy przy- ay jest sta -ty la obcążea Q. Wyzaczae są parametry q rost obcążea Δ Q. la kolejych teracj -tej wyzaczamy: macerz styczą K, przyrost Δ q oraz Δ ε, Δε,ε, przyrost aprężeń Δ ε róże metoy wyzaczaa tej całk. A) Oblczae Δ metoa bezpośreą ze Δ k l l Δε k, (9.4) L jest macerzą sprężysto plastyczą la kolejych pozomów aprężea + k l Δ. (9.4) Rys.9. Lczba ocków a które sę zel przezał e jest określoa zależy o typu zaaa. B) Oblczae Δ Δ metoa ejawą + [( θ) + θ ] Δε. (9.4) + Macerze jest elowe ależy rozwązać teracyje. wyzaczae a końcach przezału. la ustaloeo (,) θ rówae Rys. 9.

12 Kurs a Stuach oktorackch Poltechk Wrocławskej (wersja: luty 7) 78 W przypaku zetermowaej powerzch plastyczośc: L ep U la obcazea la ocazea

Metoda analizy niesprężystych elementów żelbetowych ściskanych mimośrodowo

Metoda analizy niesprężystych elementów żelbetowych ściskanych mimośrodowo BIULETYN WAT VOL. LVIII, NR 4, 9 Metoda aalzy esprężystych elemetów żelbetowych ścskaych mmośrodowo ANNA STOLARCZUK, ADAM STOLARSKI Wojskowa Akadema Techcza, Wydzał Iżyer Lądowej Geodezj, -98 Warszawa,

Bardziej szczegółowo

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem Kostrukcje budowle zeme OBLICZENIA WSPÓŁCZYNNIKA STATECZNOŚCI SKAPY ODWODNEJ METODĄ FELLENIUSA DLA ZAPOY ZIEMNEJ BEZ ELEMENTÓW USZCZELNIAJĄCYCH Z DENAŻEM Zapora zema posadowoa a podłożu przepuszczalym

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wykład Układy rówań metody aaltycze Metody umerycze rozwązywaa rówań lczbowych Prof. Ato Kozoł, Wydzał Chemczy Poltechk Wrocławskej ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

Projekt 2 2. Wielomiany interpolujące

Projekt 2 2. Wielomiany interpolujące Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

SKRĘCANIE PRĘTÓW 1 1. SFORMUŁOWANIE ZAGADNIENIA. q vz. q vy

SKRĘCANIE PRĘTÓW 1 1. SFORMUŁOWANIE ZAGADNIENIA. q vz. q vy SKĘCNE PĘTÓW 1 1. SFOUŁOWNE ZGDNEN S q v L q v - oś pręta,, - oe główe, cetrale prekroju poprecego pręta pręt prmatc, utwerdo "puktowo" w pkt. S (0, 0, 0) poocca wola od ocążeń deko = L ocążoe łam o gętośc

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

Statyczna próba skręcania metali (wyznaczanie modułu sprężystości poprzecznej)

Statyczna próba skręcania metali (wyznaczanie modułu sprężystości poprzecznej) Istytut Mechak Iżyer Oblczeowej Wydzał Mechaczy Techologczy Poltechka Śląska www.mo.polsl.pl fb.com/mopolsl twtter.com/mopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Statycza próba skręcaa metal (wyzaczae

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze

Bardziej szczegółowo

Wytrzymałość materiałów

Wytrzymałość materiałów Wtrzmałość materiałów IMiR - IA - Wkład Nr 8 Aaliza stau aprężeia Sta aprężeia w pukcie, tesor aprężeia, klasfikacja staów aprężeia, aaliza jedoosiowego stau aprężeia, aaliza płaskiego stau aprężeia, koło

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

Projekt 3 Analiza masowa

Projekt 3 Analiza masowa Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga

Bardziej szczegółowo

ZASTOSOWANIE FUNKCJONAŁU HU-WASHIZU W PLASTYCZNEJ ANALIZIE MES PŁYT GRUBYCH

ZASTOSOWANIE FUNKCJONAŁU HU-WASHIZU W PLASTYCZNEJ ANALIZIE MES PŁYT GRUBYCH CZSOPISMO IŻYIERII LĄDOWEJ, ŚRODOWISK I RCHIEKURY JOURL OF CIIL EGIEERIG, EIROME D RCHIECURE JCEE, t. XXXIII, z. 63 (/I/6), styczeń-marzec 06, s. 43-430 Jakub LEWDOWSKI Kazmerz MYŚLECKI ZSOSOWIE FUKCJOŁU

Bardziej szczegółowo

Ź Ę ą ć Ź Ź Ń ą ą Ź ą ę ę Ę Ń Ć ą Ę Ę ą Ć Ń ę Ń ę ę ą Ś ę ę ę Ę ę ą Ś Ę ę ą Ś ą Ź ą ę ą ę ą Ź Ś ę ą ą ę ę ęź ęź Ś Ę Ś Ć ą Ź Ś Ś ę ę Ź ę ą ą Ź ę Ź ą ą ą ą ę ę ę Ź ę Ź Ę ę Ś ź Ś Ę Ć ę Ź Ź ą Ń Ś ąą Ś Ź Ę

Bardziej szczegółowo

VIII. NIELINIOWE ZAGADNIENIA MECHANIKI

VIII. NIELINIOWE ZAGADNIENIA MECHANIKI Konerla P. Metoa Eleentów Skończonych, teora zastosowana 57 VIII. NIELINIOWE ZAGADNIENIA MECHANIKI. Rozaje nelnowośc a) Nelnowość fzyczna: nelnowe zwązk konstytutywne, plastyczność, lepkoplastyczność,

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f( : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

n R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe

n R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f() : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

Linie regresji II-go rodzaju

Linie regresji II-go rodzaju Lam regresj II-go rodzaju zmeej () względem () azwam zadae krzwe g(;,, ) oraz h(;,, ) gd spełają oe odpowedo waruk: E E Le regresj II-go rodzaju ( ( )) ( ) ( ) ( ) ( ) g ;,,... g ;,,... f, dd m,,... (

Bardziej szczegółowo

TMM-2 Analiza kinematyki manipulatora metodą analityczną

TMM-2 Analiza kinematyki manipulatora metodą analityczną Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

KALIBRACJA NIE ZAWSZE PROSTA

KALIBRACJA NIE ZAWSZE PROSTA KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel

Bardziej szczegółowo

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI Poltechka Gdańska Wydzał Elektrotechk Automatyk Katedra Iżyer Systemów Sterowaa MODELOWANIE I PODSAWY IDENYFIKACI Wybrae zagadea z optymalzacj. Materały pomoccze do zajęć ćwczeowych 5 Opracowae: Kazmerz

Bardziej szczegółowo

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki: Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,

Bardziej szczegółowo

Funkcja wiarogodności

Funkcja wiarogodności Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem

Bardziej szczegółowo

IV. ZMIENNE LOSOWE DWUWYMIAROWE

IV. ZMIENNE LOSOWE DWUWYMIAROWE IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję

Bardziej szczegółowo

R j v tj, j=1. jest czynnikiem dyskontującym odpowiadającym efektywnej stopie oprocentowania i.

R j v tj, j=1. jest czynnikiem dyskontującym odpowiadającym efektywnej stopie oprocentowania i. c 27 Rafał Kucharsk Rety Wartość beżącą cągu kaptałów: {R t R 2 t 2 R t } gdze R jest kwotą omalą płacoą w chwl t = oblczamy jako sumę zdyskotowaych płatośc: przy czym = + R j tj j= jest czykem dyskotującym

Bardziej szczegółowo

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84 Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrzmałości materiałów IMiR - MiBM - Wkład Nr 4 Aaliza stau aprężeia Sta aprężeia w pukcie, tesor aprężeia, klasfikacja staów aprężeia, aaliza jedoosiowego stau aprężeia, aaliza płaskiego stau

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

21. WYBRANE WIADOMOŚCI Z MATEMATYKI

21. WYBRANE WIADOMOŚCI Z MATEMATYKI Dodatek. WYBRANE WIADOMOŚCI Z MATEMATYKI. WYBRANE WIADOMOŚCI Z MATEMATYKI.. ZAPIS WSKAŹNIKOWY I WZÓR GREENA-OSTROGRADSKIEGO-GAUSSA W układze kartezjańskm x y z wersory ozaczamy zazwyczaj symbolam: j k.

Bardziej szczegółowo

OPERATOROWO-DYSTRYBUCYJNA METODA PARAMETRÓW BRZEGOWYCH Z WYKORZYSTANIEM S FUNKCJI DO OBLICZEŃ DRGAŃ GIĘTNYCH KADŁUBA STATKU

OPERATOROWO-DYSTRYBUCYJNA METODA PARAMETRÓW BRZEGOWYCH Z WYKORZYSTANIEM S FUNKCJI DO OBLICZEŃ DRGAŃ GIĘTNYCH KADŁUBA STATKU Zbgew Powerza Akadema Morska w Gdy OPERATOROWO-DYSTRYBUCYJNA METODA PARAMETRÓW BRZEGOWYCH Z WYKORZYSTANIEM S FUNKCJI DO OBLICZEŃ DRGAŃ GIĘTNYCH KADŁUBA STATKU W artykule przedstawoo aaltyczą metodę oblczaa

Bardziej szczegółowo

UWAGI O BILANSIE MASY I PĘDU W GRADIENTOWEJ TERMOMECHANICE

UWAGI O BILANSIE MASY I PĘDU W GRADIENTOWEJ TERMOMECHANICE ROCZNIKI INŻYNIERII BUDOWLANEJ ZEZYT 15/2015 Komsa Iżyer Budowlae Oddzał Polse Aadem Nau w Katowcach UWAGI O BILANIE MAY I PĘDU W GRADIENTOWEJ TERMOMECHANICE Ja KUBIK Wydzał Budowctwa Archtetury, Poltecha

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych CAŁKOWE SFORMUŁOWANIE ZADANIA STATECZNOŚCI POCZĄTKOWEJ PŁYTY

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych CAŁKOWE SFORMUŁOWANIE ZADANIA STATECZNOŚCI POCZĄTKOWEJ PŁYTY . umiiak - Aaiza płt ciekic metoą eemetó brzegoc... 6 6.. CAŁKOWE SFORUŁOWAIE ZADAIA SAECZOŚCI POCZĄKOWEJ PŁYY Róaie różiczkoe tateczości płt moża zapiać atępująco [8]: D 4 p 6. gzie p jet obciążeiem zatępczm

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

... MATHCAD - PRACA 1/A

... MATHCAD - PRACA 1/A Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

A B - zawieranie słabe

A B - zawieranie słabe NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły

Bardziej szczegółowo

Kazimierz Myślecki. Metoda elementów brzegowych w statyce dźwigarów powierzchniowych

Kazimierz Myślecki. Metoda elementów brzegowych w statyce dźwigarów powierzchniowych Kazmerz Myśleck Metoda elemetów brzegowych w statyce dźwgarów powerzchowych Ofcya Wydawcza Poltechk Wrocławskej Wrocław 4 Recezec Potr KONDERLA Ryszard SYGULSKI Opracowae redakcyje Aleksadra WAWRZYNKOWSKA

Bardziej szczegółowo

Badania niezawodnościowe i statystyczna analiza ich wyników

Badania niezawodnościowe i statystyczna analiza ich wyników Badaa ezawodoścowe statystycza aalza ch wyków. Co to są badaa ezawodoścowe jak sę je przeprowadza?. Metody prezetacj opsu daych pochodzących z eksperymetu 3. Sposoby wyzaczaa rozkładu zmeej losowej a podstawe

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 YCENA ŁUŻEBNOŚCI PRZEYŁU I OKREŚLANIE KOTY YNAGRODZENIA ZA BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI PRZY INETYCJACH LINIOYCH 1.

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU

WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU Fzyka cała stałeo WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU 1. Ops teoretyczy do ćwczea zameszczoy jest a stroe www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomaroweo

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji Teora metoy optymalzacj Nelowe zaae optymalzacj bez ograczeń umerycze metoy teracyje optymalzacj m x R f = f x Algorytmy poszuwaa mmum loalego zaaa programowaa elowego: Bez ograczeń Z ograczeam Algorytmy

Bardziej szczegółowo

1. Podstawowe pojęcia w wymianie ciepła

1. Podstawowe pojęcia w wymianie ciepła PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Wykład FIZYKA I. 6. Zasada zachowania pędu. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 6. Zasada zachowania pędu. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Dr hab. ż. Władysław Artr Woźak Wykład FIZYKA I 6. Zasada zachowaa pęd Dr hab. ż. Władysław Artr Woźak Istytt Fzyk Poltechk Wrocławskej http://www.f.pwr.wroc.pl/~wozak/fzyka.htl Dr hab. ż. Władysław Artr

Bardziej szczegółowo

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy

Bardziej szczegółowo

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym. Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór

Bardziej szczegółowo

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.

Bardziej szczegółowo

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej Dr hab. ż. Ato Śwć, prof. adzw. Istytut Techologczych ystemów Iformacyych oltechka Lubelska ul. Nadbystrzycka 36, 2-68 Lubl e-mal: a.swc@pollub.pl Dr ż. Lech Mazurek aństwowa Wyższa zkoła Zawodowa w Chełme

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo