Zarządzanie ryzykiem 2. Dorota Kuchta

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zarządzanie ryzykiem 2. Dorota Kuchta"

Transkrypt

1 Zarządzanie ryzykiem 2 Dorota Kuchta

2 Użyteczność który rozkład jest lepszy? 0,25 0,2 0,15 0,1 Serie1 Serie2 0,

3 Użyteczność który rozkład jest lepszy? 1,2 1 0,8 0,6 A B 0,4 0,

4 Postawa wobec ryzyka Jeśli awersja wobec ryzyka wolimy czerwony Jeśli lubimy ryzyko - niebieski

5 Użyteczność który rozkład jest lepszy? 0,25 0,2 0,15 0,1 B C 0,

6 Użyteczność który rozkład jest lepszy? 1,2 1 0,8 0,6 B C 0,4 0,

7 Model Markowitza Wybór: między wyższą średnią (wartość oczekiwana) i niższą zmiennością (odchyleniem standardowym) ryzykiem Decydent może wybrać rozkład B lub C, w zależności od tego, co woli

8 Iluzje w ocenie prawdopodobieństwa ryzyka (Tversky i Kahneman) Eksperyment: Linda ma 31 lat, jest niezamężna i bardzo inteligentna. Skończyła filozofię, w szkole angażowała się w protesty przeciwko dyskryminacji i w walkę o sprawiedliwość, uczestniczyła w demonstracjach antynuklearnych. Należy ułożyć od najmniejszego do największego prawdopodobieństwa następujących zdarzeń:

9 Iluzje w ocenie prawdopodobieństwa (ryzyka -Tversky i Kahneman) A. Linda pracuje w banku B. Linda jest aktywistką feministyczną C. Linda jest pracuje w banku i jest aktywistką feministyczną????????????????????????????????????????

10 Aksjomat: P(A B)<P(A), P(A B)<P(B) A: Pracownicy banku A i B: Pracownicy banku i aktywistki feministyczne B: aktywistki feministyczne

11 Podobny eksperyment W 1981 Bjorn Borg po raz piąty wygrał turniej Wimbledonu. Badani byli pytani o ułożenie wydarzeń kolejności od najbardziej do najmniej prawdopodobnego: A. Borg wygra mecz (śr. 1,7) B. Borg przegra w pierwszym secie (śr. 2,7) C. Borg przegra w pierwszym secie, ale wygra mecz (śr. 2,2) D. Borg wygra w pierwszym secie, ale przegra mecz (śr. 3,5)

12 Problem urodzin Jakie jest prawdopodobieństwo, że jeśli wejdziesz do pokoju, w której jest 20 osób, to 2 osoby z obecnych będą miały urodziny w tym samym dniu (dzień i miesiąc, nie rok) B. małe, duże, średnie?????????????????????? A jeśli w pokoju będzie 56 osób? B. małe, duże, średnie????????????????????????

13 Powtórki Jakie jest prawdopodobieństwo, że jeśli rzucimy monetą 200 razy, to będziemy mieli ciąg 10 reszek lub 10 orzełków pod rząd? Małe, duże, średnie??????? Czy firmy, którym się przez jakiś czas dobrze wiedzie na giełdzie, są na pewno tak dobre?

14 Nieprawdopodobne wydarzenia Nieprawdopodobne wydarzenia zdarzają się w długo powtarzanych procesach Przykład: Fundusz przez 15 lat pod rząd odnotowuje zysk większy od pewnej granicy. Czy to na pewno świadczy o jej wyjątkowych osiągnięciach?

15 Nieprawdopodobne wydarzenia Jeśli prawdopodobieństwo zysku większego od granicy jest 0,5, to prawdopodobieństwo, że jedna spółka przed 15 lat przekroczy granicę, jest 0,003, ale że osiągnie to któraś z 1000 funduszy 0,03. A że taki ciąg 15 lat osiągnie któraś z 1000 spółek na przestrzeni 40 lat 0,33 Czyli to że spółka ma taki ciąg lat, nie dowodzi niczego.

16 Paradoksy probabilistyczne Gra rzuty monetą, w której wygrywamy 1$ za każdą reszkę i tracimy 1$ za każdego orła. Intuicja: mniej więcej połowa razy orzeł, połowa razy reszka. To prawda przy wielu rzutach. Jeśli rzucamy monetą razy i gramy wiele racy, to w 88% przypadków będziemy mieli nie więcej niż 78 zmian znaku wygranej.

17 Błędy ludzkiej intuicji Intuicyjnie wierzymy w prawo średniej Jeśli ktoś przed długi czas wygrywa (my, firma), to wierzymy, że jest dobry, a to może być przypadek Zatem w ocenie szans i ryzyka należy stosować teorię prawdopodobieństwa (obiektywna), a nie intuicję.

18 Złudzenie gracza Przekonanie, że po długiej serii orłów wypadnięcie reszki jest wyższe niż po długiej serii reszek, że po serii przegranych wzrasta prawdopodobieństwo wygrania Wiara w gorącą rękę w koszykówce rozgrzana trafieniem ręka powoduj kolejne trafne rzuty.

19 Problem Monty Hall Jedna z najbardziej znanych zagadek probabilistycznych Monty Hall pokazuje grającemu 3 pary drzwi, za jedną jest cenna nagroda, za innymi jakaś mało wartościowa rzecz ( koza ) Grający wybiera jedne drzwi, ale zanim je otworzy, Monty Hall otwiera inne drzwi: grający pozostać przy swoim wyborze albo zmienić go; Kiedy jest większe prawdopodobieństwo wygranej? kiedy zostanie przy swoim wyborze czy kiedy zmieni go?????

20 Problem Monty Hall Każdą sytuację trzeba zbadać i wyjaśnić wszystkie założenia: Jak wybiera drzwi Monty Hall? Warto stosować modele prawdopodobieństwa, bo tylko wtedy możemy obiektywnie ocenić szanse i ryzyko.

21 Problem Monty Hall Jak wybiera drzwi Monty Hall? On wie, za którymi drzwiami jest samochód. Nigdy nie otwiera drzwi, które wybrał grający. Jeśli za tymi drzwiami jest samochód, Monty Hill wybiera drzwi losowo. Jeśli za tymi drzwiami nie ma samochodu, Monty Hill wybiera inne drzwi, na którymi nie ma samochodu. Przy takich założeniach: prawdopodobieństwo wygranej, jeśli się zostanie przy swoich drzwiach 1/3, jeśli się zmieni swój wybór 2/3

22 Inne założenie Co by było, gdyby Monty Hall nie wiedział, za którymi drzwiami jest nagroda i wybierał drzwi losowo? Wówczas prawdopodobieństwa wygranej przy obu takie samo: 0,5 W rzeczywistym przypadku inne reguły: kiedy gracz wybierał drzwi z kozą, Monty Hill otwierał je i gra się kończyła, jeśli z samochodem, Monty Hill otwierał inne drzwi i pokazywał kozę, próbując przekonać grającego do zmiany decyzji. W takim przypadku lepiej było pozostać przy pierwszym wyborze Inne reguły też się pojawiały w praktyce

23 Asymetria między przeszłością i przyszłością Harry Potter był odrzucony przez 9 wydawców można zrozumieć ich racje, ale oni nie umieli przewidzieć przyszłości. W szachach trudno jest przewidzieć przyszły rozwój gry, ale śledząc ruchy z już zakończonej gry, łatwo wyjaśnić, dlaczego gracze wykonywali takie a nie inne ruchy - przyszłość jest trudna do przewidzenia nawet w grze o ustalonych regułach

24 Ryzyko a intuicja Kluczem do zrozumienia losowości jest nie intuicyjne szukanie odpowiedzi, lecz stosowanie formalnych narzędzi do obliczeń Intuicja czasami jest ważna, czasem się nie da działać bez niej, ale ona nie może zastępować stosowania aparatu matematycznego.

25 Zarządzanie ryzykiem Zarządzanie ryzykiem nie może ignorować teorii matematycznej Zawsze będą problemy, których nie będzie można rozwiązać dokładnie czy nawet w przybliżeniu, ale bez matematyki zarządzania ryzykiem nie ma. Poprzez trening można nauczyć się myśleć i rozumować zgodnie z teorią probabilistyki.

26 Zarządzanie ryzykiem Walka z ludzkim przekonaniem o pewności bądź niemożliwości pewnych wydarzeń Poznanie rzeczywistego ryzyka zdarzeń i działań Komunikowanie ryzyka w sposób zrozumiały

27 Przykłady modeli probabilistycznych 2 drużyny rozgrywają serię trzech meczy, przy czym ta drużyna, która jako pierwsza wygra dwa mecze zostaje zwycięzcą całego turnieju. Zakładamy, że drużyny są równie dobre każda ma 0,5 szans na wygranie pojedynczego meczu.

28 Wygrana i przegrana jednej drużyny Wygrana Prawdopod. Przegrana Prawdopod. WWP 0,125 PPW 0,125 WPW 0,125 PWP 0,125 PWW 0,125 WPP 0,125 WWW 0,125 PPP 0,125 0,5 0,5 0,5*0,5*0,5=0,125

29 Wygrana i przegrana jednej drużyny, jeśli ona ma 40% szans na wygranie 1 meczu Wygrana Prawdopod. Przegrana Prawdopod. WWP 0,096 PPW 0,144 WPW 0,096 PWP 0,144 PWW 0,096 WPP 0,144 WWW 0,064 PPP 0,216 0,352 0,648 np. WWP: 0,4*0,4*0,6=0,096 35% - prawdopodobieństwo niewiele mniejsze od prawdopodobieństwa wygrania pojedynczego meczu

30 Dłuższe serie Baseball: Zwycięzca to ten, kto wygra 4 z siedmiu meczy Najlepsza drużyna zazwyczaj wygrywa 60% meczy, a najgorsza 40% Jakie szanse na wygraną ma najgorsza drużyna, jeśli będzie grała z najlepszą???? 128 możliwości: prawdopodobieństwo wygranej najsłabszej drużyny 29% Intuicja wskazywałaby niższe prawdopodobieństwo, matematyka koryguje nasze błędne wyobrażenia

31 Rozkład Bernouliego w zarządzaniu ryzykiem finansowym Założenie: prawdopodobieństwo straty większej niż $ w jednym dniu 1% Próba Bernouliego: kolejne dni, każdego dnia prawd. Sukcesu 99% i prawd. przegranej 1% Prawd. 1% mogłoby sugerować, że w każdych stu dniach będzie 1 dzień z dużą stratą, tymczasem: Prawd. że w 100 dniach będzie 1 dzień ze stratą: 37%, 0 dni 37 %, dwa dni: 19%, trzy lub więcej: 8% P(k sukcesów w n próbach)= gdzie p prawdopodobieństwo sukcesu

32 Statystyka Służy do generowania założeń (np. że prawdopodobieństwo straty większej niż $ w jednym dniu 1%) na podstawie obserwacji rzeczywistości, daje również informację o poziomach ufności (czy możemy być bardzo przekonani, że prawdopodobieństwo straty większej niż $ w jednym dniu = 1%, czy raczej powinniśmy uważać, że jest między 0,5% i 1,5%?

33 Dwie teorie prawdopodobieństwa Prawdopodobieństwo obiektywne (oparte na częstościach, ryzyko) Prawdopodobieństwo subiektywne (oparte na przekonaniu, niepewność)

34 Prawdopodobieństwo obiektywne mierzy obiektywne wydarzenia i może być zaobserwowane w postaci częstości zdarzeń w powtarzanych próbach, np. prawdopodobieństwo wyrzucenia orła = 0,5 Są twierdzenia, np. prawo wielkich liczb i twierdzenia graniczne, które np. mówią, że przy wielu rzutach jest duże prawdopodobieństwo, iż częstość będzie równa obiektywnemu prawdopodobieństwo pojedynczego zdarzenia (np. 100 rzutów między 40 a 60 orłów)

35 Prawdopodobieństwo obiektywne Nadaje się do gier losowych, gdzie gra jest powtarzana z tymi samymi regułami, mogą to być reguły probabilistyczne: akcje IBM prawdopodobieństwo wzrostu czy spadku wartości jest przed dłuższy czas takie samo, podobnie jak przy rzucie monetą; Nie nadaje się np. do przewidywania pogody, bo jutro jest jednorazowym wydarzeniem.

36 Prawdopodobieństwo subiektywne Jeśli mówimy, że jutro wystąpią opady z prawdopodobieństwem 30%, wyrażamy nasze przekonanie lub ufność w prognozy. Nie ma tu mowy o częstościach. Dla wydarzeń unikalnych, niepowtarzalnych, stosujemy prawdopodobieństwo subiektywne.

37 Najważniejsze twierdzenia Prawdopodobieństwo obiektywne prawo wielkich liczb (mówi, jak częstości stabilizują się wraz z powtarzaniem prób) Prawdopodobieństwo subiektywne twierdzenie Bayesa: mówi jak uaktualniać nasze sądy, kiedy uzyskamy nowe informacje.

38 Przykład rak piersi P(kobieta ma raka piersi MR) = 0,5% Kobieta przeszła badania mammografem, który w 5% przypadków osób zdrowych mylnie daje pozytywny wynik, w przypadku osób chorych jest dokładny; wynik był pozytywny. Jakie jest prawdopodobieństwo, że ma raka? Najczęstsza odpowiedź: 95% P(wynik pozytywny(wp)/nie ma raka(nmr))=5%, P(wynik negatywny(wn)/nie ma raka(nmr))=95%, P(wynik pozytywny(wp)/ ma raka (MR))=1, P(wynik negatywny (WN)/ma raka (MR))=0

39 Wzór Bayesa P(MR/WP)=0,0913=9,13%

40 Bayesowskie sieci przekonań

41 B: Bayesowskie sieci przekonań- dane: True False p(b) = 0.4 p(~b) = 0.6 True False p(a) = 0.1 p(~a) = 0.9 A True False B True False True False True p(c AB) = 0.8 p(c A~B) = 0.6 p(c ~AB) = 0.5 p(c ~A~B) = 0.5 False p(~c AB) = 0.2 p(~c A~B) = 0.4 p(~c ~AB) = 0.5 p(~c ~A~B) = 0.5

42 Bayesowskie sieci przekonań- wyniki: P(C)=0,518, P(A/C)=0,131, P(B/C)=0,409

43 P(trawa będzie mokra) P(padał deszcz/trawa była mokra) P(działał zraszacz/trawa była mokra)

Podstawy nauk przyrodniczych Matematyka

Podstawy nauk przyrodniczych Matematyka Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118

Bardziej szczegółowo

Zarządzanie ryzykiem 3. Dorota Kuchta

Zarządzanie ryzykiem 3. Dorota Kuchta Zarządzanie ryzykiem 3 Dorota Kuchta Pojęcie użyteczności paradoks petersburski Bernoulli paradoks petersburski: Rzucamy kostką aż do momentu, kiedy po raz pierwszy wypadnie orzeł W tym momencie gracz

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

= A. A - liczba elementów zbioru A. Lucjan Kowalski

= A. A - liczba elementów zbioru A. Lucjan Kowalski Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie

Bardziej szczegółowo

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,

Bardziej szczegółowo

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi

Bardziej szczegółowo

Pułapki podejmowania decyzji inwestycyjnych

Pułapki podejmowania decyzji inwestycyjnych Pułapki podejmowania decyzji inwestycyjnych Decyzje inwestycyjne na Giełdzie Akademia Młodego Ekonomisty program edukacji ekonomicznej gimnazjalistów 17 lutego 2009 r. Żeby zarobić? Żeby nie stracić? Po

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Rachunek prawdopodobieństwa w grach losowych.

Rachunek prawdopodobieństwa w grach losowych. Rachunek prawdopodobieństwa w grach losowych. Lista zawiera kilkadziesiąt zadań dotyczących różnych gier z użyciem kart i kości, w tym tych najbardziej popularnych jak brydż, tysiąc itp. Kolejne zadania

Bardziej szczegółowo

Materiały dla finalistów

Materiały dla finalistów Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy

Bardziej szczegółowo

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula

Bardziej szczegółowo

Statystyka podstawowe wzory i definicje

Statystyka podstawowe wzory i definicje 1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Prawdopodobieństwo i rozkłady Zdarzenia losowe Prawdopodobieństwo warunkowe Prawdopodobieństwo bayesowskie

Bardziej szczegółowo

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.0. Wstęp Katarzyna Rybarczyk-Krzywdzińska Wstęp Dlaczego prawdopodobieństwo klasyczne nie wystarcza? Jak opisać grę w ruletkę,

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy : Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,

Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, niezależność zdarzeń dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Semestr letni

Bardziej szczegółowo

Deska Galtona. Adam Osękowski. Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski

Deska Galtona. Adam Osękowski. Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski a schemat Bernoulliego Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski XV Festiwal Nauki, 21 września 2011r. a schemat Bernoulliego Schemat Bernoulliego B(n, p)

Bardziej szczegółowo

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji?

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Porada niniejsza traktuje o tzw. elementach kombinatoryki. Często zdarza się, że rozwiązujący zadania z tej dziedziny mają problemy

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe

Bardziej szczegółowo

Temat: Statystyka i prawdopodobieństwo w naszym życiu.

Temat: Statystyka i prawdopodobieństwo w naszym życiu. Dla nauczyciela Spotkanie 9 Temat: Statystyka i prawdopodobieństwo w naszym życiu. Na zajęcia potrzebne będą pomoce tzn. kostki do gry, talia kart, monety lub inne. Przy omawianiu doświadczeń losowych

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo

Bardziej szczegółowo

Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń

Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Zadanie 1 Po potasowaniu sześciu kart: asa, dwójki, trójki, czwórki, piątki i szóstki wyłożono na stół w rzędzie

Bardziej szczegółowo

Myślenie szybkie, myślenie wolne, implikatury skalarne

Myślenie szybkie, myślenie wolne, implikatury skalarne Zagadnienia kognitywistyki I: komunikacja, wspolne działanie i poznanie społeczne rok akademicki 2016/2017 semestr zimowy Temat 3: Myślenie szybkie, myślenie wolne, implikatury skalarne PLAN: 1. Tversky

Bardziej szczegółowo

Probabilistyka przykłady

Probabilistyka przykłady Probabilistyka przykłady Przestrzeń zdarzeń Zapisać przestrzeń zdarzeń dla: 1.liczby wygranych gier w serii liczącej trzy gry 2.liczby wizyt u lekarza w ciągu roku 3.ilości czasu (w minutach) od wezwania

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)

Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16) Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz

Bardziej szczegółowo

Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1. Prawdopodobieństwo klasyczne i geometryczne Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej

Bardziej szczegółowo

IV Warsztaty Matematyczne I LO im. Stanisława Dubois w Koszalinie

IV Warsztaty Matematyczne I LO im. Stanisława Dubois w Koszalinie IV Warsztaty Matematyczne I LO im. Stanisława Dubois w Koszalinie Zadania i rozwiązania. Grupa starsza. Dzień pierwszy 27.09.2010r. Streszczenie Przygotowując zadania opierałem się o zasoby zadaniowe pochodzące

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

+ r arcsin. M. Przybycień Rachunek prawdopodobieństwa i statystyka π r x

+ r arcsin. M. Przybycień Rachunek prawdopodobieństwa i statystyka π r x Prawdopodobieństwo geometryczne Przykład: Przestrzeń zdarzeń elementarnych określona jest przez zestaw punktów (x, y) na płaszczyźnie i wypełnia wnętrze kwadratu [0 x 1; 0 y 1]. Znajdź p-stwo, że dowolny

Bardziej szczegółowo

Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia)

Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia) Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia) 1 Przestrzeń probabilistyczna Zadanie 1 Rzucamy dwiema kostkami do gry. Opisać przestrzeń zdarzeń

Bardziej szczegółowo

Ruletka czy można oszukać kasyno?

Ruletka czy można oszukać kasyno? 23 stycznia 2017 Ruletka czy można oszukać kasyno? M. Dworak, K. Maraj, S. Michałowski Plan prezentacji Podstawy ruletki System dwójkowy (Martingale) Czy system rzeczywiście działa? 1/22 Podstawy ruletki

Bardziej szczegółowo

Jak rozgrywać turnieje tenisowe?

Jak rozgrywać turnieje tenisowe? Jak rozgrywać turnieje tenisowe? Kamila Agnieszka Baten Kamila Agnieszka Baten Strona 1 008-10-16 ISTOTA PROBLEMU Będziemy zajmować się problemem, który został sformułowany w 199 roku przez prof. Hugona

Bardziej szczegółowo

Wnioskowanie bayesowskie

Wnioskowanie bayesowskie Wnioskowanie bayesowskie W podejściu klasycznym wnioskowanie statystyczne oparte jest wyłącznie na podstawie pobranej próby losowej. Możemy np. estymować punktowo lub przedziałowo nieznane parametry rozkładów,

Bardziej szczegółowo

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Po co nam matematyka? 7 kwietnia 2016 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Empik

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy

Bardziej szczegółowo

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład I, 2.10.2018 PODSTAWY RACHUNKU PRAWDOPODOBIEŃSTWA Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: wtorki, godz. 9:15 s. B006 strona z materiałami

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Ekonomia. Wykład dla studentów WPiA. Wykład 3: (Nie)racjonalność wyborów

Ekonomia. Wykład dla studentów WPiA. Wykład 3: (Nie)racjonalność wyborów Ekonomia Wykład dla studentów WPiA Wykład 3: (Nie)racjonalność wyborów Gospodarka z lotu ptaka. Dobra i usługi finalne Wydatki na dobra i usługi (konsumpcja, C) Gospodarstwa domowe: dysponują czynnikami

Bardziej szczegółowo

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska Przykład 1 Alicja wylosowała jedną kartę z

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja

Bardziej szczegółowo

Postawy wobec ryzyka

Postawy wobec ryzyka Postawy wobec ryzyka Wskaźnik Sharpe a przykład zintegrowanej miary rentowności i ryzyka Konstrukcja wskaźnika odwołuje się do klasycznej teorii portfelowej Markowitza, której elementem jest mapa ryzyko

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Zasada Bonferroniego

Zasada Bonferroniego Zasada Bonferroniego 7 października 2018 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików.pdf, sformatowanych podobnie do tego dokumentu. Zadania będą różnego rodzaju.

Bardziej szczegółowo

Czym jest użyteczność?

Czym jest użyteczność? Czym jest użyteczność? W teorii gier: Ilość korzyści (czy też dobrobytu ), którą gracz osiąga dla danego wyniku gry. W ekonomii: Zdolność dobra do zaspokajania potrzeb. Określa subiektywną przyjemność,

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Rozważmy eksperymenty 1 gra Bolka w ruletkę w kasynie;

Bardziej szczegółowo

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy

Bardziej szczegółowo

19/05/2015. Teoria perspektywy w podejmowaniu decyzji. Proces podejmowania decyzji - wykład 10. Ratowanie czy zamykanie zakładu pracy?

19/05/2015. Teoria perspektywy w podejmowaniu decyzji. Proces podejmowania decyzji - wykład 10. Ratowanie czy zamykanie zakładu pracy? Teoria perspektywy w podejmowaniu decyzji Proces podejmowania decyzji - wykład 10 Stworzona przez Daniela Kahnemana i Amosa Tversky ego i Daniela Kahnemana (1979) Opisuje efekt niestałości preferencji

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rozdział 2.3: Przykłady przestrzeni probabilistycznych. Katarzyna Rybarczyk-Krzywdzińska Przestrzeń probabilistyczna Przestrzeń

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2 ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu

Bardziej szczegółowo

Czy się zdarzy, to co się nam zamarzy? Wahid Ben Khalfa Przemysław Prucnal

Czy się zdarzy, to co się nam zamarzy? Wahid Ben Khalfa Przemysław Prucnal Czy się zdarzy, to co się nam zamarzy? Wahid Ben Khalfa Przemysław Prucnal Klasa VI B Ogólnokształcąca Szkoła Muzyczna I stopnia im. I. J. Paderewskiego, Kraków opieka merytoryczna: mgr Joanna Zagórska

Bardziej szczegółowo

Spekulacja na rynkach finansowych. znajomość narzędzi czy siebie? Grzegorz Zalewski DM BOŚ S.A.

Spekulacja na rynkach finansowych. znajomość narzędzi czy siebie? Grzegorz Zalewski DM BOŚ S.A. Spekulacja na rynkach finansowych znajomość narzędzi czy siebie? Grzegorz Zalewski DM BOŚ S.A. Narzędzia 2 Analiza techniczna Analiza fundamentalna Narzędzia (2) 3 AT astrologia rynków finansowych AF alchemia

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 6. Momenty zmiennych losowych Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8.11.2018 1 / 47 Funkcje zmiennych losowych Mierzalna funkcja Y

Bardziej szczegółowo

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Błędy przy tworzeniu systemów inwestycyjnych

Błędy przy tworzeniu systemów inwestycyjnych Błędy przy tworzeniu systemów inwestycyjnych Autor: Robert Kajzer Spis treści Błędy przy tworzeniu systemów inwestycyjnych Robert Kajzer Wstęp... 3 Obciążenia oceny wpływające na tworzenie systemu transakcyjnego...

Bardziej szczegółowo

8. Podejmowanie Decyzji przy Niepewności

8. Podejmowanie Decyzji przy Niepewności 8. Podejmowanie Decyzji przy Niepewności Wcześniej, losowość (niepewność) nie była brana pod uwagę (poza przypadkiem ubezpieczenia życiowego). Na przykład, aby brać pod uwagę ryzyko że pożyczka nie zostanie

Bardziej szczegółowo

Podstawy teorii finansów

Podstawy teorii finansów Ekonomiczny Uniwersytet Dziecięcy Życie gospodarcze Psychologia inwestora Grzegorz Kowerda Uniwersytet w Białymstoku 7 listopada 2013 r. EKONOMICZNY UNIWERSYTET DZIECIĘCY WWW.UNIWERSYTET-DZIECIECY.PL Podstawy

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 1. Wstęp

Rachunek prawdopodobieństwa Rozdział 1. Wstęp Rachunek prawdopodobieństwa Rozdział 1. Wstęp 1.0. Kilka słów na początek Katarzyna Rybarczyk-Krzywdzińska O czym mowa? Jakiego typu pytania będą nas interesować? Bolek, Lolek i Tola wstąpili do kasyna:

Bardziej szczegółowo

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji ODSTWY STTYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne 6.

Bardziej szczegółowo

Turniej Piłkarski dla rocznika 2003 Poznań, 14 stycznia 2012

Turniej Piłkarski dla rocznika 2003 Poznań, 14 stycznia 2012 Turniej Piłkarski dla rocznika 2003 Poznań, 14 stycznia 2012 Patroni Medialni SYSTEM ROZGRYWEK W turnieju udział weźmie 12 zespołów złożonych z zawodników urodzonych w roku 2003 i młodszych. Drużyny zostaną

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

STANDARD DLA WYMAGAJĄCYCH

STANDARD DLA WYMAGAJĄCYCH STANDARD DLA WYMAGAJĄCYCH Psychologia inwestowania Mateusz Madej 05.04.2017 Agenda Psychologia na rynku Teoria perspektywy Błędy w przekonaniach i ocenie prawdopodobieństwa Błędy w zachowaniu i podejmowaniu

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Prawdopodobieństwo. jest ilościową miarą niepewności

Prawdopodobieństwo. jest ilościową miarą niepewności Prawdopodobieństwo jest ilościową miarą niepewności Eksperyment - zdarzenie elementarne Eksperymentem nazywamy proces, który prowadzi do jednego z możliwych wyników. Nazywamy je wynikami obserwacji, zdarzeniami

Bardziej szczegółowo

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( ) Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo

Bardziej szczegółowo

Zmienne losowe i ich rozkłady

Zmienne losowe i ich rozkłady Zmienne losowe i ich rozkłady 29 kwietnia 2019 Definicja: Zmienną losową nazywamy mierzalną funkcję X : (Ω, F, P) (R n, B(R n )). Definicja: Niech A będzie zbiorem borelowskim. Rozkładem zmiennej losowej

Bardziej szczegółowo

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Ryzyko w procesie zarządzania dr Mirosław Wójciak Uniwersytet Ekonomiczny w Katowicach 27 lutego 2012 1 Gdzie spotykamy się z ryzykiem? Praktycznie w każdej dziedzinie życia.

Bardziej szczegółowo

Wykład 11: Podstawowe pojęcia rachunku prawdopodobieństwa

Wykład 11: Podstawowe pojęcia rachunku prawdopodobieństwa Wykład : Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grządziel 3 maja 203 Doświadczenie losowe Doświadczenie nazywamy losowym, jeśli: może być powtarzane (w zasadzie) w tych samych warunkach;

Bardziej szczegółowo

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania: Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat

Bardziej szczegółowo

34. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. II

34. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. II 157 Mirosław Dąbrowski 34. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. II Cele ogólne w szkole podstawowej: zdobycie przez uczniów umiejętności wykorzystywania posiadanych wiadomości

Bardziej szczegółowo