WSTĘP. Trochę geometrii elementarnej

Wielkość: px
Rozpocząć pokaz od strony:

Download "WSTĘP. Trochę geometrii elementarnej"

Transkrypt

1 WSTĘP. Trochę geometrii elementarnej W tym rozdziale będziemy używać oznaczeń przyjętych w szkole; w szczególności, punkty będziemy oznaczać dużymi literami łacińskimi Twierdzenie Pitagorasa Znane od czasów starożytnych twierdzenie Pitagorasa ma wiele dowodów. Przytoczymy tu jeden z nich, dowód Euklidesa Twierdzenie. Dany jest trójkąt prostokątny o wierzchołkach A, B, C i kącie prostym przy wierzchołku C. Jeżeli a, b, c są długościami boków przeciwległych odpowiednio punktom A, B, C, to c 2 = a 2 + b 2. Dowód (rys. 1). Wykorzystuje się następujące dwa fakty dotyczące pól trójkątów: Trójkąty o wspólnej podstawie i trzecim wierzchołku leżącym na prostej równoległej do podstawy mają równe pola; każda izometria płaszczyzny, w szczególności każdy obrót, zachowuje pole dowolnego trójkąta. Korzystając z tych faktów pokazujemy, że jeżeli M jest spodkiem wysokości trójkąta (ABC) z wierzchołka C, to 1 2 b2 = P ( (AF B)) = P ( (ACD)) = P ( (AMD)). Analogicznie dowodzimy, że 1 2 a2 = P ( (EMB)). Zatem kwadrat o wierzchołkach A, B, D, E, o polu c 2, został podzielony na dwa trójkąty o polu 1 2 a2 i dwa trójkąty o polu 1 2 b2. Stąd otrzymujemy c 2 = a 2 + b 2. 1

2 0.2. Jak Eratostenes zmierzył długość równika Około r. 230 p.n.e. Eratostenes udowodnił, że równik ( obwód Ziemi ) ma długość 40 tys. km. Jego pomiar jest oparty na tym, że kąt między kierunkami prostopadłymi do powierzchni ziemi w dwóch punktach jest proporcjonalny do odległości sferycznej tych punktów, tzn. długości łuku wielkiego okręgu przechodzącego przez te dwa punkty. Eratostenes wiedział, że odległość między Aleksandrią i leżącym na południe od niej (blisko zwrotnika Raka) Assuanem wynosi około 800 km. Kąt między kierunkami prostopadłymi do powierzchni Ziemi w Aleksandrii i Assuanie zmierzył badając kąt padania promieni słonecznych w Aleksandrii w dniu, w którym promienie słoneczne padały w Assuanie prostopadle (patrz rys 2). Obliczył, że kąt ten jest równy 7, 2 o. Ponieważ 7, 2 o = o 1, więc 800 km stanowi długości równika. 50 Obliczenia Eratostenesa są obarczone pewnym błędem, ponieważ w rzeczywistości Aleksandria i Assuan leżą tylko w przybliżeniu na tym samym południku: współrzędne geograficzne Aleksandrii są 31,2 N i 29,92 E, a Assuanu - 24,05 N i 32,54 E; (zwrotnik Raka - 23,26 N) Dlaczego warto uogólniać? Zagadka. Kulę ziemską opasano wzdłuż równika ściśle przylegającą taśmą, a następnie przedłużono tę taśmę o 1 metr zachowując jej kolisty kształt. Czy mysz może przecisnąć się teraz pod tą taśmą? Niech l będzie długością równika, r - jego promieniem a R - promieniem większego koła utworzonego przez przedłużoną taśmę. Ponieważ l = 2πr, więc 2πR = 2πr + 1, a zatem R r = 1 2π > 1 8. Ten wynik jest o tyle zaskakujący, że nie zależy od r! Oczywiście przez szparę szerokości ponad 1 m przejdzie nawet kot! ([2]). 8 2

3 1. GEOMETRIA METRYCZNA Nazwa geometria, która pochodzi (z greckiego) od mierzenia Ziemi, obejmuje obecnie szeroką gałąź matematyki (a może także pewien sposób patrzenia na różne zjawiska). Rozdział ten, w którym zajmujemy się geometrią metryczną, jest najbliższy pierwotnemu znaczeniu terminu geometria (Przykłady 1-5), ale również pokazuje dość odległe powiązania (Przykład 6). Dla dowolnego niepustego zbioru X wprowadza się metrykę ρ, która jest pewną funkcją na parach punktów zbioru X; wartość ρ(x, y) tej funkcji nazywamy odległością punktów x, y, a parę (X, ρ) - przestrzenia metryczną (por. Def. 1.1) Definicja. Niech X będzie niepustym zbiorem a ρ : X X R funkcją o wartościach rzeczywistych. Para (X, ρ) jest przestrzenią metryczną a funkcja ρ - metryką jeżeli są spełnione następujące warunki: (i) ρ(x, y) = 0 wtedy i tylko wtedy gdy x = y; (ii) ρ(x, y) = ρ(y, x) dla dowolnych x, y X (t.j. funkcja ρ jest symetryczna); (iii) ρ(x, z) ρ(x, y) + ρ(y, z) dla dowolnych x, y, z X (t.j. ρ spełnia nierówność trójkąta ). Liczbę ρ(x, y) nazywamy odległością punktów x, y, a zbiór B(a, r) określony przez wzór B(a, r) := {x X ρ(x, a) r} dla danego a X i r > 0 - kulą o środku a i promieniu r w przestrzeni (X, ρ). Zbiór A X jest ograniczony jeżeli jest zawarty w pewnej kuli Twierdzenie. Niech (X, ρ) będzie przestrzenią metryczną. Wtedy (1) ρ(x, y) 0 dla dowolnych x, y X; (2) ρ spełnia nierówność wielokąta: dla każdego naturalnego k 2 i dowolnych x 1,..., x k X, ρ(x 1, x k ) Σ k 1 i=1 ρ(x i, x i+1 ). (1.1) k Dowód. (1): Niech x, y X. Na mocy warunków (iii), (i), ρ(x, y) + ρ(y, x) ρ(x, x) = 0, 3

4 a stąd na mocy symetrii (warunek (ii)), 2ρ(x, y) 0, więc ρ(x, y) 0. (2): Dowód indukcyjny. Dla k = 2 warunek (1.1) k jest nierównością trójkąta. Założmy, że k 3 i warunek ten jest spełniony dla k 1: ρ(x 1, x k 1 ) Σ k 2 i=1 ρ(x i, x i+1 ). Wtedy, na mocy (iii), ρ(x 1, x k ) ρ(x 1, x k 1 ) + ρ(x k 1, x k ), a stąd i z założenia indukcyjnego (1.1) k 1 otrzymujemy (1.1) k. Dany zbiór X można na ogół zmetryzować na różne sposoby, t.zn. określić dla niego wiele różnych metryk Definicja. Dla dowolnej przestrzeni metrycznej (X, ρ) i niepustego podzbioru X 0 zbioru X, funkcja ρ X 0 jest oczywiście metryką w zbiorze X 0. Zwykło się oznaczać ją też symbolem ρ. Parę (X 0, ρ) nazywa się podprzestrzenią metryczną przestrzeni (X, ρ). Przykład 1. Metryka dyskretna Dla danego zbioru X, określamy funkcję ρ : X X przez wzór ρ(x, y) := { 0 jeżeli x = y 1 jeżeli x y Jest ona metryką, t.zw. metryką dyskretną. Dowolna kula w tej przestrzeni jest całym zbiorem X. Przykład 2. Metryka kartezjańska a) Niech X będzie zbiorem liczb rzeczywistych ( prosta liczbową ): X = R. Wzór ρ(x, y) := x y określa odległość, która jest długością odcinka o końcach x, y. Przykład a) jest szczególnym przypadkiem (dla n = 1) następującego: 4

5 b) Niech X = R n. Dla dowolnych punktów x = (x 1,..., x n ), y = (y 1,..., y n ) zbioru X wzór ρ(x, y) := Σ n i=1(x i y i ) 2 określa odległość kartezjańską, a przestrzeń metryczna (R n, ρ) jest przestrzenią kartezjańską n-wymiarową. Zajmiemy się teraz innymi metrykami w zbiorze R n. Ograniczymy nasze przykłady do przypadku płaszczyzny, t.j. n = 2. Uogólnienie (niektórych z nich) na R n dla dowolnego naturalnego n nie jest trudne, podobnie jak dowód, że są to metryki. Przykład 3. Metryka miejska, ρ (ang. taxi metric - widać niektórzy wolą jeździć taksówką, niż chodzić pieszo...) Niech X = R 2. Dla dowolnych punktów x = (x 1, x 2 ), y = (y 1, y 2 ), ρ(x, y) := x 1 y 1 + x 2 y 2. Kulą o środku a i promieniu r na płaszczyźnie z metryką miejską jest kwadrat, którego wierzchołkami są punkty jednostkowe e 1, e 1, e 2, e 2 na odpowiednich osiach X 1, X 2 układu współrzędnych (rys.3). Przykład 4. Metryka maximum, ρ max Dla dowolnych x = (x 1, y 1 ), y = (y 1, y 2 ), ρ max (x, y) := max{ x 1 y 1, x 2 y 2 }. Kulą o środku a = (a 1, a 2 ) i promieniu r w przestrzeni (R 2, ρ max ) jest kwadrat o wierzchołkach (rys.4). (a 1 + r, a 2 + r), (a 1 r, a 2 + r), (a 1 r, a 2 r), a 1 + r, a 2 r) Przykład 5. Metryka kolejowa, ρ o Intuicyjnie, jeżeli mamy węzeł kolejowy o i możemy poruszać się tylko po torach (prostoliniowych) przechodzących przez o, praktyczna odległość między dwoma punktami odpowiada właśnie metryce kolejowej określonej jak następuje. Niech ρ będzie metryką kartezjańską w R 2 ; 5

6 { ρ(x, y) jeżeli x, y, o są współliniowe ρ o (x, y) := ρ(x, o) + ρ(o, y) jeżeli x, y, o są niewspółliniowe Kula o środku a i promieniu r w przestrzeni (R 2, ρ o ) wygląda inaczej w przypadku gdy r > ρ o (a, o) niż w przypadku gdy r ρ o (a, o) (rys.5). Jeżeli r > ρ(a, o), to kula ta składa się z kuli (w metryce kartezjańskiej ρ) o promieniu r ρ(a, o) i odcinka (por. [?]); jeżeli zaś r ρ(a, o), to kula o środku a i promieniu r w metryce kolejowej jest odcinkiem o środku a i długości 2r na prostej przechodzącej przez o i a. Przykład 6. Przestrzeń funkcji ciągłych na odcinku [a, b] Niech a, b R, a b. Rozważamy zbiór X funkcji ciągłych o wartościach rzeczywistych, określonych na odcinku [a, b]. W zbiorze X określamy metrykę ρ: dla dowolnych f, g : [a, b] R (rys. 6). ρ(f, g) := sup{ f(t) g(t) t [a, b]} Przykład 7. Odłegłość Hamminga słów kodowych Słowo kodowe binarne o długości n jest to dowolny ciąg (x i ) 1=1,...,n {0, 1} n, t.zn. x i {0, 1} dla i = 1,..., n. Dla dowolnych słów kodowych x = (x 1,..., x n ) i y = (y 1,..., y n ), odległość Hamminga ρ Ham (x, y) jest to liczba wyrazów ciągu (x 1,..., x n ), dla których x i y i. Algorytm poprawiania błędów: Ustalamy pewien zbiór C słów kodowych. Dekoder odbiera i analizuje słowo kodowe x, znajduje najbliższe w sensie odległości Hamminga słowo kodowe x w zbiorze C i przyjmuje ciąg x za otrzymaną wiadomość. Twierdzenie. Dekoder C może poprawić do k błędów wtedy i tylko wtedy gdy min x,y C {ρ Ham(x, y) x y} {2k + 1, 2k + 2}. (Por. [11], Tw ) 6

7 Dowód. =: Załóżmy, że min x,y C {ρ Ham (x, y) {2k + 1, 2k + 2}. Wówczas dla dowolnych różnych x, y C kule B(x, k), B(y, k) są rozłączne, t.zn. dowolny wektor, który ma nie więcej niż k błędów, trafi do pewnej kuli B(x, k) i zostanie odkodowany jednoznacznie. = : Dekoder może poprawić k błędów, więc kule o promieniu k są parami rozłączne, zatem z nierówności trójkąta wynika, że odległość ich środków, ρ Ham (x, y), jest większa od 2k. Dekoder nie może poprawić więcej błędów, więc istnieją dwie kule o promieniu k + 1, które nie są rozłączne. Niech x 0, y 0 będą środkami tych kul; wtedy ρ Ham (x 0, y 0 ) 2k + 2. Zatem ρ Ham (x 0, y 0 ) = 2k + i dla i {1, 2}, przy czym oba przypadki są możliwe. 2. WIĘCEJ O PRZESTRZENIACH METRYCZNYCH W każdej przestrzeni metrycznej można wprowadzić pojęcie granicy ciągu punktów Definicja. Niech (x n ) n N będzie ciągiem punktów przestrzeni metrycznej (X, ρ) i niech x 0 X. x 0 = lim n x 0 : lim n ρ(x n, x 0 ) = 0. Łatwo zauważyć, że każdy ciąg ma co najwyżej jedną granicę. Dla dowolnych dwóch przestrzeni metrycznych (X, ρ X ) i (Y, ρ Y ) definiujemy ciągłość funkcji f : X Y : 2.2. Definicja. a) Funkcja f : X Y jest ciągła w punkcie x 0 (ze względu na ρ X, ρ Y ) wtedy i tylko wtedy gdy lim x n = x 0 = lim n n f(x n ) = f(x 0 ). b) Funkcja f : X Y jest ciągła jeżeli jest ciągła w każdym punkcie. Wśród podzbiorów danej przestrzeni metrycznej (X, ρ) wyróżnia się zbiory domknięte i zbiory otwarte: 7

8 2.3. Definicja. (a) Zbiór A jest domknięty w (X, ρ) wtedy i tylko wtedy gdy dla każdego ciągu punktów (x n ) n N w X lim x n = x 0 = x 0 A. n (b) Zbiór A jest otwarty w (X, ρ) wtedy i tylko wtedy gdy jego dopełnienie, X \ A, jest domknięte. Oczywiście zbiór A w przestrzeni (X, ρ) może nie być w niej ani otwarty ani domknięty; np. przedział (0; 1] nie jest na prostej kartezjańskiej (R, ρ) ani otwarty ani domknięty. Zauważmy też, że zbiór może być domknięty w jednej przestrzeni metrycznej a nie być domknięty w drugiej; np. przedział (0, 1] jest domknięty w przestrzeni {x R x > 0} z metryką kartezjańską, ale nie jest domknięty na całej prostej Przykład. Jeżeli funkcja f : X Y jest ciągła (względem danych metryk ρ X i ρ Y ), to dla dowolnego zbioru B domkniętego w Y, jego przeciwobraz f 1 (B) jest domknięty w X. Analogiczna implikacja zachodzi dla zbiorów otwartych Definicja. Zbiór A jest zwarty w (X, ρ) wtedy i tylko wtedy gdy każdy ciąg (x n ) n N w A ma podciąg (x kn ) n N zbieżny do jakiegoś punktu zbioru A Uwaga. Każdy zbiór zwarty jest domknięty, ale nie na odwrót; np. dowolna prosta w przestrzeni kartezjańskiej R n jest zbiorem domkniętym, ale nie jest zbiorem zwartym, ponieważ ciąg jej punktów, dla których odległość sąsiednich jest 1, nie ma podciągu zbieżnego. Podamy bez dowodu następujące 2.7. Twierdzenie. W przestrzeni kartezjańskiej (dowolnego wymiaru n) każdy zbiór domknięty i ograniczony jest zwarty. Ćwiczenie. Sprawdzić które z danych podzbiorów prostej R z metryką kartezjańską są zwarte: Zbiór Q liczb wymiernych, 8

9 Q [0, 1], {1 + 1 n n N}, { 1} { n n N} {1 1 n n N} {1} {1, 2,..., 10}. Zauważmy, że w myśl Definicji 1.4, pojęcie zwartości ma sens zarówno dla zbioru jak dla przestrzeni metrycznej. Ważną rolę w geometrii przestrzeni metrycznych i w jej zastosowaniach odgrywa pojęcie zupełności. Wprowadzenie tego pojęcia poprzedzimy definicją ciągu Cauchy ego Definicja. Ciąg (x n ) n N punktów przestrzeni metrycznej (X, ρ) jest ciągiem Cauchy ego wtedy i tylko wtedy gdy dostatecznie dalekie wyrazy tego ciągu są dowolnie bliskie, t.zn. dla każdego ε > 0 istnieje taki wskaźnik n 0, że k, m n 0 = ρ(x k, x m ) < ε Definicja. Przestrzeń metryczna (X, ρ) jest zupełna wtedy i tylko wtedy gdy każdy ciąg Cauchy ego w (X, ρ) jest w tej przestrzeni zbieżny Przykład. Przestrzeń kartezjańska (R n, ρ) dowolnego wymiaru n jest przestrzenią zupełną (patrz [8]) Twierdzenie. Każda przestrzeń zwarta jest przestrzenią zupełną; ( patrz [8]). Widać stąd, że zwartość jest warunkiem mocniejszym niż zupełność, ponieważ przestrzeń zupełna nie musi być zwarta (por. Przykład 2.10 i Uwaga 2.6). Natomiast, podobnie jak dla zbiorów zwartych, każdy podzbiór domknięty przestrzeni zupełnej jest jej podprzestrzenią zupełną. Na zakończenie tego rozdziału, zdefiniujemy dwie relacje równoważności pomiędzy metrykami w danym zbiorze Definicja. Niech ρ 1 i ρ 2 będą metrykami w zbiorze X. 9

10 (a) ρ 1, ρ 2 są metrycznie równoważne wtedy i tylko wtedy gdy istnieją α, β > 0, takie że dla każdych x, y X αρ 2 (x, y) ρ 1 (x, y) βρ 2 (x, y). (b) ρ 1, ρ 2 są topologicznie równoważne wtedy i tylko wtedy gdy dla dowolnego ciągu (x n ) w zbiorze X zbieżność tego ciągu w przestrzeni (X, ρ 1 ) jest równoważna jego zbieżności w (X, ρ 2 ). Łatwo zauważyć, że metryczna równoważność implikuje równoważność topologiczną, ale nie na odwrót. Ćwiczenie. Pokazać, że metryki kartezjańska, miejska i metryka maximum w R 2 są metrycznie równoważne, natomiast żadna z nich nie jest nawet topologicznie, a więc tym bardziej metrycznie równoważna metryce dyskretnej ani kolejowej. 3. KONTRAKCJE Zajmiemy się teraz przekształceniami zwężającymi, zwanymi inaczej kontrakcjami, które odgrywają ważną rolę dla przestrzeni metrycznych zupełnych (por. Twierdzenie Banacha poniżej) Definicja. Niech (X, ρ) będzie przestrzenią metryczną. Funkcja f : X X jest kontrakcją przestrzeni (X, ρ) wtedy i tylko wtedy gdy istnieje liczba c [0; 1), taka że x, y X ρ(f(x), f(y)) cρ(x, y). (3.1) Zauważmy, że warunku (3.1) nie można zastąpić następującym: x, y X ρ((f(x), f(y)) < ρ(x, y). (3.2) 3.2. Przykład. Niech (X, ρ) będzie podzbiorem prostej R z metryką euklidesową: X := {0} { 1 n n N}. Rozważmy funkcję f : X X określoną natępująco: 10

11 f(0) = 0, f( 1 n ) = 1 n + 1 Funkcja f spełnia warunek (3.2). Rzeczywiście, dla każdego n N. jeżeli x = 0 i y = 1, to ρ(f(x), f(y)) = ρ(f(0), f( 1 )) = ρ(0, 1 ) = n n n+1 1 < 1 = ρ(0, 1 ); n+1 n n jeżeli x = 1 m i y = 1 n, to ρ(f(x), f(y)) = 1 m+1 1 n+1 < 1 m 1 n. Zauważmy, że f nie spełnia warunku (3.2). Rzeczywiście, gdyby ten warunek był spełniony, to istniałaby stała c, taka że dla dowolnych różnych punktów x, y ρ(f(x), f(y)) c < 1. ρ(x, y) Ale dla x = 0, y n = 1 n otrzymujemy ρ(f(x), f(y n )) ρ(x, y n ) = ρ(0, 1 n+1 ) ρ(0, 1 n ) = n n + 1, więc lim n ρ(f(x),f(y n)) ρ(x,y n) = 1. Ćwiczenie. Pokazać, że dla dowolnej prostej L w R 2 z metryka euklidesową, rzutowanie prostopadłe π L na prostą L nie jest kontrakcją. Dla płaszczyzny kartezjańskiej łatwo wskazać cała klasę kontrakcji: 3.3. Przykład. Każda jednokładność f c : R 2 R 2 o współczynniku c (0; 1) jest kontrakcją. Przykład ten można łatwo uogólnić: 3.4. Przykład. Dla dowolnego n naturalnego, każda jednokładność f c : R n R n o współczynniku c (0; 1) jest kontrakcją. Wygodnie jest używać następujących oznaczeń: dla dowolnych punktów x = (x 1,..., x n ) i y = (y 1,..., y n ) w R n i liczby α, x + y := (x 1 + y 1,..., x n + y n ); αx := (αx 1,..., αx n ). (3.3) 11

12 Mamy pokazać, że ρ(f c (x), f c (y)) cρ(x, y), a to jest równoważne nierówności: (f c (x) f c (y)) 2 c (x y) 2. (3.4) Ponieważ f c (x) = cx dla każdego punktu x R n, więc warunek (3.4) możemy zapisać w postaci (c(x y)) 2 c x y 2, a ponieważ c > 0, nierówność ta jest oczywiście spełniona, co więcej, jest równością Przykład. Jednokładność w przyrodzie. Położenie punktu x R 2 o współrzędnych kartezjańskich x 1, x 2 można również opisać przez współrzędne biegunowe r, φ: jeżeli x = (0, 0), to r = 0 a φ jest dowolne; jeżeli x (0, 0), to r := ρ(0, x) a φ jest miarą kąta zorientowanego między wektorem pierwszej osi a wektorem półprostej o początku 0 przechodzącej przez x (rys. 7 ). Zatem (x 1, x 2 ) = (r cos φ, r sin φ). Będziemy zakładać, że φ R, tj. φ jest dowolną liczbą rzeczywistą. Dla ustalonego a > 0, spirala logarytmiczna X a jest to zbiór opisany we współrzędnych biegunowych przez równanie r = e aφ dla φ R, (3.5) Podamy przykład jednokładności f c o skali c < 1, która daną spiralę X a przekształca na X a. Oczywiście, przy każdym kolejnym przejściu od φ do φ + 2π punkt x X a o współrzędnych biegunowych r, φ przejdzie na punkt o współrzędnych biegunowych r, φ + 2π, gdzie r = e a(φ+2π). Zauważmy, że Niech r r = eaφ e = 1 a(φ+2π) e. 2aπ c := r r = 1 e 2aπ. 12

13 Wtedy jednokładność f c przekształca X a na X a. Jak łatwo zauważyć, c (0, 1), a zatem f c jest kontrakcją. Co więcej, przy tej jednokładności każdy zwój spirali jest przekształcany na poprzedni (mniejszy) (patrz rys. 8 ) 3.6. Twierdzenie. Każda kontrakcja jest funkcją ciągłą. Dowód. Niech f : X X będzie kontrakcją przestrzeni (X, ρ). Mamy pokazać, że lim x n = x 0 = lim f(x n ) = f(x 0 ). n n Ponieważ 0 ρ(f(x n ), f(x 0 )) cρ(x n, x 0 ) 0, więc z twierdzenia o trzech ciagach ρ(f(x n ), f(x 0 )) 0, t.zn. lim n f(x n ) = f(x 0 ) Definicja. Dla dowolnego niepustego zbioru X i funkcji f : X X ciąg funkcji (f (n) ) n N określony jest indukcyjnie: f (1) (x) := f(x), f (n) (x) := f(f (n 1) (x)). A więc jest to ciąg kolejnych iteracji funkcji f Uwaga. Dla dowolnej przestrzeni metrycznej (X, ρ), jeżeli f : X X jest kontrakcją o stałej c [0; 1), to dla każdego n N funkcja f (n) jest kontrakcją o stałej c n. Oczywiście, dla n = 1 korzystamy z definicji kontrakcji. Jeżeli n 2 i f (n 1) jest kontrakcją o stałej c n 1, to (z Def. 3.8) ρ(f (n) (x), f (n) (y)) cρ(f (n 1) (x), f (n 1) (y)) c n ρ(x, y). Następujące ważne twierdzenie dotyczy dowolnej przestrzeni metrycznej zupełnej Twierdzenie Banacha o punkcie stałym. Niech (X, ρ) będzie przestrzenią metryczną zupełną. Jeżeli f : X X jest kontrakcją, to (i) f ma dokładnie jeden punkt stały, x 0 ; (ii) dla dowolnego punktu x X i ciągu funkcji f (n) (por. Def. 3.8), punkt x 0 jest granicą ciągu (f (n) (x)) n N. Dowód. W myśl definicji kontrakcji (Def. 3.1), ρ(f(x), f(y)) cρ(x, y) dla pewnego c [0; 1). 13

14 Pokażemy, że dla dowolnego ustalonego x X ciąg (f (n) (x)) n N jest ciągiem Cauchy ego (por. Def. 2.9). Oczywiście możemy założyć, że n > m. Wtedy f (n) (x) = f (n m) (f (m) (x)), więc zgodnie z Uwagą 3.9 ρ(f (n) (x), f (m) (x)) = ρ(f (m) (f (n m) (x)), f (m) (x)) c m ρ(f (n m) (x), x). Korzystając z nierówności wielokąta (Tw. 1.2) i z Uwagi 3.9, otrzymujemy (dla k = n m) ρ(x, f (k) (x)) ρ(x, f(x))+ρ(f(x), f (2) (x))+...+ρ(f (k 1) (x), f (k) (x)) (1 + c c k 1 )ρ(x, f(x)), a stąd i ze wzoru na sumę ciągu geometrycznego, Zatem ρ(x, f (k) (x)) 1 ρ(x, f(x)). 1 c ρ(f (n) (x), f (m) (x)) c m ρ(f (k) (x), x) cm ρ(x, f(x)). 1 c Ponieważ c (0; 1) a punkt x jest ustalony, więc prawa strona ostatniej nierówności jest dowolnie mała dla dostatecznie dużych m, a zatem jest mniejsza od dowolnego ε(x). Stąd wynika, że lewa strona jest też mniejsza od ε(x); a więc ciąg (f (n) (x)) n N) jest ciągiem Cauchy ego. Ponieważ przestrzeń (X, ρ) jest zupełna, więc ciąg ten jest zbieżny do pewnego punktu x 0 X: lim f (n) (x) = x 0. n Zauważmy, że x 0 jest punktem stałym funkcji f. Rzeczywiście, ponieważ każda kontrakcja jest ciągła, więc f(x 0 ) = f( lim n f (n) (x)) = lim n f(f (n) (x)) = lim n f (n+1) (x). Ale ciągi (f (n+1) (x)) n N i (f (n) (x)) n N różnią się tylko pierwszym wyrazem, więc mają równe granice; zatem f(x 0 ) = x 0. 14

15 Punkt x 0 jest jedynym punktem stałym kontrakcji f (warunek (i)). Rzeczywiście, jeżeli x 1 jest też punktem stałym kontrakcji f, to f(x i ) = x i dla i = 0, 1, więc ρ(x 0, x 1 ) = ρ(f(x 0 ), f(x 1 )) cρ(x 0, x 1 ), więc ρ(x 0, x 1 ) = 0, a zatem x 0 = x 1. Zatem x 0 jest granicą ciągu ((f(n)(x)) n N dla dowolnego x (warunek (ii)). Twierdzenie Banacha o punkcie stałym ma różne zastosowania, w szczególności pozwala numerycznie rozwiązywać równania postaci f(x) = x. 4. METRYKA HAUSDORFFA Rozważmy dowolną przestrzeń metryczną (X, ρ). Dla dowolnego niepustego podzbioru A X i punktu x X definiuje się odległość punktu x od zbioru A: ρ(x, A) := inf{ρ(x, a) a A} i ε-otoczkę zbioru A dla ε > 0, zwaną również kulą uogólnioną o promieniu ε wokół A: (A) ε := {x X ρ(x, A) ε}. Nie trudno pokazać, że (A) ε = a A B(a, ε), gdzie B(a, ε) jest kulą o środku a i promieniu ε, t.zn. B(a, ε) = {x X ρ(x, a) ε} Definicja. Dla zwartych, niepustych zbiorów A, B X, ρ H (A, B) := inf{ε > 0 A (B) ε i B (A) ε }. 15

16 4.2. Twierdzenie. Funkcja ρ H jest metryką w zbiorze C(X) wszystkich niepustych zwartych podzbiorów przestrzeni (X, ρ). Dowód. Sprawdzamy warunki (i)-(iii) Definicji 1.1. Wprost z Definicji 4.1 otrzymujemy warunek ρ H (A, A) = 0, bo zbiór A jest oczywiście zawarty w każdej swojej ε-otoczce. Z kolei, jeżeli ρ H (A, B) = 0, to A (B) ε dla każdego ε > 0, więc ρ(x, B) ε dla każdego x A i ε > 0. Zatem do dowolnej kuli B(x, ε) o promieniu ε = 1 n należy pewien punkt y n zbioru B; a więc ρ(x, y n ) 1 n, a stąd x = lim n y n. Z domkniętości zbioru B wynika że x B. Zatem A B. Dowód inkluzji B A jest analogiczny. To kończy dowód warunku (i). Warunek (ii) wynika z tego, że definicja funkcji ρ H jest symetryczna ze względu na A, B. Udowodnimy nierówność trójkąta (warunek (iii)). Niech α := ρ H (A, B) i β := ρ H (B, C). Wtedy oraz Wynika stąd, że a więc A (B) α i B (A) α, B (C) β i C (B) β. A (C) α+β i C (A) α+β ; ρ H (A, C) α + β = ρ H (A, B) + ρ H (B, C). Zatem ρ H jest metryką Twierdzenie. Dla dowolnych A, B C(X), ρ H (A, B) = max{sup a A ρ(a, B), sup ρ(b, A)}. b B Dowód. Wygodnie będzie skorzystać z następującej własności kresu dolnego inf, którą zilustrujemy na rysunku, rezygnując z formalnego dowodu (rys. 9). 16

17 Jeżeli S 1, S 2 są przedziałami liczbowymi o niepustym przecięciu, to inf(s 1 S 2 ) = max{inf S 1, inf S 2 }. (4.1) Udowodnimy najpierw równość sup ρ(a, B) = inf{ε > 0 A (B) ε }. (4.2) a A Oznaczmy lewą stronę wzoru (4.2) przez α, a prawą przez β. Oczywiście ρ(a, B) α dla każdego a A, więc A (B) α, a zatem α β. Przypuśćmy, że ta nierówność jest ostra, t.j. α > β; wtedy istnieje ε (0; α), dla którego A (B) ε, więc sup a A ρ(a, B) ε < α, t.j α < α. Zatem przypuszczenie, że α > β doprowadziło nas do sprzeczności; więc α β. Udowodniliśmy więc, że α = β, a to jest (4.2). Analogicznie, zamieniając A i B we wzorze (4.2), otrzymujemy sup ρ(b, A) = inf{ε > 0 B (A) ε } (4.2 ) b B Zatem większa z lewych stron wzorów (4.2) i (4.2 ) równa jest większej z ich prawych stron. Oznaczmy te prawe strony przez ε 0 i ε 0 odpowiednio. Mamy więc równość max{sup a A ρ(a, B), sup ρ(b, A)} = max{ε 0, ε 0}. b B Na mocy warunku (4.2), to kończy dowód Przykład. Niech T będzie trójkątem równobocznym wpisanym w koło K o promieniu 1. Obliczymy ρ H (T, K). Ponieważ T K, więc ρ(x, K) = 0 dla każdego x T. Zatem sup ρ(x, K) = 0. x T Niech x K; oczywiście ρ(x, T ) = 0 dla x T, a dla x K \ T jest to odległość rzutu punktu x na najbliższy bok trójkąta T. Zatem sup ρ(x, T ) = x K 3 2 = 1 6 > 0. 17

18 Wobec tego, w myśl Twierdzenia 4.3, ρ H (T, K) = Ćwiczenie. Dla i = 1, 2, niech B i będzie kulą w przestrzeni R 3, o środku a i i promieniu r i, zaś S i - odpowiednią sferą (brzegiem kuli B i ). Obliczyć ρ H (B 1, B 2 ), ρ H (S 1, S 2 ) i ρ H (B 1, S 2 ). Na koniec tego rozdziału podamy bez dowodu ważne twierdzenie: 4.5. Twierdzenie. Niech C n będzie rodziną zwartych niepustych podzbiorów przestrzeni R n z metryką kartezjańską. Wtedy (C n, ρ H ) jest przestrzenią zupełną. Ogólniej, 4.6. Twierdzenie. Niech C(X) będzie rodziną zwartych niepustych podzbiorów przestrzeni metrycznej (X, ρ). Jeżeli przestrzeń (X, ρ) jest zupełna, to również (C(X), ρ H ) jest przestrzenią zupełną. 18

19 5. OPERATOR HUTCHINSONA Rozważmy skończoną rodzinę kontrakcji {ψ 1,..., ψ m } przestrzeni metrycznej (X, ρ). Definiujemy przekształcenie Ψ : C(X) C(X), zwane operatorem Hutchinsona: dla A C(X) m Ψ(A) := ψ i (A). (5.1) i= Twierdzenie. Funkcja Ψ jest kontrakcją przestrzeni (C(X), ρ H ). Dowód. Niech c i [0; 1) będzie stałą kontrakcji ψ i dla i = 1,..., m. Możemy założyć, że jest to najmniejsza taka stała, tzn. stała Lipschitza tej kontrakcji, c i = Lip(ψ i ). Niech A, B C(X) i ρ H (A, B) = ε. Zatem więc dla każdego i Niech A (B) ε i B (A) ε, ψ i (A) ψ i ((B) ε ) i ψ i (B) ψ i ((A) ε ). c := max{c 1,..., c m }. Zauważmy, że jeżeli x (B) ε, to ψ i (x) (ψ i (B)) cε ; więc ψ i (B ε ) (ψ i (B)) cε. Analogicznie, ψ i (A ε ) (ψ i (A)) cε. Ponieważ ε-otoczka sumy skończonej liczby zbiorów jest równa odpowiedniej sumie ε-otoczek tych zbiorów (por. Ćwiczenie...), więc korzystając z definicji funkcji Ψ ((5.1)), otrzymujemy stąd Zatem Ψ(A) (Ψ(B)) cε i Ψ(B) (Ψ(A)) cε. ρ H (Ψ(A), Ψ(B)) cε = cρ H (A, B), 19

20 co kończy dowód. Niech X = R n, i niech ρ będzie metryką kartezjańską. Jako wniosek z Twierdzeń 4.6, 5.1 i Twierdzenia Banacha o punkcie stałym (Tw. 3.9) otrzymujemy następujące ważne twierdzenie: 5.2. Twierdzenie Hutchinsona. Funkcja Ψ : C n C n ma dokładnie jeden punkt stały, tj. taki zwarty podzbiór E przestrzeni R n, dla którego Ψ(E) = E. Co więcej, dla dowolnego A C n, zbiór E jest granicą Hausdorffa ciągu (Ψ (k) ) k N (A) obrazów zbioru A przy kolejnych iteracjach funkcji Ψ (por. Def. 3.7). Zbiór E jest nazywany zbiorem niezmienniczym rodziny kontrakcji {ψ 1,..., ψ m }. Oczywiście m E = ψ i (E). i=1 W szczególności, jeżeli kontrakcje ψ i są podobieństwami o skali c (0; 1), zbiór E jest samopodobny: jest sumą mnogościową swoich podobnych kopii ψ i (E) dla i = 1,..., m. Zilustrujemy teraz Twierdzenie Hutchinsona na przykładach znanych od dawna zbiorów samopodobnych: tzw. trójkąta Sierpińskiego i krzywej Kocha Przykład: Trójkąt Sierpińskiego. Trójkąt Sierpińskiego jest znacznie starszy (początek 20w.) niż Twierdzenie Hutchinsona (koniec 20w). Wcześniej był opisywany jako przecięcie coraz bardziej dziurawych trójkątów (z trójkąta równobocznego usuwamy wnętrze podobnego do niego dwa razy mniejszego trójkąta, dalej robimy to samo z każdym z pozostałych trzech, itd. - rys. ) Postąpimy teraz trochę inaczej. Określimy trzy kontrakcje płaszczyzny kartezjańskiej R 2. Będą to jednokładności ψ a, ψ b i ψ c względem wierzchołków a, b, c trójkąta równobocznego; załóżmy, że wszystkie trzy jednokładności mają skalę 1. Te kontrakcje wyznaczają operator Hutchinsona Ψ, który (zgodnie ze wzorem (5.1)) dla dowolnego niepustego zbioru zwartego A R 2 2, 20

21 przyjmuje wartość Ψ(A) := ψ a (A) ψ b (A) ψ c (A). Zgodnie z Twierdzeniem Hutchinsona (Tw. 5.2), ta funkcja Ψ wyznacza zbiór niezmienniczy E, który jest właśnie trójkątem Sierpińskiego. Co więcej, zbiór ten jest granicą Hausdorffa ciągu Ψ (k) (A) dla k-tych iteracji tej funkcji i dowolnego zbioru zwartego A na płaszczyźnie (patrz rys.). Warto zauważyć, że również dowolny zwykły trójkąt jest zbiorem samopodobnym, ponieważ jest sumą swoich czterech podobnych kopii o skali 1 2. Podobnie jest dla dowolnego równoległoboku (patrz rys. ) Przykład: Krzywa Kocha. Umówmy się, że odcinek o końcach a, b będziemy oznaczać symbolem (a, b) (przez analogię z trójkątem). Niech teraz I = (a, b), gdzie a = ( 3, 0) i b = (3, 0). Nietrudno znaleźć podobieństwa ψ 1, ψ 2, ψ 3, ψ 4 o skali 1, takie że 3 ψ 1 (I) = (a, ( 1, 0)), ψ 2 (I) = (( 1, 0), (0, 3)), ψ 3 (I) = ((0, 3), (1, 0)), ψ 4 (I) = ((1, 0), b). Określamy Ψ(I) = 4 i=1 ψ i (I). Zbiór ten jest łamaną złożoną z czterech odcinków o długości 2. Iterując to postępowanie dla każdego z otrzymanych czterech odcinków, tj., mówiąc ściślej, iterując Ψ, otrzymujemy ciąg łamanych zbieżny (w myśl Twierdzenia Hutchinsona) do zbioru niezmienniczego K operatora Ψ. Jest to tzw. krzywa Kocha (rys.). Krzywa Kocha, mimo że jest zbiorem ograniczonym, ma długość nieskoń czoną: K = lim n ( 4 3 )n =. Jest ona sumą swoich czterech podobnych kopii (skala tych podobieństw jest 1 3 ). Sklejając końcami trzy egzemplarze krzywej Kocha otrzymuje się zbiór zwany płatkiem śniegu. Jest to krzywa zamknięta o nieskończonej długości, będąca brzegiem ograniczonego obszaru (rys.). Ćwiczenie. Pokazać, że dla dowolnych niepustych podzbiorów A 1,..., A m dowolnej przestrzeni metrycznej i dowolnego ε > 0 21

22 m m (A i ) ε = ( A i ) ε. i=1 i=1 6. KODOWANIE ZBIORÓW NIEZMIENNICZYCH Przykłady 5.3 i 5.4 dotyczyły kontrakcji, które są podobieństwami, tj. zmieniają odległość w stałym stosunku. Zastanówmy się teraz nad ogólniejszą klasą przekształceń, mianowicie nad przekształceniami afinicznymi. Funkcja f : R 2 R 2 jest przekształceniem afinicznym jeżeli dowolny punkt x = (x 1, x 2 ) przechodzi na punkt f(x) = (y 1, y 2 ), gdzie współrzędne y 1, y 2 mają następującą postać: y 1 = a 11 x 1 + a 12 x 2 + b 1, y 2 = a 21 x 1 + a 22 x 2 + b 2. Współczynniki a i,j tworzą macierz kwadratową, w której i jest numerem wiersza, a j - numerem kolumny. Wzory te można zapisać jak następuje: [ ] y1 y 2 [ ] a11 a = 12 a 21 a 22 [ ] x1 x 2 + [ b1 b 2 ]. Każde przekształcenie afiniczne f jest złożeniem przekształcenia liniowego f i przesunięcia. Przy powyższych oznaczeniach, to przekształcenie liniowe ma postać f(x) = (a 11 x 1 +a 12 x 2, a 21 x 1 +a 22 x 2 ), a wektorem przesunięcia jest (b 1, b 2 ) = f(0). Analogicznie definiuje się przekształcenia afiniczne przestrzeni euklidesowej n-wymiarowej dla dowolnego n 2. Takie przekształcenie f : R n R n jest również złożeniem przekształcenia liniowego f i przesunięcia o wektor f(0) = (b 1,...b n ). Niech A = [a ij ] 1 i,j n będzie macierzą przekształcenia f w bazie wektorów jednostkowych ortogonalnych e 1,..., e n. Wtedy dla dowolnego x = (x 1,..., x n ) i f(x) = (y 1,..., y n ) y 1 y n = a 11 a 1n a n1 a nn czyli y i = Σ n j=1a ij x i + b i dla i = 1,..., n. 22 x 1 x n + b 1 b n

23 Ćwiczenie. (a) Pokazać, że przekształcenie afiniczne płaszczyzny jest jednoznacznie wyznaczone przez dowolne trzy punkty niewspółliniowe i ich obrazy. (b) Zauważyć, że fakt ten uogólnia się na przestrzeń R n dla dowolnego n 2. Przekształcenie afiniczne jest nieosobliwe jeśli macierz jego części liniowej jest nieosobliwa, tzn. ma wyznacznik różny od zera. Takie przekształcenie jest wzajemnie jednoznaczne, a więc istnieje dla niego przekształcenie odwrotne. Jest ono również afiniczne. Podamy przykład przekształcenia afinicznego, które jest osobliwe: 6.1. Przykład. Niech f : R 2 R 2 będzie rzutowaniem ortogonalnym na pierwszą oś: f(x 1, x 2 ) = (x 1, 0). Jest to przekształcenie liniowe (wektor przesunięcia jest zerowy) o macierzy [ ] 1 0, której wyznacznik jest równy zero. Zatem przekształcenie f jest osobliwe Uwaga. Pokażemy, że jeżeli f : R 2 R 2 jest przekształceniem afinicznym nieosobliwym, a więc wyznacznik det( f) jego części liniowej f jest różny od zera, to dla kwadratu K 0 rozpiętego na wektorach bazowych e 1 = (1, 0) i e 2 = (0, 1) zbiór f(k 0 ) ma pole P (f(k 0 )) = det( f) P (K 0 ) = det f. Rzeczywiście, jeżeli f [ ] a11 a ma macierz 12, to a 21 a 22 [ ] [ ] a11 a f(e 1 ) = 12 1 = a 21 a 22 0 i podobnie [ ] [ ] a11 a f(e 2 ) = 12 0 = a 21 a 22 1 [ ] a11 a 21 [ a12 a więc f przekształca kwadrat K 0 na równoległobok rozpięty na wektorach (a 11, a 21 ) i (a 12, a 22 ). a 22 ], 23

24 Przypomnijmy, że pole równoległoboku rozpiętego na wektorach (a 11, a 21 ) [ ] a11 a i (a 12, a 22 ) jest równe wartości bezwzględnej wyznacznika macierzy 12. a 21 a 22 Zatem P (f(k 0 )) = det( f). Ponieważ pole zbioru definiuje się przybliżając ten zbiór kwadratami (por. definicja 2-wymiarowej miary Lebesgue a, [?]), więc dla dowolnego podzbioru A płaszczyzny R 2, dla którego pole jest określone, zachodzi wzór P (f(a)) = det( f) P (A). Ponieważ Twierdzenie Hutchinsona (Tw. 5.2) dotyczy dowolnych kontrakcji, więc w szczególności dotyczy takich, które są przekształceniami afinicznymi. Ich zbiory niezmiennicze nazywamy samoafinicznymi. Oczywiście, każdy zbiór samopodobny jest samoafiniczny ale nie na odwrót. Macierz M(E) kodująca dany zbiór E w R 2 niezmienniczy za względu na operator Ψ ma tyle wierszy, ile jest kontrakcji afinicznych, które ten zbiór wyznaczają (por. wzór (5.1)): w i-tym wierszu są współczynniki i-tej kontrakcji. Wiersze numerujemy górnymi wskaźnikami. Ma ona następującą postać: M(E) := a 1 11 a 1 12 a 1 21 a 1 22 b 1 1 b 1 2 a m 11 a m 12 a m 21 a m 22 b m 1 b m 2 Zilustrujemy to na przykładzie trójkąta Sierpińskiego, T. Trójkąt Sierpińskiego (por. 5.3) jest zbiorem niezmienniczym wyznaczonym przez trzy podobieństwa ψ a, ψ b, ψ c o skali 1 : dla każdego x R2 2 ψ a (x) = a + 1(x a) = 1x + 1a, ψ b (x) = b + 1(x b) = 1x + 1b, ψ c (x) = c + 1(x c) = 1x + 1c A więc macierz kodująca zbiór T ma postać 24

25 a M(T ) = 0 0 b c gdzie a = (a 1, a 2 ), b = (b 1, b 2 ), c = (c 1, c 2 ). 1 a b 2 2, 1 c 2 2 Ćwiczenie. Znaleźć macierz kodującą dla krzywej Kocha (por. 5.4). Opisany wyżej sposób znajdowania (rysowania) zbiorów niezmienniczych jest to algorytm deterministyczny: dla dowolnego zbioru zwartego A i kontrakcji ψ 1,..., ψ m rozważamy operator Hutchinsona Ψ: m Ψ(A) := ψ i (A), i=1 dla którego ciąg kolejnych iteracji jest zbieżny w sensie Hausdorffa do zbioru niezmienniczego. Natomiast następujący sposób rysowania zbiorów niezmienniczych jest algorytmem probabilistycznym: Tworzy się następujący ciąg punktów (x i ) i N : niech x 0 będzie dowolnym punktem zbioru niezmienniczego. Dla i 1 losujemy przekształcenie ψ i spośród {ψ 1,..., ψ m } i rysujemy punkt ψ i (x m 1 ). Ten ciąg punktów x 0, x 1,... coraz gęściej wypełnia zbiór niezmienniczy. Zauważmy, że jeżeli skala zmniejszania kopii nie jest stała, to zbiór większy będzie rzadziej wypełniony punktami. Aby tego uniknąć, stosuje się losowanie punktów z odpowiednimi wagami, proporcjonalnymi do det ψ i (gdzie ψ i jest częścią liniową przekształcenia ψ i ). Zaletą kodowania zbioru niezmienniczego ze względu na daną rodzinę kontrakcji jest możliwość odtworzenia tego zbioru na podstawie znajomości tych kontrakcji. W przypadku przekształceń afinicznych oznacza to, że aby odtworzyć zbiór wystarczy zapamiętać elementy macierzy tych kontrakcji. Pokażemy, że metodę tę można zastosować z pewnym przybliżeniem do dowolnych podzbiorów zwartych przestrzeni R n. 25

26 7. KODOWANIE PODZBIORÓW PRZESTRZENI R n Udowodnimy, że każdy niepusty zwarty podzbiór przestrzeni R n można dowolnie przybliżać przez zbiory samopodobne (Wniosek 7.2) Twierdzenie. Niech ψ 1,...ψ m będą kontrakcjami przestrzeni R n o stałych c i < 1 i zbiorze niezmienniczym E. Wtedy dla dowolnego A C n i c := max{c 1,..., c m } ρ H (A, E) ρ H (A, Ψ(A)) gdzie Ψ(A) = m i=1 ψ i (A) (por (5.1)). 1 1 c, (7.1) Dowód. Na mocy nierówności trójkąta dla metryki Hausdorffa i niezmienniczości zbioru E, ρ H (A, E) ρ H (A, Ψ(A)) + ρ H (Ψ(A), E) = ρ H (A, Ψ(A)) + ρ H (Ψ(A), Ψ(E)) ρ H (A, Ψ(A)) + cρ H (A, E). Zatem (1 c)ρ H (A, E) ρ H (A, Ψ(A)), a ta nierówność jest równoważna warunkowi (7.1) Wniosek. Dla dowolnego A C n i dowolnego ε > 0 istnieje rodzina podobieństw zwężających, ψ 1,..., ψ m, której zbiór niezmienniczy E spełnia warunek ρ H (A, E) < ε. Dowód. Niech B 1,..., B m będą kulami o środkach w zbiorze A i promieniach nie większych niż ε, takimi że 4 m A B i. i=1 Wtedy m i=1 B i (A) ε 4 (7.2) 26

27 (por. Ćwiczenie...) Dla każdego i = 1,..., m, niech ψ i będzie podobieństwem o skali mniejszej niż 1 2, spełniającym warunek ψ i(a) B i. Wtedy więc Zatem Ψ(A) ψ i (A) B i (ψ i (A)) 1 2 ε dla i = 1,..., m, m i=1 B i (A) ε 4 i m A (ψ i (A)) ε = (Ψ(A)) ε 2 i=1 ρ H (A, Ψ(A)) ε 2. Stąd i z Twierdzenia 7.1 wynika, że ρ H (A, E) 1 ε. Ponieważ, z 1 c 2 założenia, c < 1, więc ρ 2 H(A, E) < ε. Ćwiczenie. Pokazać, że jeżeli zbiór A C n jest zawarty w sumie kul B 1,...B m o środkach w A i promieniach nie większych od pewnego δ, to każda z tych kul (a więc również ich suma) zawiera się w δ-otoczce zbioru A KOMPRESJA I DEKOMPRESJA OBRAZU Metodę przedstawioną w Rozdziale 7 można zastosować do obrazów (dzieł malarskich), kodując w przybliżeniu dowolny obraz A na płaszczyźnie za pomocą rodziny kontrakcji, {ψ 1,..., ψ m }: zbiór A jest równy w przybliżeniu zbiorowi niezmienniczemu E danej rodziny kontrakcji (por. Wniosek 7.2). Okazuje się, że ψ 1,...ψ m wystarczy określać na kawałkach zbioru A zamiast określać je na całym zbiorze A. Rzeczywiście, mając przekształcenie f : D f(d) A, gdzie D jest podzbiorem całego zbioru A, możemy rozszerzyć je do f : A R = f(d) przyjmując jedynie f (x) = f(x) dla x D i nie dbając o to jak określona jest wartość tego przekształcenia dla x A \ D (np. f (A \ D) może być rzutowaniem na brzeg zbioru R.) Szczegóły techniczne. 27

28 9. KRZYWE W PRZESTRZENI METRYCZNEJ W Rozdziale 2 wprowadziliśmy różne pojęcia (np. pojęcie ciągłości funkcji, domkniętości zbioru, zwartości zbioru i inne), które należą do topologii przestrzeni metrycznych. Rozszerzymy teraz zakres tych pojęć, żeby mieć narzędzia potrzebne do dalszych rozważań Definicja. Dla danych przestrzeni metrycznych (X, ρ X ) i (Y, ρ Y ), ciąg funkcji f k : X Y jest jednostajnie zbieżny do funkcji f : X Y wtedy i tylko wtedy gdy ε > 0 k 0 N k > k 0 x X ρ Y (f k (x), f(x)) < ε Uwaga. W przestrzeni funkcji ciągłych na odcinku [a, b] z metryką sup (patrz R.2, Przykład 6), zbieżność ciągu elementów w sensie tej metryki jest właśnie zbieżnością jednostajną (dla X = [a, b] i Y = R ze zwykłą metryką). Będziemy korzystać z następującego twierdzenia, które podajemy bez dowodu (vide [8]): 9.3. Twierdzenie. Granica jednostajnie zbieżnego ciągu funkcji ciągłych jest funkcją ciągłą. Udowodnimy 9.4. Twierdzenie. Jeżeli ciąg (f k ) k N funkcji ciągłych z (X, ρ X ) do (Y, ρ Y ) jest jednostajnie zbieżny do f, to lim x k = x = lim f k (x k ) = f(x). k k Dowód. Niech lim k infty x k = x.ponieważ (na mocy Tw. 9.3) funkcja f jest ciągła, więc lim ρ Y (f(x k ), f(x)) = 0. Zatem ε > 0 k 0(ε) k > k 0(ε) ρ Y (f(x k ), f(x)) < ε 2. (9.1) Z kolei, na mocy jednostajnej zbieżności ciągu (f k ) k N, k 0 (ε) k > k 0(ε) x X ρ Y (f k (x ), f(x )) < ε 2. (9.2) 28

29 W szczegolnosci tak jest dla x = x k. Niech k 0 = max(k 0(ε), k 0(ε)). Na mocy (9.1), (9.2) i nierówności trójkata dla ρ Y, To kończy dowód. ρ Y (f k (x k ), f(x)) < ε dla k > k 0. Ważnym wzmocnieniem pojęcia funkcji ciągłej jest pojęcie homeomorfizmu: 9.5. Definicja. Dla przestrzeni metrycznych (X, ρ X ), (Y, ρ Y ), funkcja f : X Y jest homeomorfizmem wtedy i tylko wtedy gdy jest bijekcją (tzn. jest różnowartościowa i na tj. f(x) = Y ) i zarówno f jak jej funkcja odwrotna f 1 są ciągłe Uwaga. Pokazuje się, że funkcja f przekształcająca X na Y jest homeomorfizmem wtedy i tylko wtedy gdy dla dowolnego ciągu zbieżnego (x k ) k N w X lim x k = x 0 lim f(x k ) = f(x 0 ). O homeomorfizmie można myśleć jako o przekształceniu, które nie skleja i nie rozrywa (rys.) 9.7. Twierdzenie. Jeżeli (X, ρ) jest przestrzenią zwartą, to każda ciągła bijekcja f : X Y jest homeomorfizmem. ([3]). Następujący przykład pokazuje, że założenie zwartości w Twierdzeniu 9.7 jest istotne Przykład. Niech X = [0, 2π) i niech Y będzie okręgiem o środku 0 i promieniu r = 1 w R 2. Funkcja f : X Y określona przez wzór f(t) = (cos t, sin t) jest ciągłą bijekcją, ale nie jest homeomorfizmem, bo funkcja odwrotna f 1 nie jest ciągła. Ważnym pojęciem geometrycznym (wykorzystywanym w zastosowaniach) jest pojęcie krzywej. Krzywymi na płaszczyźnie są np. okrąg, parabola, spirala logarytmiczna (patrz Przykład 3.5). 29

30 W 19 w. podjęto próby podania ścisłej definicji krzywej. Zgodnie z intuicją, wyobrażano sobie krzywą jako zbiór punktów, który można opisać ( sparametryzować ) za pomocą jednego parametru. Intuicji tej odpowiada podejście Camille Jordana, który zdefiniował krzywą jako ciągły obraz odcinka. Tymczasem w 1890 r. Giuseppe Peano podał przykład funkcji ciągłej przekształcającej przedział I = [0, 1] na kwadrat I 2 (tzw. krzywa Peano ). Zatem w sensie definicji Jordana kwadrat jest krzywą, co oczywiście jest sprzeczne z intuicyjnym rozumieniem pojęcia krzywej Konstrukcja krzywej Peano. Określamy ciąg f k : [0, 1] I 2 funkcji ciągłych, dla których zbiory f k ([0, 1]) coraz bardziej wypełniają kwadrat I 2 (patrz rys. ). Można pokazać, że ciąg ten jest jednostajnie zbieżny, a więc jego granica f : [0, 1] I 2 jest funkcją ciągłą (Tw. 9.3). Pozostaje pokazać, że f(i) = I 2 : Ponieważ zbiory f k (I) coraz bardziej wypełniają kwadrat I 2, więc dla każdego x I 2 istnieje ciąg (t k ) w I, dla którego x = lim k f k (t k ). Ponieważ odcinek I jest zwarty, możemy założyć, że ciąg (t k ) k N jest zbieżny do t 0 I. Z jednostajnej zbieżności ciągu (f k ) k N wynika na mocy Tw. 9.3(b), że lim f k (t k ) = f(t 0 ) = x, a więc I 2 = f(i). Inny przykład funkcji ciągłej przekształcającej odcinek na kwadrat podał Wacław Sierpiński (por, [8], str. 246) Uwaga. Funkcja f zdefiniowana w konstrukcji krzywej Peano nie jest różnowartościowa. Rzeczywiście, gdyby była, wówczas byłaby homeomorfizmem na mocy Twierdzenia 9.7, ponieważ [0, 1] jest zbiorem zwartym. Wiadomo natomiast, że kwadrat I 2 nie jest homeomorficzny z odcinkiem, tzn. nie istnieje homeomorfizm przekształcajacy jeden z tych zbiorów na drugi. Jest to wniosek z nietrywialnych twierdzeń teorii wymiaru. 30

31 Ćwiczenie. Pokazać, że odcinek otwarty jest homeomorficzny zarówno z prostą jak i z półprostą otwartą. W tej sytuacji jasne jest, że na funkcję ciągłą (parametryzację), która ma przekształcać odcinek lub prostą na krzywą, trzeba nałożyć dodatkowe warunki. Zastanówmy się najpierw jak wyglądają krzywe, dla których istnieje parametryzacja będąca homeomorfizmem. Najprostsze przykłady są to parametryzacje wykresów funkcji ciągłych określonych na odcinku domkniętym Przykłady. (a) Niech L będzie wykresem funkcji f : [ 1, 1] R: A więc f(t) = t 2. L = {(x 1, x 2 ) R 2 x 2 = (x 1 ) 2, x 1 [ 1, 1]}. Jest to fragment paraboli. Najprostszą parametryzacją zbioru L jest funkcja p : [ 1; 1] L R 2 opisana przez wzór p(t) = (t, t 2 ). Ta funkcja jest homeomorfizmem, ponieważ jest ciągła (bo obie współrzędne są funkcjami ciągłymi), różnowartościowa (bo pierwsza wspólrzędna jest różnowartościowa), oraz [ 1; 1] jest zbiorem zwartym (por. Tw...). Zauważmy, że nie jest to jedyna parametryzacja zbioru L; np. funkcja p(t) = (t 3, t 6 ) dla t [ 1; 1] jest również homeomorfizmem odcinka [ 1; 1] na L (rys.). (b) Niech teraz L będzie wykresem funkcji f : [ 1; 1] R: f(t) = Funkcja p : [ 1; 1] R postaci p(t) = jest homeomorfizmem (por (a)). (Rys.) { t sin 1 t dla t 0 0 dla t = 0. { (t, t sin 1 t ) dla t 0 (0, 0) dla t = 0 Ogólnie, zbiór, który jest homeomorficznym obrazem odcinka domkniętego nazywamy łukiem. 31

32 Okrąg nie jest homeomorficzny z odcinkiem, więc oczywiście nie jest łukiem. Każdy zbiór homeomorficzny z okręgiem nazywamy krzywą zwykłą zamkniętą. Jest oczywiste, że dowolny okrąg na płaszczyźnie dzieli tę płaszczyznę na dwa obszary, z których jeden jest ograniczony a drugi nieograniczony. Czy tak samo jest dla dowolnej krzywej zwykłej zamkniętej? Odpowiedź na to pytanie daje Twierdzenie Jordana; dowód tego twierdzenia jest niebanalny i wymaga zaawansowanych metod topologii. Żeby sformułowac to twierdzenie, musimy wprowadzic pojęcie spójności zbioru i pojęcie obszaru Definicja. Podzbiór A przestrzeni metrycznej (X, ρ) jest spójny jeżeli nie rozpada się na dwa rozłaczne kawałki. Mówiąc ściśle, A jest spójny wtedy i tylko wtedy gdy nie istnieją takie niepuste rozłączne podzbiory A 1, A 2 domknięte w A, dla których A = A 1 A 2. (rys.) Definicja. Podzbiór U przestrzeni R n jest obszarem wtedy i tylko wtedy gdy jest otwarty i spójny Twierdzenie Jordana. Każda krzywa zwykła zamknięta L w R 2 rozcina płaszczyznę R 2 na dwa rozłączne obszary U 1, U 2, takie że R 2 = L U 1 U 2 i L jest wspólnym brzegiem zbiorów U 1 i U 2. Jeden z tych obszarów jest ograniczony ( wewnętrzny ) a drugi nieograniczony ( zewnętrzny ). Ćwiczenie (w.8 str. 2) Czy p leży w obszarze wewnętrznym? Łuki i krzywe zwykłe zamknięte nie wyczerpują jednak całego bogactwa zbiorów, które chciałoby się nazywać krzywymi (np. lemniskata, patrz rys. ) Ogólną definicję krzywej w przestrzeni metrycznej wygodnie jest sformułować używając pojęcia lokalnego homeomorfizmu odcinka (otwartego lub domkniętego), prostej, lub półprostej Definicja. Funkcja ciągła p : (a; b) L jest lokalnym homeomorfizmem wtedy i tylko wtedy gdy dla każdego x (a; b) istnieje δ > 0, taka że p [x δ, x + δ] jest funkcją różnowartościową. Zauważmy, że (w myśl Twierdzenia 9.7) z założenia, że funkcja ciągła jest różnowartościowa na przedziale [x δ, x+δ] wynika, że jest na tym przedziale 32

33 homeomorfizmem (a więc jest lokalnym homeomorfizmem ) Definicja. Zbiór L w przestrzeni (X, ρ) jest krzywą wtedy i tylko wtedy gdy istnieje jego parametryzacja będąca lokalnym homeomorfizmem (rys...) Uwaga. Rozważa się również parametryzacje określone na odcinku domkniętym [a; b]. Wtedy dla punktów końcowych a i b rozważa się przedziały [a; a + δ] i [b δ; b]. Ćwiczenie. Sprawdzić, czy krzywa L o parametryzacji p(t) = (t, t t 3 ) dla t [0; 1] jest identyczna ze zbiorem {(x 1, x 2 ) R 2 x 2 2 = x 1 (1 x 2 1)}. 10. KRZYWE GŁADKIE W R n Dodatkowe założenia dotyczące parametryzacji pozwalają używać narzędzi analizy matematycznej do badania krzywych Definicja. Niech parametryzacja p : (a; b) L krzywej L R n będzie lokalnym homeomorfizmem. Jest ona regularna wtedy i tylko wtedy gdy ma pochodną p ciągłą i niezerową w każdym punkcie przedziału (a; b). Ponieważ wartości funkcji p traktujemy jako wektory w przestrzeni R n, więc niezerowość tej funkcji w każdym punkcie t (a; b) znaczy, że t (a; b) p (t) 0, gdzie p (t) jest długością wektora p (t), a więc dla p(t) = (x 1 (t),..., x n (t)), p (t) = (x 1(t)) (x n(t)) 2. (10.1) Wektor p (t) nazywamy wektorem stycznym do L w punkcie p(t) Definicja. Krzywa L jest gładka wtedy i tylko wtedy gdy istnieje jej parametryzacja regularna Uwaga. Rozważa się również parametryzacje regularne określone na odcinku domkniętym. Wówczas dla punktów końcowych założenie różniczkowalności parametryzacji i ciągłości jej pochodnej zastępuje się założeniem jednostronnej różniczkowalności i jednostronnej ciągłości. 33

34 W przypadku krzywej zamkniętej zakładamy, że jej parametryzacja p określona jest na przedziale domkniętym [a, b] oraz p(a) = p(b) i p +(a) = p (b) Przykład. Niech L będzie odcinkiem w R 2 : L = {(x 1, x 2 ) R 2 x 2 = x 1 i 1 < x 1 < 1}. Rozważmy dwie parametryzacje odcinka L: p 1 (t) = (t, t) dla 1 < t < 1 oraz p 2 (t) = (t 3, t 3 ) dla 1 < t < 1. Pierwsza z nich jest regularna, ponieważ p 1(t) = (1, 1) (0, 0) dla każdego t. Druga jest nieregularna, ponieważ p 2(t) = (3t 2, 3t 2 ), więc p 2(0) = (0, 0) Przykład. Opiszemy teraz tzw. rozetę czterolistną ([7]). Zacznijmy od opisu intuicyjnego. Mamy dany odcinek (patyk) o długości 2 na płaszczyźnie. Jego końce a i b leżą na dwóch półosiach układu współrzędnych. Rozważamy trójkąt (o, a, b) o kącie prostym przy wierzchołku o. Niech x będzie punktem przecięcia odcinka (a, b) z prostą L prostopadłą do niego przechodzącą przez punkt o. Gdy końce odcinka zmieniają swoje położenie na półosiach, punkt x porusza się po krzywej gładkiej K zwanej (nie bez powodu, patrz rys. ) rozetą czterolistną. A więc rozeta czterolistna jest zbiorem punktów przecięcia półprostych o początku w o = (0, 0) z prostopadłymi do nich odcinkami o długości 2 i końcach na osiach układu współrzędnych. Niech t [0, 2π] będzie miarą kąta między wektorem dodatniej półosi x 1 (tj. wektorem o początku o i końcu (1, 0)) a wektorem o początku o i końcu w odpowiednim punkcie x (a, b). Parametryzacja krzywej K ma postać p(t) = (2 sin 2 t cos t, 2 cos 2 t sin t). Parametryzacja p jest regularna, ponieważ jest lokalnym homeomorfizmem (por. Ćwiczenie); ponadto p (t) (0, 0) dla każdego t. Ćwiczenie. Pokazać, że parametryzacja p rozety czterolistnej jest lokalnym homeomorfizmem. 34

35 10.6. Przykład. Punkt okręgu o promieniu c toczącego się (bez poślizgu) po prostej opisuje krzywą zwaną cykloidą (rys....). Jej parametryzacja p dana przez wzór p(t) = c(t sin t, (1 cos t) (gdzie c jest stałą dodatnią) jest nieregularna, ponieważ jej pochodna ma postać p (t) = c(1 cos t, sin t), więc dla przyjmuje wartość (0, 0) (tj. wektor p (t) ma długość zerową) dla parzystych wielokrotności π. W odróżnieniu od rozety czterolistnej, która jest krzywą ale tylko lokalnie homeomorficzną z odcinkiem otwartym, więc nie jest łukiem, cykloida jest nie tylko krzywą ale co więcej jest łukiem, ponieważ jest homeomorficzna z prostą (por Ćwiczenie). Z drugiej strony, rozeta czterolistna jest krzywą gładką (por. Przykład 10.5), podczas gdy cykloida nie jest gładka, ponieważ nie istnieje dla niej żadna regularna parametryzacja (geometrycznie - odpowiadają za to tzw. ostrza, którymi w przypadku cykloidy są jej punkty wspólne z osią x 1.) (Pamiętamy, że prosta jest homeomorficzna z dowolnym odcinkiem bez końców (por. Ćwiczenie w Rozdz. 9).) Założenie regularności parametryzacji daje nam narzędzia do badania takich pojęć jak kąt między krzywymi, długość łuku i inne Definicja. Rozważmy dwie krzywe L 1, L 2 w R n dla n 2, o parametryzacjach regularnych p i : [a i, b i ] L i dla i = 1, 2. Niech x 0 L 1 L 2, a więc istnieją takie liczby t 1 [a 1, b 1 ] i t 2 [a 2, b 2 ], dla których x 0 = p 1 (t 1 ) = p 2 (t 2 ). Kątem między krzywymi L 1, L 2 w ich punkcie przecięcia x 0 nazywamy kąt między ich wektorami stycznymi w tym punkcie, tj. między p 1(t 1 ) i p 2(t 2 ). Ćwiczenie. Dane są krzywe płaskie o równaniach (x 1 ) 2 + (x 2 ) 2 = 8x 1 i (x 2 ) 2 (2 x 1 ) = (x 1 ) 3. Znaleźć parametryzacje tych krzywych, ich punkty wspólne i kąty pod jakimi przecinają się w tych punktach. Wiadomo, że dla łuku gładkiego w R n ograniczonego (t.j zawartego w pewnej kuli) zbiór długości łamanych wpisanych w ten łuk ma kres górny. To pozwala zdefiniować długość L łuku L jako ten kres górny. Korzystając z własności całki dowodzi się, że jeżeli p : (a, b) L jest parametryzacją regularną łuku L, to 35

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013 Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)

Bardziej szczegółowo

Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii

Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Mirosław Sobolewski 25 maja 2010 Definicja. Przestrzenią metryczną nazywamy zbiór X z funkcją ρ : X X R przyporządkowującą

Bardziej szczegółowo

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój. Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową

Bardziej szczegółowo

Geometria. Rozwiązania niektórych zadań z listy 2

Geometria. Rozwiązania niektórych zadań z listy 2 Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

GEOMETRIA ELEMENTARNA

GEOMETRIA ELEMENTARNA Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych

Bardziej szczegółowo

1. ODPOWIEDZI DO ZADAŃ TESTOWYCH

1. ODPOWIEDZI DO ZADAŃ TESTOWYCH R O Z W I A Z A N I A 1. ODPOWIEDZI DO ZADAŃ TESTOWYCH 1. Dla dowolnych zbiorów A, B, C zachodzi równość (A B) (B C) (C A) = (A B C) (A B C), A (B C) = (A B) (A C), A (B C) = (A B) (A C). 2. Wyrażenie

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA. Poziom podstawowy

GEOMETRIA ANALITYCZNA. Poziom podstawowy GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x)) Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

V Międzyszkolny Konkurs Matematyczny

V Międzyszkolny Konkurs Matematyczny V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Teoria miary. WPPT/Matematyka, rok II. Wykład 5 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1 KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna

Bardziej szczegółowo

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r. MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita

Bardziej szczegółowo

Analiza Funkcjonalna - Zadania

Analiza Funkcjonalna - Zadania Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy 5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy Rozdział 1 Ciągłość i topologia Nadanie precyzyjnego sensu intiucyjnemu pojęciu ciągłości jest jednym z głównych tematów dziedziny matematyki, zwanej topologią. Definicja funkcji ciągłej znana z podstawowego

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

EGZAMIN PISEMNY Z ANALIZY I R. R n

EGZAMIN PISEMNY Z ANALIZY I R. R n EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na

Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na www.swiatmatematyki.pl 1. Wypiszmy początkowe potęgi liczby Zestaw podstawowy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo