Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO
|
|
- Bożena Skiba
- 9 lat temu
- Przeglądów:
Transkrypt
1 Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki Toruń 999
2 Wyznaczanie macierzy [ABD] I. el zadania elem zadania jest praktyczne opanowanie metody macierzowej opisu układu optycznego. II. Optyka macierzowa A. Podstawowe zależności Optyka macierzowa opisuje odwzorowania kolinearne (płaszczyzny odwzorowują się w płaszczyzny) oraz centrowane ( punktom przedmiotowym leżącym na pewnej wybranej prostej <osi optycznej> odpowiadają punkty obrazowe leżące na tej samej prostej oraz istnieje symetria obrotowa wokół tej osi). Podstawowe zagadnienie optyki promieni polega na wyznaczeniu własności promienia wychodzącego z układu (ρ i ϕ na Rys. ) na podstawie znajomości własności promienia wchodzącego (ρ i ϕ ) oraz własności układu. ϕ ρ ρ ϕ oś optyczna Π Płaszczyzna Π wejściowa Płaszczyzna wyjściowa Rys. Pomiędzy płaszczyznami Π i Π znajduje się układ optyczny przekształcający promień Optyka promieni przyosiowych bada przekształcenia promieni tworzących mały kąt z osią optyczną. Wówczas: () ϕ = sin(ϕ)=tg(ϕ) Odwzorowania kolinearne, centrowane odpowiadają przekształceniu liniowemu parametrów promienia: ρ = a ρ + b ϕ (a) ϕ = c ρ + d ϕ (b) Współczynnik załamania ośrodka przed płaszczyzną wejściową oraz za płaszczyzną wyjściową uwzględnia się zastępując kąt ϕ przez kąt uogólniony v: v = n ϕ (3) Wówczas odwzorowanie promienia () zapisuje się w postaci: ρ = A ρ + Bv v = ρ + Dv (4a) (4b) II -
3 Wyznaczanie macierzy [ABD] albo w postaci macierzowej: ρ v = A B D ρ v (5) Dla dowolnego układu optycznego wyznacznik macierzy [ABD] jest równy : A D B = (6) B. Postać macierzy [ABD] dla prostych układów optycznych Wartość współczynników macierzy ABD zależy od własności układu optycznego i położenia płaszczyzn Π i Π. Dla standartowych elementów układów optycznych macierz ta ma postać: płaszczyzna S stanowi granicę ośrodków o różnych współczynnikach załamania, przy czym S = Π = Π : 0 (7) 0 dielektryk o współczynniku załamania n i grubości d pomiędzy płaszczyznami Π i Π : d n 0 (8) pojedyncza sferyczna powierzchnia łamiąca o promieniu r (r > 0 jeżeli środek krzywizny leży po stronie ośrodka ). Płaszczyzny Π = Π przecinają oś optyczna razem z powierzchnia łamiącą: 0 (9) n n r soczewka cienka o ogniskowej f (f > 0 dla soczewki skupiającej). Płaszczyzny Π = Π przecinają oś optyczna razem z soczewka cienką: 0 f (0) Złożony układ optyczny można skonstruować z elementów opisanych powyżej. Jeżeli promień światła kolejno przechodzi przez elementy,..k to własności promienia wyjściowego można obliczyć ze wzoru: ρ k v k = Ak k B k... D k A B. D A B D ρ v = A B D ρ v () gdzie macierz [ABD] opisuje cały układ optyczny zawarty pomiędzy płaszczyznami Π i Π k II - 3
4 Wyznaczanie macierzy [ABD]. Punkty kardynalne układu optycznego Układ optyczny można również opisać za pomocą 4 płaszczyzn: płaszczyzn ogniskowych i płaszczyzn głównych (czasami definiuje się też płaszczyzny węzłowe - tutaj pomijane). Płaszczyznę ogniskową tworzy odwzorowanie wiązki równoległych promieni. Punkt ogniskowy (F) jest obrazem równoległej do osi optycznej wiązki równoległych promieni i leży na przecięciu płaszczyzny ogniskowej (prostopadłej do osi optycznej) i osi optycznej. Płaszczyzny główne są prostopadłe do osi optycznej i odwzorowują się na siebie w stosunku :. Punkty główne (H) leżą na przecięciu płaszczyzn głównych z osią optyczną. Punkty F i H należą do punktów kardynalnych odwzorowania. Ogniskowymi układu optycznego są odległości ognisk do płaszczyzn głównych. Przyjmijmy następujące oznaczenia i umowę co do znaków odległości w układzie optycznym: ogniskowe: f = F H f = H F położenie płaszczyzn głównych: s = Π H s = położenie ognisk: τ = F Π τ = Π F H Π płaszczyzna główna płaszczyzna główna H H F P P F Π Π τ s s τ f f Rys.. Przykładowe rozmieszczenie podstawowych punktów odwzorowania. Dla takiego układu płaszczyzn wszystkie odległości są dodatnie. Korzystając z Rys. łatwo można wyznaczyć związki pomiędzy położeniem punktów kardynalnych a współczynnikami [ABD]: s = n D D τ = n f =τ + s = n oraz () s = n A τ = n A f =τ + s = n II - 4
5 Wyznaczanie macierzy [ABD] D. Przypadki szczególne Szczególne znaczenie mają tak rozmieszczone płaszczyzny Π i Π, że pewne elementy macierzy [ABD] się zerują: A=0 oznacza, że płaszczyzna Π jest drugą płaszczyzną ogniskową B=0 oznacza, że płaszczyzna Π jest obrazem płaszczyzny Π (przedmiotowej). Inaczej mówiąc przedmiot umieszczony w płaszczyźnie Π ma ostry obraz w płaszczyźnie Π. A jest powiększeniem liniowym układu. =0 oznacza, że układ przekształca wiązkę równoległą na wiązkę równoległą. Taki układ nazywamy afokalnym lub teleskopowym, D jest powiększeniem kątowym tego układu. D=0 oznacza, że płaszczyzna Π jest pierwszą płaszczyzną ogniskową. III. Metoda wyznaczenia współczynników [ABD] układu optycznego. Układ pomiarowy przedstawia Rys. 3. Pomiędzy punktami P i P znajduje się układ optyczny, którego macierz wyznaczamy. Przedmiot o znanych rozmiarach umieszczony jest w punkcie O. Ekran z ostrym obrazem przedmiotu znajduje się w punkcie O. przedmiot O ostry obraz przedmiotu A B ρ D ρ P P O X Y Rys. 3. Zasada pomiaru współczynników [ABD] nieznanego układu optycznego. Ponieważ układ pomiarowy znajduje się w powietrzu, współczynniki załamania w obszarach X i Y możemy przyjąć jako równe. W takim przypadku macierz [ABD] całego układu (od przedmiotu do obrazu) można wyrazić wzorem: M = Y 0. AB D. X 0 = A + Y AX+ B + Y(D + X) D+ X (3) Jeżeli obraz jest ostry, to M =0, czyli: A X + B + Y(D + X )=0 ρ oraz (4) ρ = α = A + Y gdzie /α jest powiększeniem kątowym. Obliczając w tym przypadku wyznacznik macierzy z prawej strony wzoru (3), uwzględniając (3) i wzór (6) otrzymujemy: II - 5
6 Wyznaczanie macierzy [ABD] (A + Y )(D + X ) 0 = (5) i dalej: D + X= A +Y =α A X + B = Y(D + X )= Yα oraz (6) Pomiar polega na wyznaczeniu α(x) i Y(X) dla szeregu wartości X. IV. Aparatura Układ pomiarowy zestawiony jest na ławie optycznej wyposażonej w podziałkę i składa się z:. Źródła światła z żarówką halogenową i zasilaczem Z 300 (napięcie pracy żarówki = V). Matówki z krzyżem - "przedmiotu" o wysokości 0.6 mm 3. Nieznanego układu optycznego - zestawu soczewek ustawionych przez opiekuna zadania 4. Ekranu z tłem z papieru milimetrowego Obiekty - 4 ustawione są na koniach ze wskaźnikami. V. Wykonanie zadania W celu wykonania zadania należy kolejno:. Obrać położenie płaszczyzn wejściowej i wyjściowej tak, by badany układ optyczny znajdował się pomiędzy nimi.. Dla pewnego położenia przedmiotu (odczytać i zapisać wartość X) znaleźć 0-cio krotnie położenie ekranu dające ostry obraz. Wyznaczyć średnie wartości Y i α oraz ich odchylenia standartowe. 3. Powtórzyć czynności z punktu dla kolejnych położeń przedmiotu z możliwie szerokiego przedziału. Położenie źródła światła zmieniać tak, by zawsze mieć maksymalnie jasny obraz. 4. Sporządzić wykresy α(x) i -Y(X)*α(X) - Rys Metodą regresji liniowej wyznaczyć współczynniki [ABD] oraz błędy ich wyznaczenia 6. Obliczyć wartość wyznacznika macierzy [ABD] i błąd jego wyznaczenia. 7. Obliczyć położenia ognisk i płaszczyzn głównych. 8. Na papierze milimetrowym wykreślić elementy układu zaznaczając położenia punktów P i P oraz punktów kardynalnych. α -Y α }D arctg() } B arctg(a) X X Rys.4. Metoda wyznaczenia współczynników [ABD] II - 6
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO BADANIE WIĄZKI GAUSSOWSKIEJ
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO BADANIE WIĄZKI GAUSSOWSKIEJ Zadanie VII Zakład Optoelektroniki
Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego
1 z 7 JM-test-MathJax Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego Korekta 24.03.2014 w Błąd maksymalny (poprawione formuły na niepewności maksymalne dla wzorów 41.1 i 41.11)
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 8, 09.03.0 wykład: pokazy: ćwiczenia: zesław Radzewicz Radosław hrapkiewicz, Filip Ozimek Ernest Grodner Wykład 7 - przypomnienie eikonał
WYZNACZANIE OGNISKOWYCH SOCZEWEK
WYZNACZANIE OGNISKOWYCH SOCZEWEK Cel ćwiczenia:. Wyznaczenie ogniskowej cienkiej soczewki skupiającej.. Wyznaczenie ogniskowej cienkiej soczewki rozpraszającej (za pomocą wcześniej wyznaczonej ogniskowej
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 6 Wyznaczanie ogniskowych soczewek ze wzoru soczewkowego i metodą Bessela Kalisz, luty 2005 r. Opracował: Ryszard
Ć W I C Z E N I E N R O-3
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny
Zasady konstrukcji obrazu z zastosowaniem płaszczyzn głównych
Moc optyczna (właściwa) układu soczewek Płaszczyzny główne układu soczewek: - płaszczyzna główna przedmiotowa - płaszczyzna główna obrazowa Punkty kardynalne: - ognisko przedmiotowe i obrazowe - punkty
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.
msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów
Doświadczalne wyznaczanie ogniskowej cienkiej soczewki skupiającej
Doświadczalne wyznaczanie ogniskowej cienkiej skupiającej Wprowadzenie Soczewka ciało przezroczyste dla światła ograniczone zazwyczaj dwiema powierzchniami kulistymi lub jedną kulistą i jedną płaską 1.
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami
Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.
Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych
Pomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018
Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i
Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.
Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie
LABORATORIUM Z FIZYKI
Projekt Plan rozwoj Politechniki Częstochowskiej współinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Nmer Projekt: POKL.04.0.0-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
WOJSKOWA AKADEMIA TECHNICZNA
1 WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ NOWYCH TECHNOLOGII I CHEMII FIZYKA Ćwiczenie laboratoryjne nr 43 WYZNACZANIE ABERRACJI SFERYCZNEJ SOCZEWEK I ICH UKŁADÓW Autorzy: doc. dr inż. Wiesław Borys dr inż.
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH
Ćwiczenie 77 E. Idczak POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH Cel ćwiczenia: zapoznanie się z procesem wytwarzania obrazów przez soczewki cienkie oraz z metodami wyznaczania odległości ogniskowych
SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach
Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny
Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ WADY SOCZEWEK 1. Cel dwiczenia Zapoznanie z niektórymi wadami soczewek i pomiar aberracji sferycznej, chromatycznej i astygmatyzmu badanych soczewek. 2. Zakres wymaganych
Ć W I C Z E N I E N R O-4
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-4 BADANIE WAD SOCZEWEK I Zagadnienia do opracowania Równanie soewki,
Optyka. Wykład X Krzysztof Golec-Biernat. Zwierciadła i soczewki. Uniwersytet Rzeszowski, 20 grudnia 2017
Optyka Wykład X Krzysztof Golec-Biernat Zwierciadła i soczewki Uniwersytet Rzeszowski, 20 grudnia 2017 Wykład X Krzysztof Golec-Biernat Optyka 1 / 20 Plan Tworzenie obrazów przez zwierciadła Równanie zwierciadła
- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.
Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego
OPTYKA GEOMETRYCZNA Własności układu soczewek
OPTYKA GEOMETRYCZNA Własności układu soczewek opracował: Dariusz Wardecki Wstęp Soczewką optyczną nazywamy bryłę z przezroczystego materiału, ograniczoną (przynajmniej z jednej strony) zakrzywioną powierzchnią
Promienie
Teoria promienia Promienie Zasada Fermata Od punktu źródłowego Z do punktu obserwacji A, światło rozchodzi się po takiej drodze na której, lokalnie rzecz biorąc, czas przejścia światła jest ekstremalny.
Ćw.6. Badanie własności soczewek elektronowych
Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania
XLIII OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne
XLIII OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Nazwa zadania: Współczynnik załamania cieczy wyznaczany domową metodą Masz do dyspozycji: - cienkościenne, przezroczyste naczynie szklane
Laboratorium Optyki Falowej
Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski
Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).
Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako
4.8 Wyznaczanie ogniskowych soczewek i badanie wad soczewek(o2)
204 Fale 4.8 Wyznaczanie ogniskowych soczewek i badanie wad soczewek(o2) Celem ćwiczenia jest pomiar ogniskowych soczewek skupiających i rozpraszających oraz badanie wad soczewek: aberracji sferycznej,
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 33 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1. ZWIERCIADŁA
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 33 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1. ZWIERCIADŁA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU
Człowiek najlepsza inwestycja FENIKS
FENIKS - długoalowy program odbudowy, popularyzacji i wsagania izyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i inormatycznych uczniów Pracownia Fizyczna
Załamanie na granicy ośrodków
Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje
SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK
SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK Temat: Soczewki. Zdolność skupiająca soczewki. Prowadzący: Karolina Górska Czas: 45min Wymagania szczegółowe podstawy programowej (cytat): 7.5) opisuje (jakościowo)
FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką
Optyka instrumentalna
Optyka instrumentalna wykład 7 11 kwietnia 2019 Wykład 6 Optyka geometryczna Równania Maxwella równanie ejkonału promień zasada Fermata, zasada stacjonarnej fazy (promienie podążają wzdłuż ekstremalnej
BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI
ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej
POMIARY OPTYCZNE Pomiary ogniskowych. Damian Siedlecki
POMIARY OPTYCZNE 1 { 11. Damian Siedlecki POMIARY OPTYCZNE 1 { 3. Proste przyrządy optyczne Damian Siedlecki POMIARY OPTYCZNE 1 { 4. Oko Damian Siedlecki POMIARY OPTYCZNE 1 { 5. Lunety. Mikroskopy. Inne
I PRACOWNIA FIZYCZNA, UMK TORUŃ
I PRACOWNIA FIZYCZNA, UMK TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W SZKLE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA Instrukcje wykonali: G. Maciejewski, I. Gorczyńska
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne
ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli
35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2
Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Graficzne opracowanie wyników pomiarów 1
GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości
Ć W I C Z E N I E N R O-1
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O- WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ SPEKTROMETRU
Fig. 2 PL B1 (13) B1 G02B 23/02 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (21) Numer zgłoszenia:
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 167356 (13) B1 (21) Numer zgłoszenia: 293293 Urząd Patentowy (22) Data zgłoszenia: 24.01.1992 Rzeczypospolitej Polskiej (51) IntCl6: G02B 23/12 G02B
OPTYKA W INSTRUMENTACH GEODEZYJNYCH
OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.
Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński. Zwierciadła niepłaskie
Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński Zwierciadła niepłaskie Obrazy w zwierciadłach niepłaskich Obraz rzeczywisty zwierciadło wklęsłe Konstrukcja obrazu w zwierciadłach
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis
Badanie tranzystorów MOSFET
Instytut Fizyki ul Wielkopolska 5 7045 Szczecin Pracownia Elektroniki Badanie tranzystorów MOSFET Zakres materiału obowiązujący do ćwiczenia: budowa i zasada działania tranzystora MOSFET; charakterystyki
+OPTYKA 3.stacjapogody.waw.pl K.M.
Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w
Optyka instrumentalna
Optyka instrumentalna wykład 7 20 kwietnia 2017 Wykład 6 Optyka geometryczna cd. Przybliżenie przyosiowe Soczewka, zwierciadło Ogniskowanie, obrazowanie Macierze ABCD Punkty kardynalne układu optycznego
Ława optyczna. Podręcznik dla uczniów
Podręcznik dla uczniów Ława optyczna Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza /2, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
Temat: Pomiar współczynnika załamania światła w gazie za pomocą interferometru Michelsona
Ćwiczenie Nr 450. Temat: Pomiar współczynnika załamania światła w gazie za pomocą interferometru Michelsona 1.iteratura: a) D. Halliday, R. Resnick, J. Walker, Podstawy fizyki 4, PWN, W-wa b) I. W. Sawieliew
Ćwiczenie Nr 11 Fotometria
Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza
ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia
Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła
20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.
Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego
WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA
Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego
DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,
TEMATYKA: Współliniowość Współpłaszczyznowość Ćwiczenia nr DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, Podstawowe aksjomaty (zdanie, którego
Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY
36R5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM ROZSZERZONY
36R5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM ROZSZERZONY Drgania Fale Akustyka Optyka geometryczna Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
Badamy jak światło przechodzi przez soczewkę - obrazy. tworzone przez soczewki.
1 Badamy jak światło przechodzi przez soczewkę - obrazy tworzone przez soczewki. Czas trwania zajęć: 2h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń:
Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l
Nazwisko Data Nr na liśie Imię Wydział Ćwizenie 36 Dzień tyg Godzina Wyznazanie ogniskowej sozewek metodą Bessela i pomiar promieni krzywizny za pomoą serometr I Wyznazanie ogniskowej sozewki skpiająej
FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.
FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji
Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego
2019/02/13 14:12 1/10 Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego 0.1. Cel ćwiczenia Wyznaczenie ogniskowej
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Wyznaczenie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.
34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1
Włodzimierz Wolczyński 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 ODBICIE ŚWIATŁA. ZWIERCIADŁA Do analizy obrazów w zwierciadle sferycznym polecam aplet fizyczny http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48
PIONY, PIONOWNIKI, CENTROWNIKI PRZYRZĄDY SŁUŻĄCE DO CENTROWANIA INSTRUMENTÓW I SYGNAŁÓW
PIONY, PIONOWNIKI, CENTROWNIKI PRZYRZĄDY SŁUŻĄCE DO CENTROWANIA INSTRUMENTÓW I SYGNAŁÓW ZADANIE PIONÓW: ustawienie instrumentu i sygnału centrycznie nad punktem. ZADANIE PIONOWNIKOW: badanie pionowości,
Ć W I C Z E N I E N R J-1
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO
Optyka geometryczna. Podręcznik zeszyt ćwiczeń dla uczniów
Podręcznik zeszyt ćwiczeń dla uczniów Optyka geometryczna Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
Orientacja zewnętrzna pojedynczego zdjęcia
Orientacja zewnętrzna pojedynczego zdjęcia Proces opracowania fotogrametrycznego zdjęcia obejmuje: 1. Rekonstrukcję kształtu wiązki promieni rzutujących (orientacja wewnętrzna ck, x, y punktu głównego)
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.
0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie