Elementy kombinatoryki i rachunku prawdopodobieństwa.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elementy kombinatoryki i rachunku prawdopodobieństwa."

Transkrypt

1 Elementy kombinatoryki i rachunku prawdopodobieństwa. dr Anna Piekarska-Stachowiak Katedra Biofizyki i Morfogenezy Roślin

2 Kombinatoryka Dział matematyki zajmujący się znajdowaniem liczebności pewnych zbiorów skończonych, związanych z porządkowaniem i losowaniem. Powstała dzięki grom hazardowym, a swój rozwój zawdzięcza rachunkowi prawdopodobieństwa, teorii grafów, teorii informacji i innym działom matematyki stosowanej. Stanowi jeden z działów matematyki dyskretnej. Kombinatoryka posługuje się terminologią nie występującą w innych działach matematyki, stąd pozorna jej odrębność.

3 Permutacje Permutacją zbioru skończonego nazywamy każde ustawienie wszystkich jego elementów w dowolnej kolejności. Dwie permutacje uważamy za różne, gdy przynajmniej dwa elementy występują w nich na różnych miejscach. Przykład 1 Mamy tkaniny w trzech kolorach: żółtym, czerwonym i zielonym. Ile różnych trójkolorowych flag można uszyć z tych trzech kolorów? Możliwe ułożenie kolorów na flagach: Odpowiedź: Z trzech kolorów tkanin możliwe jest uszycie sześciu różnych trójkolorowych flag

4 Na ile sposobów możemy uporządkować zbiór złożony z n elementów? Jako pierwszy możemy wziąć dowolny element z naszego zbioru, zatem mamy n możliwości. Po wybraniu pierwszego elementu pozostaje nam n-1 elementów zbioru, zatem mamy n-1 możliwości wzięcia drugiego elementu. Dwa pierwsze elementy możemy wybrać na n(n-1) sposobów. Kolejny element możemy wziąć na n-2 sposoby, zatem trzy elementy możemy wybrać na n(n-1)(n-2) sposobów. Kontynuując powyższe postępowanie aż do ostatniego elementu otrzymamy wzór na liczbę permutacji zbioru n-elementowego n(n-1)(n-2)(n-3) 3 2 1=n! Symbol n! Wprowadzono do matematyki w 1808 roku. 0!=1 1!=1 2!=2 3!=6 4!=24 5!=120 6!=720 7!= !=40 320

5 Przykład 2 Na ile sposobów można ustawić w kolejce trójkę dziewcząt i dwójkę chłopców? Rozwiązanie: Wszystkich ustawień jest (3+2)!=5!=120. Przykład 3 Na ile sposobów można ustawić w kolejce trójkę dziewcząt i dwójkę chłopców przy założeniu, że dziewczęta mają stać przed chłopcami? Rozwiązanie: Dziewczęta możemy ustawić na 3!, a chłopców na 2! sposobów. Zatem razem można ich ustawić na 3! 2! =2 6=12 sposobów Niech A,B,C oznaczają dziewczęta, K,L chłopców. Mamy zatem następujące możliwości ustawienia: ABC KL, ACB KL, BAC KL, BCA KL, CAB KL, CBA KL ABC LK, ACB LK, BAC LK, BCA LK, CAB LK, CBA LK,

6 Przykład 4 Na ile sposobów spośród dziewięciu słów wybrać sześć, gdy kolejność tych słów jest istotna? Rozwiązanie: Na pierwszym miejscu możemy umieścić dowolne z 9 słów, na drugim - dowolne z pozostałych 8,..., na szóstym jedno z 4 wcześniej niewykorzystanych. Zatem na mocy reguły mnożenia rozpatrywany dwuwiersz można uzupełnić sześć spośród dziewięciu słów na : 9*8*7*6*5*4=60480 sposoby.

7 Wariacje bez powtórzeń Jeżeli kolejność w jakiej dokonujemy wyboru jest istotna, a każdy element może być wybrany tylko raz, to spośród danych n różnych elementów, k elementów można wybrać na: n*(n-1)*(n-2)*...*(n-(k-1)) sposobów.przy n=k wzór ten przyjmuje postać: n*(n-1)*(n-2)*...*2*1=n! Wariacją bez powtórzeń k-elementową ze zbioru n-elementowego (k n) nazywamy każdy k-wyrazowy ciąg różnych elementów tego zbioru. Liczba wariacji bez powtórzeń k-elementowych ze zbioru n- n! elementowego wyraża się wzorem: V k n = (n - k)!

8 Wariacje z powtórzeniami Jeśli kolejność w jakiej dokonujemy wyboru jest istotna, a każdy element może być wybierany wielokrotnie, to spośród danych n różnych elementów, k elementów można wybrać na n*n*n*n*...*n=n k sposobów. Wariacją z powtórzeniami k-elementową ze zbioru n-elementowego nazywamy każdy k-wyrazowy ciąg różnych lub takich samych elementów tego zbioru. Liczba wariacji z powtórzeniami k-elementowych ze zbioru n- elementowego wyraża się wzorem: W k n = n k

9 Przykład 5 Ile jest a) wszystkich liczb czterocyfrowych, b) liczb czterocyfrowych, w których wszystkie cyfry są różne? Rozwiązanie: a) Na pierwszym miejscu może być dowolna cyfra oprócz 0 (mamy 9 możliwości), na pozostałych trzech miejscach może być dowolna cyfra (10 możliwości). Wszystkich liczb czterocyfrowych mamy: 9*10*10*10=9000. b) Na pierwszym miejscu może być dowolna cyfra oprócz 0 (9 możliwości), na drugim miejscu dowolna oprócz tej, która jest na miejscu pierwszym (9 możliwości), na trzecim miejscu - dowolna oprócz dwu pierwszych (8 możliwości), na czwartym miejscu dowolna oprócz trzech pierwszych (7 możliwości). Wszystkich liczb czterocyfrowych, w których wszystkie cyfry są różne jest: 9*9*8*7=4536.

10 Kombinacje Kombinacją k elementów spośród n elementów tworzących pewien zbiór nazywamy każdy k-elementowy podzbiór tego zbioru. Dwie kombinacje uważamy za różne, gdy jakiś element występuje w jednej z tych kombinacji, a nie występuje w drugiej. Przykład 6 Wypisz wszystkie kombinacje k elementów spośród A,B,C,D, dla k=0,1,2,3,4. k=0 k=1 A B C D k=2 AB AC AD BC BD CD k=3 ABC ABD ACD BCD k=4 ABCD

11 Symbol Newtona nazywany też współczynnikiem dwumianowym, (czytamy n nad k, n po k lub k z n) jest to funkcja dwóch argumentów całkowitych nieujemnych, zdefiniowana jako n k = n! k! n k! = n (n 1) (n k + 1) 1 2 k Własności symbolu Newtona n 0 = n n = 1 n 1 = n n 1 = n n k = n n k Liczba kombinacji k-elementowych ze zbioru n-elementowego wyraża się wzorem C k n= n k

12 Trójkąt Pascala

13 Trójkąt Pascala

14 Probabilistyka Probabilistyka (rachunek prawdopodobieństwa) dział matematyki zajmujący się badaniem zjawisk losowych i praw rządzącymi tymi zjawiskami. Rachunek prawdopodobieństwa zaczął się kształtować w XVI wieku gdy zaczęto zauważać pewne prawidłowości w grach hazardowych. Pierwszy dostrzegł je i próbował opisać matematyk włoski Geronimo Cardano ( ). Poważniejszy rozwój rachunku prawdopodobieństwa nastąpił w wieku XVII dzięki pracom P. de Fermat'a i B. Pascal'a (matematycy francuscy)

15 Probabilistyka Za twórcę rachunku prawdopodobieństwa jako działu matematyki uważamy szwajcarskiego matematyka Jakuba Bernoullie'go, który opracował te zagadnienia w wieku XVII. Duży wkład i szybki rozwój tej nauki nastąpił w XIX wieku dzięki pracom Gaussa, Laplace'a, Czybyszewa. Pełnego opracowania i sformalizowania doczekał się rachunek prawdopodobieństwa dopiero w wieku XX dzięki pracom A. Kołogomorowa, matematyka rosyjskiego. Rachunek prawdopodobieństwa stał się podstawą nowoczesnej fizyki - fizyki kwantowej opisującej zachowanie się mikrocząstek. Fizycy kwantowi wykazali, że w świecie mikrocząstek obowiązują prawa probabilistyczne czyli oparte na rachunku prawdopodobieństwa.

16 Pojęcia podstawowe Doświadczenie losowe doświadczenie, które jest powtarzalne ( może być przeprowadzone wielokrotnie w tych samych warunkach) i którego wyniku nie można jednoznacznie przewidzieć. Częstość zdarzenia A- liczba pojawień zdarzenia A podzielona przez liczbę obserwowanych doświadczeń. Doświadczenia losowe charakteryzują się tym, że w długiej serii powtórzeń danego doświadczenia częstości poszczególnych wyników stabilizują się wokół pewnych liczb, które zazwyczaj są przyjmowane jako prawdopodobieństwa tych wyników. Z każdym doświadczeniem losowym związany jest zbiór wszystkich możliwych wyników tego doświadczenia. Zbiór ten oznaczany jest grecką literą i nazywany jest przestrzenią wyników lub przestrzenią zdarzeń elementarnych danego doświadczenia losowego.

17 Zdarzenia losowe Załóżmy, że dana jest skończona przestrzeń wyników ={ 1, 2,..., n } pewnego doświadczenia losowego. Zdarzeniem losowym nazywamy dowolny podzbiór przestrzeni Jeśli A, to zdarzeniem przeciwnym do zdarzenia A nazywamy zdarzenie A = \A. Zdarzeniem pewnym nazywamy zbiór, zdarzeniem niemożliwym nazywamy pusty podzbiór zbioru, czyli. O takich dwóch zdarzeniach A i B, dla których A B= mówimy, że są to zdarzenia rozłączne. Jeśli A jest zdarzeniem losowym, to o każdym zdarzeniu elementarnym i (i=1,2,...,n) należącym do A mówimy, że sprzyja zdarzeniu A.

18 Przykład 7 Doświadczenie polega na jednokrotnym rzucie dwiema różnymi monetami. Wyznacz przestrzeń wyników tego doświadczenia. Podaj przykłady trzech różnych zdarzeń związanych z tym doświadczeniem. Rozwiązanie: ={(o,r), (o,o), (r,r), (r,o)}, zatem jest zbiorem czteroelementowym Przykładowe zdarzenia: A- wypadł co najmniej jeden orzeł; B- wypadły dwie reszki; C- na każdej monecie wypadło co innego A={(o,o), (o,r), (r,o)} B={(r,r)} C={(o,r), (r,o)}

19 Aksjomatyczna definicja prawdopodobieństwa Niech Ω będzie daną skończoną przestrzenią zdarzeń elementarnych. Jeżeli każdemu zdarzeniu A Ω jest przyporządkowana dokładnie jedna liczba P(A) taka, że: P(A) 0, P(Ω) = 1, B Ω i A B = Ø P(A B) = P(A) + P(B) to mówimy, że na zdarzeniach zbioru Ω określone zostało prawdopodobieństwo, a liczbę P(A) nazywamy prawdopodobieństwem zdarzenia A. Klasyczna definicja prawdopodobieństwa Jeżeli przestrzeń jest skończona i wszystkie zdarzenia elementarne są jednakowo prawdopodobne (możliwe), natomiast A jest dowolnym zdarzeniem w tej przestrzeni, to P A = A Ω A liczba elementów zbioru A Ω liczba elementów zbioru Ω

20 Własności prawdopodobieństwa P(Ø) = 0, P(Ω) = 1, P(A') = 1 - P(A), P(A B) = P(A) + P(B) - P(A B), A B P(A) P(B). Jeżeli zdarzenia A 1, A 2,..., A n wykluczają się parami, to P(A 1 A 2... A n ) = P(A 1 ) + P(A 2 ) P(A n ) Jeżeli A B, to P(B\A)=P(B)-P(A) oraz P(A) P(B)

21 Przykład 8 Oblicz prawdopodobieństwo, że przy trzykrotnym rzucie symetryczną kostką trzy razy pod rząd wypadnie parzysta liczba oczek. Rozwiązanie: = {(x,y,z): x,y,z {1,2,3,4,5,6}}. Ω = 6 3 = 216 A={(x,y,z): x,y,z {2,4,6}} A = 3 3 = 27 Zatem P A = A Ω = = 1 8

22 Przykład 9 Nocą turysta widzi, że taksówka uderza w zaparkowany samochód i ucieka z miejsca zdarzenia. Na komisariacie informuje, że taksówka była niebieska. W mieście są dwa przedsiębiorstwa taksówkowe: niebieskie i zielone. Podejrzanym staje się przedsiębiorstwo niebieskie, jednak policjanci chcą być pewni i następnego wieczoru poddają świadka testowi w podobnych warunkach. Świadek potrafi rozróżnić niebieski samochód od zielonego z 80% pewnością. 80% pewności wystarczyło sędziemu do ogłoszenia wyroku- Przedsiębiorstwo niebieskich musi pokryć koszty naprawy szkody.

23 Przykład 9 c.d. Czy zapadł sprawiedliwy wyrok? W mieście jest 25 taksówek zielonych i 5 niebieskich. Uwzględniając te liczby oraz skuteczność świadka mamy: Taksówka niebieska Taksówka zielona Świadek rozpoznał niebieski kolor Świadek rozpoznał zielony kolor Ze wszystkich 30 taksówek świadek 9 rozpoznał jako niebieskie, oznacza to, że zeznania świadka są bezwartościowe i bez innych poszlak należy postępowanie umorzyć.

24 Prawdopodobieństwo warunkowe Prawdopodobieństwem warunkowym zajścia zdarzenia A pod warunkiem zajścia zdarzenia B, gdzie P(B)>0 nazywamy liczbę: P A B = P(A B) P(B) Przykład 10 W pewnej szkole zauważono, że 25% uczniów uzyskuje dobre wyniki z matematyki, 60% - z języka polskiego, a 20% jednocześnie z obu tych przedmiotów. Jakie jest prawdopodobieństwo, że uczeń jest dobry z języka polskiego przy założeniu, że jest dobry z matematyki? Rozwiązanie: P polski matematyka = = 0.8

25 Prawdopodobieństwo całkowite Jeżeli zdarzenia B 1,B 2,...,B n są parami rozłączne oraz mają prawdopodobieństwa dodatnie, które sumują się do jedynki, to dla dowolnego zdarzenia A zachodzi wzór: P(A)=P(A B 1 ) P(B 1 )+P(A B 2 ) P(B 2 )+...+P(A B n ) P(B n ). Zdarzenia B 1,B 2,...,B n nazywamy zupełnym układem zdarzeń. Przykład 11 W pewnym domu są dwa mieszkania: jedno na parterze i jedno na piętrze. W domu tym są dwa piony wodne; jeden doprowadza wodę do łazienek, drugi do obu kuchni. Pion łazienkowy zużywa 0.7 wody z czego 0.4 trafia na parter, a 0.6 na piętro. Przez pion kuchenny przepływa pozostałe 0.3 z czego parter zużywa 0.8, a piętro 0.2. Jaka część wody doprowadzanej do tego domu zużywają mieszkańcy parteru? Rozwiązanie: P Ł = P Ł 0 P 0 + P Ł 1 P 1 = = = 0.52

26 Drzewa stochastyczne p 1 p 2 krawędzie drzewa A A możliwe wyniki I etap doświadczenia q 1 q 2 q 3 q 4 B B B B możliwe wyniki II etap doświadczenia gałąź drzewa p 1 prawdopodobieństwo zdarzenia A, p 2 prawdopodobieństwo zdarzenia A p 1 +p 2 =1 q 1, q 3 prawdopodobieństwo warunkowe zdarzenia B w II etapie q 2, q 4 prawdopodobieństwo warunkowe zdarzenia B w II etapie q 1 +q 2 =1 q 3 +q 4 =1

27 Przykład 11 W pewnym domu są dwa mieszkania: jedno na parterze i jedno na piętrze. W domu tym są dwa piony wodne; jeden doprowadza wodę do łazienek, drugi do obu kuchni. Pion łazienkowy zużywa 0.7 wody z czego 0.4 trafia na parter, a 0.6 na piętro. Przez pion kuchenny przepływa pozostałe 0.3 z czego parter zużywa 0.8, a piętro 0.2. Jaka część wody doprowadzanej do tego domu zużywają mieszkańcy parteru? A A B B B B p = = = 0.52

28 Prawdopodobieństwo przyczyny wzór Bayesa Jeżeli zdarzenia B 1, B 2,..., B n tworzą zupełny układ zdarzeń, to dla dowolnego zdarzenia A o prawdopodobieństwie dodatnim: P B 1 A = P A B 1 P(B 1 ) P A B 1 P B 1 + P A B 2 P B P A B n P(B n ) Przykład 12 Pewna choroba występuje u 0.1% ogółu ludzi. Przygotowano test do jej wykrycia. Daje on wynik pozytywny w 99% chorych i 5% osób zdrowych. Oblicz prawdopodobieństwo, że osoba mająca dodatni odczyt jest naprawdę chora. Rozwiązanie: + - osoba ma odczyt pozytywny, - odczyt negatywny Z osoba jest zdrowa, C- osoba jest chora P C + = P + C P(C) P + C P C + P + Z P(Z) = = =

29 Zdarzenia A, B nazywamy niezależnymi wtedy i tylko wtedy gdy spełniają warunek: P A B = P A P B. Zdarzenia A i B są niezależne wtedy i tylko wtedy gdy zachodzi jeden z dwu przypadków: a) P(A B)=P(A), gdy P(B)>0 lub b) P(B)=0. Przykład 13 Dwu strzelców trafia w cel, pierwszy z prawdopodobieństwem 0.8, drugi 0.7. Oddają po jednym strzale. Zakładając, ze trafienia są niezależne, oblicz prawdopodobieństwo tego, że przynajmniej jeden z nich trafi. Rozwiązanie: A- trafi pierwszy strzelec, B- trafi drugi strzelec Stosujemy wzór na prawdopodobieństwo sumy P(A B)=P(A)+P(B)- P(A B), Stąd mamy P(A B)=P(A)+P(B)-P(A)P(B)= =0.94

30 Schemat Bernoulliego Próbą Bernoulliego nazywamy doświadczenie, w którym otrzymujemy jeden z dwóch możliwych wyników. Jeden z wyników nazywamy sukcesem, drugi porażką. Prawdopodobieństwo sukcesu wynosi p, prawdopodobieństwo porażki wynosi q=1-p. Schematem Bernoulliego nazywamy ciąg niezależnych powtórzeń prób Bernoulliego. Prawdopodobieństwo uzyskania dokładnie k sukcesów w n próbach obliczamy ze wzoru: P X = k = n k pk q n k

31 Przykład 14 W długotrwałym badaniu stwierdzono, że pewien lek miał skuteczność w 30%. Lekarz zaaplikował ten lek pięciu pacjentom. Jakie jest prawdopodobieństwo, że lek ten będzie skutecznym środkiem dla trzech pacjentów? Rozwiązanie: Sukces wyleczenie pacjenta p=0.3, q=1-0.3=0.7 Liczba powtórzeń: 5 pacjentów P X = 3 = == = = ! 5 3! 3! = = 2 6

32 Przykład 15 W doniczkę wysiano pięć losowo wybranych nasion o sile kiełkowania 80%. Obliczyć prawdopodobieństwo, że: a) nie wykiełkuje żadne z nasion; b) wykiełkuje tylko jedno nasiono; c) wykiełkują tylko dwa nasiona d) wykiełkują tylko trzy nasiona; e) wykiełkują tylko cztery nasiona; f) wykiełkują wszystkie nasiona; g) przedstawić graficzną prezentację tego rozkładu Rozwiązanie: Sukces- wykiełkowanie rośliny p=0.8 a) P(X=0)= b) P(X=1)= c) P(X=2)= d) P(X=3)= e) P(X=4)= f) P(X=5)=

33 Dziękuję za uwagę

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka

Podstawy nauk przyrodniczych Matematyka Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Matematyczne Podstawy Kognitywistyki

Matematyczne Podstawy Kognitywistyki Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo

Bardziej szczegółowo

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak

Bardziej szczegółowo

Doświadczenie i zdarzenie losowe

Doświadczenie i zdarzenie losowe Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

Podstawy metod probabilistycznych. dr Adam Kiersztyn

Podstawy metod probabilistycznych. dr Adam Kiersztyn Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku

Bardziej szczegółowo

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( ) Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe

Bardziej szczegółowo

Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska

Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym M.Zalewska Podstawowe pojęcia Doświadczenie losowe obserwacja zjawiska, którego przebiegu nie umiemy w pełni przewidzieć. Możemy oceniać

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest

Bardziej szczegółowo

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30. Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne

Bardziej szczegółowo

Biostatystyka, # 2 /Weterynaria I/

Biostatystyka, # 2 /Weterynaria I/ Biostatystyka, # 2 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

= A. A - liczba elementów zbioru A. Lucjan Kowalski

= A. A - liczba elementów zbioru A. Lucjan Kowalski Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ). KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.

Bardziej szczegółowo

Statystyka podstawowe wzory i definicje

Statystyka podstawowe wzory i definicje 1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

Statystyka Astronomiczna

Statystyka Astronomiczna Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości

Bardziej szczegółowo

ELEMENTY KOMBINATORYKI

ELEMENTY KOMBINATORYKI ELEMENTY KOMBINATORYKI Kombinatoryka to dział matematyki, który zajmuje się zliczaniem, na ile sposobów może zajść jakieś zjawisko. Powstała dzięki grom hazardowym a dopiero później rozwinęła się w gałąź

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania: Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki

Bardziej szczegółowo

Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008 STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

Statystyka z elementami rachunku prawdopodobieństwa

Statystyka z elementami rachunku prawdopodobieństwa Statystyka z elementami rachunku prawdopodobieństwa dr hab. Tomasz Górecki tomasz.gorecki@amu.edu.pl Zakład Rachunku Prawdopodobieństwa i Statystyki Matematycznej Wydział Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa

Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa Rachunek prawdopodobieństwa i kombinatoryka Spis treści Rachunek prawdopodobieństwa Podstawowe pojęcia rachunku prawdopodobieństwa Liczba wyników doświadczenia losowego. Reguła mnożenia i reguła dodawania

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka 1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:

Bardziej szczegółowo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR) .. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

KOMBINATORYKA. Problem przydziału prac

KOMBINATORYKA. Problem przydziału prac KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe

Bardziej szczegółowo

Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1. Prawdopodobieństwo klasyczne i geometryczne Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

2. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.

2. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów. Literatura:. Jerzy Greń, Statystyka matematyczna. Modele i zadania.. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.. J. Koronacki, J. Mielniczuk, Statystyka dla

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 10A/15 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:

Bardziej szczegółowo

Wstęp. Kurs w skrócie

Wstęp. Kurs w skrócie Mariola Zalewska Zakład Metod Matematycznych i Statystycznych Zarządzania Wydział Zarządzania Uniwersystet Warszawski I rok DSM Rachunek Prawdopodobieństwa Wstęp Kombinatoryka Niezależność zdarzeń, Twierdzenie

Bardziej szczegółowo

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B; Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.

Bardziej szczegółowo

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji?

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Porada niniejsza traktuje o tzw. elementach kombinatoryki. Często zdarza się, że rozwiązujący zadania z tej dziedziny mają problemy

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3 Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił

Bardziej szczegółowo

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna

Bardziej szczegółowo

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych

Bardziej szczegółowo

Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,

Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, niezależność zdarzeń dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Semestr letni

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 = Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają

Bardziej szczegółowo

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Wprowadzenie do kombinatoryki

Wprowadzenie do kombinatoryki Wprowadzenie do kombinatoryki http://www.matemaks.pl/kombinatoryka.html Kombinatoryka jest działem matematyki, który pomaga odpowiedzieć na pytania typu: "ile jest możliwych wyników w rzucie monetą?",

Bardziej szczegółowo

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi

Bardziej szczegółowo

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji ODSTWY STTYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne 6.

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo

Bardziej szczegółowo

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu

Bardziej szczegółowo

Podstawy Teorii Prawdopodobieństwa

Podstawy Teorii Prawdopodobieństwa Statystyka Opisowa z Demografią oraz Biostatystyka Podstawy Teorii Prawdopodobieństwa Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6

Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6 Wariacje bez powtórzeń Jeśli w doświadczeniu losowym ze zbioru n-elementowego wybieramy k elementów w ten sposób, że: wybrane elementy nie mogą się powtarzać kolejność wybranych elementów jest istotna

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 9A/14 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum. Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Probabilistyka przykłady

Probabilistyka przykłady Probabilistyka przykłady Przestrzeń zdarzeń Zapisać przestrzeń zdarzeń dla: 1.liczby wygranych gier w serii liczącej trzy gry 2.liczby wizyt u lekarza w ciągu roku 3.ilości czasu (w minutach) od wezwania

Bardziej szczegółowo

Zdarzenie losowe (zdarzenie)

Zdarzenie losowe (zdarzenie) Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

ĆWICZENIA nr 1 - KOMBINATORYKA - czyli sztuka liczenia autor: mgr inż. Agnieszka Herczak

ĆWICZENIA nr 1 - KOMBINATORYKA - czyli sztuka liczenia autor: mgr inż. Agnieszka Herczak ĆWCZENA nr 1 - KOMBNATORYKA - czyli sztuka liczenia autor: mgr inż. Agnieszka Herczak. Reguła mnożenia Jeżeli pewien wybór zależy od skończenie wielu decyzji, przy czym podejmując pierwszą mamy k 1 możliwości

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 1 1 / 24 Warunki zaliczenia 1 Do egzaminu dopuszczeni wszyscy, którzy uczęszczali na

Bardziej szczegółowo

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Statystyka Pierwotnie oznaczała stan rzeczy (od status) i do XVIII wieku używana dla określenia zbioru wiadomości o państwie Statystyka

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Rachunek Prawdopodobieństwa Brian Wynne podał następującą typologię zagrożeń znanych i niewiadomych: 1. ryzyko to wiadome nam przyszłe zagrożenia,

Bardziej szczegółowo

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Plan wykładów Data WYKŁDY 1.X rachunek prawdopodobieństwa; 8.X zmienna losowa jednowymiarowa, funkcja rozkładu, dystrybuanta 15.X

Bardziej szczegółowo

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład I, 2.10.2018 PODSTAWY RACHUNKU PRAWDOPODOBIEŃSTWA Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: wtorki, godz. 9:15 s. B006 strona z materiałami

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy:

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek

Bardziej szczegółowo

Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń

Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Zadanie 1 Po potasowaniu sześciu kart: asa, dwójki, trójki, czwórki, piątki i szóstki wyłożono na stół w rzędzie

Bardziej szczegółowo

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy

Bardziej szczegółowo

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne Lista 1a 1 Statystyka Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej 52 karty

Bardziej szczegółowo