Ziemia wirujący układ

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ziemia wirujący układ"

Transkrypt

1 Siła Coriolisa 1

2 Ziemia wirujący układ Ziemia jest układem nieinercjalnym, poruszającym się w dość skomplikowany sposób. Aby stosować w takim układzie prawa dynamiki Newtona, do opisu zjawisk naleŝy wprowadzić tzw. siły bezwładności siły pozorne pojawiające się w układach podlegających przyspieszeniu. 2

3 W układzie nieinercjalnym II Zasada Dynamiki Newtona przyjmuje następującą postać: gdzie: a 0 przyspieszenie układu nieinercjalnego względem inercjalnego a przyspieszenie mierzone w układzie nieinercjalnym W układzie nieinercjalnym wygodnie jest wprowadzić wielkość F 0, tak Ŝe powyŝsze równanie przyjmie postać: gdzie nazywa się siłą pozorną. 3

4 W układach wirujących oprócz wspomnianej juŝ, dobrze znanej siły odśrodkowej występuje równieŝ druga siła bezwładności, znacznie mniej znana, lecz bez wątpienia nie mniej istotna siła Coriolisa (nazwana tak od nazwiska odkrywcy Gasparda Gustawa Coriolisa, francuskiego matematyka, ). 4

5 U i U - układy odniesienia poruszające się względem siebie O i O - środki układów odpowiednio U i U A i A - obserwatorzy znajdujący się odpowiednio w układach U i U Przyjmujemy, Ŝe: O = O oraz U obraca się względem U z prędkością kątową ω wokół osi przechodzącej przez punkt O = O o dowolnym kierunku. Obserwator A opisuje połoŝenie punktu materialnego P w układzie U za pomocą wektora wodzącego r. Dla obserwatora A połoŝenie tego punktu w układzie U jest dane przez wektor wodzący r. 5

6 Dla obserwatora A zachodzi: Podobnie dla obserwatora A : Skoro, to zachodzi: 6

7 Zachodzi związek: Zatem: Stosując powyŝsze równanie kolejno dla wersorów i, j, k otrzymujemy: Zatem moŝemy napisać: 7

8 W ten sposób otrzymujemy związek pomiędzy wektorami v i v względem układów U i U : Rozumując podobnie obliczamy pochodną wektora v względem czasu posługując się powyŝszym związkiem: Otrzymujemy równieŝ: oraz: 8

9 Ostatecznie otrzymujemy: PoniewaŜ powyŝsze równanie moŝemy zapisać w postaci: Przyspieszenie w układzie inercjalnym przyspieszenie w układzie obracającym się przyspieszenie Coriolisa przyspieszenie dośrodkowe 9

10 Zatem siłę pozorną przy obrocie ze stałą prędkością kątową moŝemy przedstawić w postaci: siła Coriolisa siła dośrodkowa 10

11 Siła Coriolisa działa wyłącznie na obiekty znajdujące się w ruchu i zaleŝy od prędkości kątowej wirującego układu oraz od masy i prędkości liniowej poruszającego się obiektu. Z ω P V 2ω x v Kierunek działania siły Coriolisa jest zawsze prostopadły do kierunku wektora prędkości poruszającego się ciała, tak więc siła ta powoduje odchylenie toru ruchu ciała od linii prostej. X Y 11

12 Kamień rzucony z wieŝy nie spada pionowo w dół!!! Swobodny spadek kamienia obserwowany przez obserwatora znajdującego się na Ziemi układzie nieinercjalnym. 12

13 Ten sam kamień obserwowany przez obserwatora będącego w kosmosie w układzie niezwiązanym z ruchem obrotowym Ziemi (inercjalnym). 13

14 Kierunki wiatrów na Ziemi Pasaty, ulegając działaniu siły Coriolisa odchylają się na półkuli północnej w prawo, a na półkuli południowej w lewo. W rezultacie wiatry te wieją odpowiednio z północnego i z południowego wschodu. Podobnemu odchyleniu ulegają wiatry w strefie wiatrów zachodnich i biegunowe wiatry wschodnie. 14

15 Wirowanie wiatrów w cyklonie Siły Coriolisa nie tylko określają kierunek wiatrów stałych wiejących na kuli ziemskiej, ale takŝe decydują o kierunku wirowania cyklonów. Siły Coriolisa na półkuli północnej odchylają wiejące promieniście wiatry w prawo, co w rezultacie nadaje masom powietrza ruch wirowy o orientacji lewoskrętnej. 15

16 Na półkuli północnej w niŝu barycznym powietrze krąŝy przeciwnie do kierunku ruchu wskazówek zegara a na południowej zgodnie ze wskazówkami zegara. Półkula północna Półkula południowa 16

17 Gdzie jeszcze obserwujemy działanie siły Coriolisa? Tor ruchu pocisku Podmywanie brzegów rzek Samolot Karuzela 17

18 Wahadło Foucaulta przybądźcie i zobaczcie jak kręci się Ziemia Wahadło Foucaulta jest przyrządem, za pomącą którego moŝna wykazać, Ŝe Ziemia obraca się dookoła osi oraz Ŝe nie jest układem inercjalnym. W swojej piwnicy Foucault zawiesił odwaŝnik (5kg) na dwumetrowym drucie i zauwaŝył, Ŝe płaszczyzna drgań takiego wahadła systematycznie się obraca. Doświadczenie powtórzył 1851 publicznie wieszając 67 metrowe wahadło w Pantheonie w ParyŜu. Widzowie mogli zobaczyć, Ŝe to obrót Ziemi pod wahadłem powoduje ciągłą zmianę płaszczyzny drgań wahadła. 18

19 Gdyby wahadło Foucaulta było umieszczone na biegunie, płaszczyzna jego wahań dokonywałaby pełnego obrotu w ciągu ok. 24h (23 godzin 56 minut) tj. w czasie, jaki Ziemia potrzebuje na dokonanie pełnego obrotu wokół własnej osi. Czas T pełnego obrotu płaszczyzny wahań wahadła na szerokości geograficznej φ moŝna obliczyć według wzoru: T=24h/sin φ (np. w Krakowie T jest równe 31 godzin 14 minut). Stąd wynika, Ŝe umieszczenie wahadła nie na biegunie, ale gdzieś w pośrednich szerokościach geograficznych spowoduje wydłuŝenie czasu potrzebnego do pełnego obrotu płaszczyzny wahań wahadła. Na równiku nie zaobserwujemy obrotu płaszczyzny wahań względem Ziemi. 19

20 Wahadło Foucaulta tor ruchu - rozety 20

21 Wybrane wahadła na świecie Miejsce L[m] M[kg] Pantheon, ParyŜ Oregon Convention Center in Portland Museum of Science and Industry, Chicago National Museum of American History, Washington, DC WieŜa Radziejowskiego, Frombork ONZ, Nowy Jork Instytut Fizyki, Toruń Kościół św. Piotra i Pawła, Kraków 46,

22 Wahadło Foucaulta w Krakowie W kościele Św. Piotra i Pawła odbywają się pokazy wahadła. Doświadczenie: symulacja zmiany płaszczyzny wahań wahadła w obracającym się układzie. 22

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła

Bardziej szczegółowo

Dynamika: układy nieinercjalne

Dynamika: układy nieinercjalne Dynamika: układy nieinercjalne Spis treści 1 Układ inercjalny 2 Układy nieinercjalne 2.1 Opis ruchu 2.2 Prawa ruchu 2.3 Ruch poziomy 2.4 Równia 2.5 Spadek swobodny 3 Układy obracające się 3.1 Układ inercjalny

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g

Bardziej szczegółowo

Fizyka 1(mechanika) AF14. Wykład 5

Fizyka 1(mechanika) AF14. Wykład 5 Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi

Bardziej szczegółowo

Co ważniejsze siły. Wykład Inercjalne układy odniesienia. Transformacja Galileusza 5.2. Nieinercjalne układy odniesienia. Siły bezwładności.

Co ważniejsze siły. Wykład Inercjalne układy odniesienia. Transformacja Galileusza 5.2. Nieinercjalne układy odniesienia. Siły bezwładności. Co ważniejsze siły Piękne rzeczy wypracować można dzięki długiej i uciążliwej nauce, złe natomiast owocują same bez trudu. Demokryt z Abdery Wykład 5. 5.1. Inercjalne układy odniesienia. Transformacja

Bardziej szczegółowo

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem

Bardziej szczegółowo

4. Ruch obrotowy Ziemi

4. Ruch obrotowy Ziemi 4. Ruch obrotowy Ziemi Jednym z pierwszych dowodów na ruch obrotowy Ziemi było doświadczenie, wykazujące ODCHYLENIE CIAŁ SWOBODNIE SPADAJĄCYCH Z WIEŻY: gdy ciało zostanie zrzucone z wysokiej wieży, to

Bardziej szczegółowo

Wykład 10. Ruch w układach nieinercjalnych

Wykład 10. Ruch w układach nieinercjalnych Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Mieszkamy na Ziemi wirującej planecie.

Mieszkamy na Ziemi wirującej planecie. Mieszkamy na Ziemi wirującej planecie. Przez tysiąclecia, patrząc w niebo wyobrażaliśmy sobie, że Słońce, Księżyc i sfera niebieska obracają się wokół Ziemi. Taki obraz Wszechświata harmonizował z przekonaniem

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Ćwiczenie: "Dynamika"

Ćwiczenie: Dynamika Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności

Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Dynamika Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Fizyka I (Mechanika) Prawa ruchu w układzie obracajacym się siła odśrodkowa siła Coriolissa Zasada zachowania pędu Zasada zachowania

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego Mechanika klasyczna Tadeusz Lesiak Wykład nr 2 Podstawy mechaniki Newtona Kinematyka punktu materialnego Kinematyka punktu materialnego Kinematyka: zajmuje się matematycznym opisem ruchów układów mechanicznych

Bardziej szczegółowo

00013 Mechanika nieba A

00013 Mechanika nieba A 1 00013 Mechanika nieba A Dane osobowe właściciela arkusza 00013 Mechanika nieba A Czas pracy 90/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

I zasada dynamiki Newtona

I zasada dynamiki Newtona I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub

Bardziej szczegółowo

Ćwiczenie: "Ruch po okręgu"

Ćwiczenie: Ruch po okręgu Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka

Bardziej szczegółowo

będzie momentem Twierdzenie Steinera

będzie momentem Twierdzenie Steinera Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Mieszkamy na Ziemi wirującej planecie

Mieszkamy na Ziemi wirującej planecie FOTON 84, Wiosna 2004 13 Mieszkamy na Ziemi wirującej planecie Aneta Szczygielska, Jerzy Jarosz Uniwersytet Śląski, Katowice Patrząc w niebo przez tysiąclecia, wyobrażaliśmy sobie, że Słońce, Księżyc i

Bardziej szczegółowo

ZAŁĄCZNIK 17 Lotnicza Pogoda w pytaniach i odpowiedziach

ZAŁĄCZNIK 17 Lotnicza Pogoda w pytaniach i odpowiedziach GLOBALNA CYRKULACJA POWIETRZA I STREFY KLIMATYCZNE Terminu klimat używamy do opisu charakterystycznych cech/parametrów pogody dla danego obszaru geograficznego. W skład tych parametrów wchodzą: temperatura,

Bardziej szczegółowo

5 m. 3 m. Zad. 4 Pod jakim kątem α do poziomu należy rzucić ciało, aby wysokość jego wzniesienia równała się 0.5 zasięgu rzutu?

5 m. 3 m. Zad. 4 Pod jakim kątem α do poziomu należy rzucić ciało, aby wysokość jego wzniesienia równała się 0.5 zasięgu rzutu? Segment A.II Kinematyka II Przygotował: dr Katarzyna Górska Zad. 1 Z wysokości h = 35 m rzucono poziomo kamień z prędkością początkową v = 30 m/s. Jak daleko od miejsca rzucenia spadnie kamień na ziemię

Bardziej szczegółowo

24 godziny 23 godziny 56 minut 4 sekundy

24 godziny 23 godziny 56 minut 4 sekundy Ruch obrotowy Ziemi Podstawowe pojęcia Ruch obrotowy, inaczej wirowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun Północny i Biegun Południowy.

Bardziej szczegółowo

9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM

9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM 9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM Co to są kłady inercjalne i nieinercjalne? Układ inercjalny wyróŝnia się tym, Ŝe jeśli ciało w nim spoczywa lb porsza się rchem jednostajnym prostoliniowym,

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI: Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1

Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1 Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1 Szymon Malinowski Metody opisu ruchu płynu, skale ruchu. Siły działające na cząstkę (elementarną objętość) powietrza. Równanie ruchu, analiza skali,

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

Oddziaływanie grawitacyjne

Oddziaływanie grawitacyjne Oddziaływanie grawitacyjne Przykład Obliczmy stosunek przyspieszenia dośrodkowego Księżyca w kierunku Ziemi do przyspieszenia grawitacyjnego przy powierzchni Ziemi. Przyspieszenie dośrodkowe w ruchu jednostajnym

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

I OKREŚLANIE KIERUNKÓW NA ŚWIECIE

I OKREŚLANIE KIERUNKÓW NA ŚWIECIE GEOGRAFIA I OKREŚLANIE KIERUNKÓW NA ŚWIECIE a) róża kierunków b) według przedmiotów terenowych Na samotnie rosnących drzewach gałęzie od strony południowej są dłuższe i grubsze. Słoje w pieńkach od strony

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

ZAŁĄCZNIK 2 Lotnicza Pogoda w pytaniach i odpowiedziach

ZAŁĄCZNIK 2 Lotnicza Pogoda w pytaniach i odpowiedziach Przyczyny powstawania wiatru. W meteorologii wiatr zdefiniowany jest jako horyzontalny (poziomy) ruch powietrza spowodowany przez siły, które na nie działają. Różnice temperatur występujące na powierzchni

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział

Bardziej szczegółowo

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 3 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Siły bezwładności Układy cząstek środek masy pęd i zasada zachowania pędu II zasada dynamiki Newtona dla układu

Bardziej szczegółowo

PRACOWNIA FIZYCZNA I

PRACOWNIA FIZYCZNA I Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 1: Badanie siły odśrodkowej. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna - studia

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego. Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe

Bardziej szczegółowo

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie.

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Q1-1 Dwa zagadnienia mechaniczne (10 points) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Część A. Ukryty metalowy dysk (3.5 points) Rozważmy drewniany

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC

Bardziej szczegółowo

PRZYRZĄD DO WPROWADZENIA POJĘCIA MOMENTU OBROTU I PARY SIŁ

PRZYRZĄD DO WPROWADZENIA POJĘCIA MOMENTU OBROTU I PARY SIŁ PRZYRZĄD DO WPROWADZENIA POJĘCIA MOMENTU OBROTU I PARY SIŁ (V 6 60) Za pomocą kompletu, w skład którego wchodzi dźwignia, 5 małych bloczków z uchwytami dostosowanymi do prętów statywowych, 6 linek z haczykami

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

TRANFORMACJA GALILEUSZA I LORENTZA

TRANFORMACJA GALILEUSZA I LORENTZA TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 10 RUCH JEDNOSTAJNY PUNKTU MATERIALNEGO PO OKRĘGU

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 10 RUCH JEDNOSTAJNY PUNKTU MATERIALNEGO PO OKRĘGU autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 10 RUCH JEDNOSTAJNY PUNKTU MATERIALNEGO PO OKRĘGU Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O). Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

Mechanika ruchu obrotowego

Mechanika ruchu obrotowego Mechanika ruchu obrotowego Fizyka I (Mechanika) Wykład X: Przypomnienie, ruch po okręgu Oscylator harmoniczny, wahadło Ruch w jednorodnym polu elektrycznym i magnetycznym Prawa ruchu w układzie obracajacym

Bardziej szczegółowo

NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY. Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego.

NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY. Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego. RUCH OBIEGOWY ZIEMI NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego. OBIEG ZIEMI WOKÓŁ SŁOŃCA W czasie równonocy

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FZYKA Wykład echanika: Pojęcia podstawowe dynamika i punktu histoia mateialnego (V) Siły opou pędkość ganiczna w spadku swobodnym Układy Pojęcia nieinecjalne podstawowe () i histoia Siły w układach nieinecjalnych

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

KONKURS NA 6 MATEMATYKA

KONKURS NA 6 MATEMATYKA KONKURS NA 6 MATEMATYKA ZAD.1. Znajdź takie trzy liczby, żeby ich największy wspólny dzielnik był równy najmniejszej wspólnej wielokrotności liczb 24, 30 i 36, a najmniejsza wspólna wielokrotność równała

Bardziej szczegółowo

Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady.

Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady. Zadanie bloczek Przez zamocowany bloczek o masie m przerzucono nierozciągliwą nitkę na której zawieszono dwa obciąŝniki o masach odpowiednio m i m. Oblicz przyspieszenie z jakim będą poruszać się obciąŝniki.

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera. ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt) Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany

Bardziej szczegółowo