Metody Obliczeniowe Mikrooptyki i Fotoniki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody Obliczeniowe Mikrooptyki i Fotoniki"

Transkrypt

1 Metody Obliczeniowe Mikrooptyki i Fotoniki Metoda propagacji wiązki BPM cd wyznaczanie modów metodą urojonej długości i korelacyjną operowanie efektywnym współczynnikiem załamania metoda FT-BPM metoda split-step dla nieliniowego r. Schödingera trójwymiarowa metoda ADI-BPM szerokokątowa trójwymiarowa metoda BPM

2 Równanie BPM Równanie Helmholtza: Rozwiązanie zapisujemy jako: r =A r exp i k z n k 0 =0 k=n k0 Fala nośna Amplituda zespolona A ℂ / z k n k 0 i k / z A=0 Przybliżenie paraboliczne (wolnozmiennej obwiedni) A/ z k / z, k A Podstawowe równanie metody propagacji wiązki (BPM- beam propagation method): A 1 = ( k n k 0) A z i k

3 Znajdowanie modów światłowodów i falowodów metodami propagacyjnymi Metoda imaginary distance (urojonej długości) z=i z ' R. Scarmozzino, A. Gopinath, R. Pregla Numerical Techniques for Modeling Guided-Wave Photonic Devices, IEEE JQE 60, 150 (000) A x, y,i z ' = m cm m x, y exp n m n k 0 z ' 1. Propagujemy pole wzdłuż kierunku iz', zaczynając od rozkładu losowego. Amplituda modu podstawowego wzrasta wykładniczo najszybciej i w krótkim czasie pozostałe mody stają się zaniedbywalne z' A x, y, i z ' c1 exp n1 n k 0 z ' 1 x, y c1 z ' n1 n ln A x, y,i z ' z ' A x, y, i z ' / k0 z ' Dokładność można podwyższyć przez kilkukrotnie powtarzanie procedury, za każdym razem przyjmując, że: n 1 n

4 Znajdowanie modów światłowodów i falowodów metodami propagacyjnymi Metoda imaginary distance (urojonej długości) Wyższe mody znajdujemy tak samo, zaczynając od rozkładu losowego, ale ortogonalnego do modów już znalezionych (ze względu na kumulację błędów w trakcie propagacji wskazane jest powtarzanie ortogonalizacji co jakiś czas) Ortogonalizacja (w pętli po wyznaczonych modach):

5 Znajdowanie modów światłowodów i falowodów metodami propagacyjnymi Metoda korelacyjna r = m c m m x, y exp i m z 1. Propagujemy pole wzdłuż kierunku z, zaczynając od rozkładu losowego. W trakcie propagacji obliczamy korelacje: P z = we x, y x, y, z dx dy R. Scarmozzino, A. Gopinath, R. Pregla Numerical Techniques for Modeling Guided-Wave Photonic Devices, IEEE JQE 60, 150 (000)

6 Znajdowanie modów światłowodów i falowodów metodami propagacyjnymi Metoda korelacyjna r = m c m m x, y exp i m z 1. Propagujemy pole wzdłuż kierunku z, zaczynając od rozkładu losowego. W trakcie propagacji obliczamy korelacje: P z = we x, y x, y, z dx dy FFT Piki korelacyjne wyznaczają wartości stałych propagacji 3. Odfiltrowujemy pola modów L m x, y = 0 x, y, z exp i m z dz R. Scarmozzino, A. Gopinath, R. Pregla Numerical Techniques for Modeling Guided-Wave Photonic Devices, IEEE JQE 60, 150 (000)

7 Mod podstawowy falowodu Rdzeń Płaszcz 1.0 Natężenie A x Amplituda A x Mod podstawowy zawsze istnieje

8 Pierwszy mod wyższego rzędu Pierwszy mod nieparzysty Mody wyższego rzędu istnieją powyżej kolejnych częstości odcięcia

9 Pierwszy mod wyższego rzędu

10 Pierwszy mod wyższego rzędu

11 Mody płaszczowe

12 Metoda efektywnego współczynnika załamania Idea: fragment falowodu, w którym występuje mikrostruktura, zastępujemy w obliczeniach materiałem jednorodnym o pewnej efektywnej wartości współczynnika załamania, który trzeba najpierw wyznaczyć. W rezultacie dochodzimy do prostszego niż pierwotny problemu obliczeniowego, czasem o znanych rozwiązaniach, lub o niższej wymiarowości. Wynik jest jednak przybliżony. Przykłady: 1. Falowody planarne z wieloma cienkimi warstwami można zredukować liczbę warstw w obliczeniach i np. sprowadzić obliczenia do falowodu trójwarstwowego o znanym związku dyspersyjnym. Falowody paskowe (np. grzebieniowe) można sprowadzić do falowodu planarnego '. Układy planarne o naprawdę skończonej wysokości można analizować jako układy dwuwymiarowe 3. Światłowody fotoniczne (ale nie wykorzystujące przerwy wzbronionej do prowadzenia) można sprowadzić do światłowodu skokowego

13 Metoda efektywnego współczynnika załamania 1. Falowody planarne z cienkimi warstwami z x d i λ Homogenizacja: ϵ eff y =ϵ ϵ eff x = ( eff z = d 1 ϵ1 + d ϵ d 1+ d 1 d 1 ϵ d ϵ d 1+ d ) 1 Uwaga: polaryzacje TE i TM widzą różne składowe tensora przenikalności elektrycznej = ϵ eff n eff TM = ϵ x n eff TE eff y

14 Metoda efektywnego współczynnika załamania M. Karpierz, E. Weinert-Rączka, Nieliniowa Optyka Światłowodowa, WNT 009

15 Metoda efektywnego współczynnika załamania jako sposób na redukcję wymiarowości problemu. Falowody paskowe Embedded strip (pol. grzebieniowy) Strip Rib/ ridge Strip loaded

16 Metoda efektywnego współczynnika załamania jako sposób na redukcję wymiarowości problemu

17

18 Fourier Transform BPM A 1 ^ S^ ) A = ( k n k 0) ( D+ z i k i ^ D= k where n= n + Δ n Δ n 1 S^ = i k Δ n założenie, że oba operatory nie zależą od z ^ S^ dz ) A(x, y, z ) exp ( D dz ^ A( x, y, z + dz)=exp ( D+ ) exp ( S^ dz ) A(x, y, z )

19 Fourier Transform BPM ^ A( x, y, z + dz) exp ( S^ dz ) exp ( D dz ) A(x, y, z) Krok iteracyjny dla metody FT-BPM: A(x, y, z + dz)=e i k Δ n( x, y) dz IFT exp (i dz (k x + k y )/( k )) FT A(x, y, z)

20 Nieliniowe równanie Schrödingera Równanie na obwiednię impulsu w ośrodku o współczynniku dyspersji β i nieliniowości Kerra γ ma strukturę przypominającą równanie BPM: A i β A ^ N^ ) A = + i γ A A=( D+ z t Metoda split step polega na naprzemiennym rozwiązywaniu dwóch równań dla kolejnych warstw wzdłuż z: AN AD i β A ^ ^ =i γ A A= N A = A= D A z z t

21

22 3-wymiarowy BPM (ADI -Alternate Direction Implicit) Równanie BPM na zespoloną amplitudę pola A: A 1 = ( k n k 0 ) A z i k wprowadzamy operatory pomocnicze Lx, Ly: i k 1. w kierunku z: 1 1 z = L x L y A Li = k =k 0 n n k 0 k xi A kj, l A k,l, j z Dyskretyzacja: A k 0 = / i k Lx L x 1 A j 1 A j z x j 1 y j A z r= L y A L L A = j 1 L y A = 1 j 1 = 1 i k L x L x 1 L y A j j L y A r 4 4 L x L y A j 1 A j 3

23 3-wymiarowy BPM (ADI) Alternate Directions Implicit: Równanie: 1 L x 1 L y A j 1= 1 L x 1 L y A j Zastępujemy przez: r r j 1 1 L y A = 1 L x A j 1 / 1 r L x A j 1/ = 1 r L y A j Warstwa pomocnicza (niefizyczna) Wykazanie równoważności : 1 L x 1 L y A j 1 = 1 L x 1 L x A j 1 / = = 1 L x 1 L x A j 1 / = 1 L x 1 Przez pomnożenie obu równań stronami dostajemy równanie wyjściowe L y A j

24 3-wymiarowy BPM (ADI) Rozwiązanie ADI polega na rozwiązywaniu obu równań na przemian 1 1 L y A j 1 L x A j 1/ = 1 = 1 L x A j 1 / L y A j Dyskretyzacja po x i y z użyciem centralnego ilorazu różnicowego Równanie 1: 1 k r n k 0 j 1 A = 1 y n k 0 k j 1/ A x r r j 1 j 1/ j 1 j 1 j 1 / j 1/ j 1 / j 1 / r Ak, l 1 r n k, l k 0 k A k, l r Ak, l 1 = r A k 1,l r n k, l k 0 k A k, l r Ak 1,l Równanie : j 1 / r Ak 1,l r r k r n k 0 r n k 0 k j 1/ 1 A = 1 A j x y r j 1 / j 1 / j j 1 / j j k 0 k A k, l r Ak 1,l = r Ak, l 1 r n k,l k 0 k Ak,l r Ak,l 1 j 1/ n k, l Dla obu równań -> seria układów trójdiagonalnych

25 Nieprzyosiowy ADI-BPM -na podst. art. C. Ma and E. Van Keuren, "A simple three dimensional wide-angle beam propagation method," Opt. Express 14, 4668 (006) Równanie Helmholtza: n k 0 E =0 E r = r exp i k 0 n 0 z SVEA (slowly varying envelope approximation) + paraxial approximation Podstawowe równanie metody propagacji wiązki (BPM): ADI W poprzednich oznaczeniach to równanie miało następującą postać: równania 1-wym A 1 = ( k n k 0 ) A z i k

26 1. Dyskretyzacja w kierunku z l m, j = m x, j y, l z

27 Szerokokątowy BPM -Oznaczenia zgodne z artykułem C. Ma and E. Van Keuren, "A simple three dimensional wide-angle beam propagation method," Opt. Express 14, 4668 (006) Równanie Helmholtza: n k 0 E =0 E r = r exp i k 0 n 0 z SVEA (slowly varying envelope approximation) W szerokokątowym BPM zostawiamy ten wyraz

28 1. Dyskretyzacja w kierunku z

29 Szerokokątowy BPM Ostateczna postać dla obu kroków algorytmu (po rozpisaniu na poszczególne elementy obu trójdiagonalnych macierzy): l m, j = m x, j y, l z

30 C. Ma and E. Van Keuren, "A simple three dimensional wide-angle beam propagation method," Opt. Express 14, 4668 (006)

31 Ćwiczenia Zadanie 1. Użyć metody propagacji w urojonym kierunku w falowodzie do wyznaczania: modu podstawowego w falowodzie (rozkład pola oraz efektywny współczynnik załamania) najniższego modu parzystego i nieparzystego w falowodzie charakteryzującym się parzystym rozkładem współczynnika załamania. Zadanie. Dla zadanego falowodu, wyznaczyć wszystkie mody prowadzone (metoda BPM + urojony kierunek propagacji+ortogonalizacja). Zadania na 5 : Zrealizować metodę BPM dla struktur trójwymiarowych (ADI). Napisać funkcje do wyznaczania struktury modowej dla falowodów lub włókien światłowodowych (o przekroju dwuwymiarowym). Napisać funkcje do wyznaczania struktury modowej metodą korelacyjną.

Metody Obliczeniowe Mikrooptyki i Fotoniki. Metoda propagacji wiązki BPM Modelowanie propagacji

Metody Obliczeniowe Mikrooptyki i Fotoniki. Metoda propagacji wiązki BPM Modelowanie propagacji Metody Obliczeniowe Mikrooptyki i Fotoniki Metoda propagacji wiązki BPM Modelowanie propagacji Równanie BPM Równanie Helmholtza: n k 0 =0 Rozwiązanie zapisujemy jako: r =A r exp i k z Fala nośna k =n k

Bardziej szczegółowo

Wykład 12: prowadzenie światła

Wykład 12: prowadzenie światła Fotonika Wykład 12: prowadzenie światła Plan: Mechanizmy prowadzenia światła Mechanizmy oparte na odbiciu całkowite wewnętrzne odbicie, odbicie od ośrodków przewodzących, fotoniczna przerwa wzbroniona

Bardziej szczegółowo

III. Opis falowy. /~bezet

III. Opis falowy.  /~bezet Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody

Bardziej szczegółowo

KATEDRA TELEKOMUNIKACJI I FOTONIKI

KATEDRA TELEKOMUNIKACJI I FOTONIKI ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Fotonika. Plan: Wykład 3: Polaryzacja światła

Fotonika. Plan: Wykład 3: Polaryzacja światła Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki. Podstawy metody różnic skończonych Podstawy metody FDTD

Metody Obliczeniowe Mikrooptyki i Fotoniki. Podstawy metody różnic skończonych Podstawy metody FDTD Metody Obliczeniowe Mikrooptyki i Fotoniki Podstawy etody różnic skończonych Podstawy etody FDTD M. N. Sadiku, Nuerical Techniques in Electroagnetics 2nd Ed., CRC Press 2001 A. Taflove, S. Hagnes Coputational

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

Solitony i zjawiska nieliniowe we włóknach optycznych

Solitony i zjawiska nieliniowe we włóknach optycznych Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki Kod USOS: 1103-4Fot4 Wykład (30h): R. Kotyński Wtorki 9:15-11:00, s.1.38 lub B4.17(ul. Pasteura 5) Ćwiczenia (45h): Wtorki, w godz. 14.15-16.30, s.1.7 lub B4.17

Bardziej szczegółowo

Propagacja w przestrzeni swobodnej (dyfrakcja)

Propagacja w przestrzeni swobodnej (dyfrakcja) Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja

Bardziej szczegółowo

Fizyka Laserów wykład 5. Czesław Radzewicz

Fizyka Laserów wykład 5. Czesław Radzewicz Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois

Bardziej szczegółowo

Różne reżimy dyfrakcji

Różne reżimy dyfrakcji Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki. - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych

Metody Obliczeniowe Mikrooptyki i Fotoniki. - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych Metody Obliczeniowe Mikrooptyki i Fotoniki - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych Elementy dyfrakcyjne - idea d1 Wiązka padająca Ψ i ( x,y ) DOE (diffractive optical element) d Oczekiwany

Bardziej szczegółowo

Wprowadzenie do optyki nieliniowej

Wprowadzenie do optyki nieliniowej Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania

Bardziej szczegółowo

Podstawy prowadzenia światła we włóknach oraz ich budowa. Light-Guiding Fundamentals and Fiber Design

Podstawy prowadzenia światła we włóknach oraz ich budowa. Light-Guiding Fundamentals and Fiber Design Podstawy prowadzenia światła we włóknach oraz ich budowa Light-Guiding Fundamentals and Fiber Design Rozchodzenie się liniowo-spolaryzowanego światła w światłowodzie Robocza definicja długości fali odcięcia

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia Dr inż. Tomasz Kozacki Prof. dr hab.inż. Romuald Jóźwicki Zakład Techniki Optycznej Instytut Mikromechaniki i Fotoniki pokój 513a ogłoszenia na tablicach V-tego piętra kurs magisterski grupa R41 semestr

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

Ośrodki dielektryczne optycznie nieliniowe

Ośrodki dielektryczne optycznie nieliniowe Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

Fizyczna struktura włókna optycznego Propagacja światła liniowo spolaryzowanego

Fizyczna struktura włókna optycznego Propagacja światła liniowo spolaryzowanego Światłowody włókniste podstawy fizyczne Fizyczna struktura włókna optycznego Propagacja światła liniowo spolaryzowanego Fizyczna struktura włókna optycznego Światłowody włókniste są wytwarzane poprzez

Bardziej szczegółowo

Fotonika. Wykład (30h): R. Kotyński Wtorki 15:15-17:00, s. 1.40

Fotonika. Wykład (30h): R. Kotyński Wtorki 15:15-17:00, s. 1.40 Fotonika Fotonika to interdyscyplinarna dziedzina nauki i techniki, łącząca dokonania optyki, elektroniki i informatyki w celu opracowywania technik i urządzeń wykorzystujących promieniowanie elektromagnetyczne

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Teoria falowa Równania Maxwella

Teoria falowa Równania Maxwella Teoria falowa Równania Maxwella Oś falowodu oś z Równania Maxwella E B, t H J D t, D, B 0. Jeżeli E x,y,z,t Re E x,y,z e i t 1 2 E x,y,z e i t E x,y,z e i t, 1 W postaci zespolonej: E i B, prawo indukcji

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Motywacja Podstawy. Historia Teoria 2D PhC Podsumowanie. Szymon Lis Photonics Group szymon.lis@pwr.wroc.pl C-2 p.305. Motywacja.

Motywacja Podstawy. Historia Teoria 2D PhC Podsumowanie. Szymon Lis Photonics Group szymon.lis@pwr.wroc.pl C-2 p.305. Motywacja. Politechnika Wrocławska Plan wykładu 1. 2D Kryształy Fotoniczne opis teoretyczny 2. Podstawowe informacje 3. Rys historyczny 4. Opis teoretyczny - optyka vs. elektronika - równania Maxwella Wydział Elektroniki

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Fotonika. Wykład (30h): Rafał Kotyński, wtorki 15:15-17:00, s. 1.40

Fotonika. Wykład (30h): Rafał Kotyński, wtorki 15:15-17:00, s. 1.40 Fotonika Fotonika to interdyscyplinarna dziedzina nauki i techniki, łącząca dokonania optyki, elektroniki i informatyki w celu opracowywania technik i urządzeń wykorzystujących promieniowanie elektromagnetyczne

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Fotonika. Plan: Wykład 11: Kryształy fotoniczne

Fotonika. Plan: Wykład 11: Kryształy fotoniczne Fotonika Wykład 11: Kryształy fotoniczne Plan: Kryształy fotoniczne Homogenizacja długofalowa Prawo załamania dla kryształów fotonicznych, superkolimacja Tw. Blocha, kryształy, kryształy fotoniczne, kryształy

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Wykład 13: Elementy plazmoniki: fale powierzchniowe na granicy metali i dielektryków, nadrozdzielczość

Wykład 13: Elementy plazmoniki: fale powierzchniowe na granicy metali i dielektryków, nadrozdzielczość Fotonika Wykład 13: Elementy plazmoniki: fale powierzchniowe na granicy metali i dielektryków, nadrozdzielczość S. Maier Plasmonics fundamentals and applications (Springer, 007). Plan: związek dyspersyjny

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

Zawansowane modele wyborów dyskretnych

Zawansowane modele wyborów dyskretnych Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Optyka instrumentalna

Optyka instrumentalna Optyka instrumentalna wykład 12 25 maja 2017 Wykład 11 Wiązki przyosiowe Wyższego rzędu TEM mn (Gaussa-Hermite a) Elementy optyczne w działaniu na wiązki Prawo ABCD dla wiązek gaussowskich Ogniskowanie

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Światłowody telekomunikacyjne

Światłowody telekomunikacyjne Światłowody telekomunikacyjne Parametry i charakteryzacja światłowodów Kolejny wykład będzie poświęcony metodom pomiarowym Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie

Bardziej szczegółowo

5. Twierdzenie Weierstrassa

5. Twierdzenie Weierstrassa Pytania egzaminacyjne z Metod Numerycznych 1. Jaką największą liczbę można zapisać w postaci znormalizowanej w dwójkowym systemie liczenia na 8-miu bitach podzielonych 4 + 4 na mantysę i cechę, jeśli zarówno

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Metody analizy i kształtowania wiązki laserowej Źródło: Beyer Wiązka gaussowska Natężenia promieniowania poprzecznie do kierunku propagacji

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

3. Umiejętność obsługi prostych przyrządów optycznych (UMIEJĘTNOŚĆ)

3. Umiejętność obsługi prostych przyrządów optycznych (UMIEJĘTNOŚĆ) Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Światłowody Nazwa w języku angielskim Optical waveguides Kierunek studiów (jeśli dotyczy): Inżynieria Kwantowa Specjalność (jeśli

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie

Bardziej szczegółowo

SZYBKI ALGORYTM Z MACIERZĄ SHURA DLA MACIERZY TRÓJDIAGONALNYCH

SZYBKI ALGORYTM Z MACIERZĄ SHURA DLA MACIERZY TRÓJDIAGONALNYCH SZYBKI ALGORYTM Z MACIERZĄ SHURA DLA MACIERZY TRÓJDIAGONALNYCH Rozwiązujemy układ z macierzą trójdiagonalną. Założymy dla prostoty opisu, że macierz ma stałe współczynniki, to znaczy, że na głównej diagonali

Bardziej szczegółowo

Podpis prowadzącego SPRAWOZDANIE

Podpis prowadzącego SPRAWOZDANIE Imię i nazwisko.. Grupa. Data. Podpis prowadzącego. SPRAWOZDANIE LABORATORIUM POFA/POFAT - ĆWICZENIE NR 1 Zadanie nr 1 (plik strip.pro,nazwa ośrodka wypełniającego prowadnicę - "airlossy") Rozważamy przypadek

Bardziej szczegółowo

http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet

http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet IV. Światłowody BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Literatura 2 3 Historia i uwarunkowania Podstawowe elementy: 1. Rozwój techniki laserowej (lasery półprzewodnikowe, modulacja,

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki. Program mpb i wyznaczanie struktury pasmowej kryształów fotonicznych

Metody Obliczeniowe Mikrooptyki i Fotoniki. Program mpb i wyznaczanie struktury pasmowej kryształów fotonicznych Metody Obliczeniowe Mikrooptyki i Fotoniki Program mpb i wyznaczanie struktury pasmowej kryształów fotonicznych Kryształy fotoniczne metoda fal płaskich Periodyczność i brak własności magnetycznych i strat:

Bardziej szczegółowo

Równania Maxwella. roth t

Równania Maxwella. roth t , H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D

Bardziej szczegółowo

OBLICZANIE POCHODNYCH FUNKCJI.

OBLICZANIE POCHODNYCH FUNKCJI. OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale

Bardziej szczegółowo

MODEL CZUJNIKA ŚWIATŁOWODOWEGO NA BAZIE WIELOMODOWYCH STRUKTUR INTERFERENCYJNYCH MODEL OF WAVEGUIDE SENSOR BASED ON MULTIMODE INTERFERENCE STRUCTURES

MODEL CZUJNIKA ŚWIATŁOWODOWEGO NA BAZIE WIELOMODOWYCH STRUKTUR INTERFERENCYJNYCH MODEL OF WAVEGUIDE SENSOR BASED ON MULTIMODE INTERFERENCE STRUCTURES ELEKTRYKA 2015 Zeszyt 2 (234) Rok LXI Artur SZEWCZUK, Marek BŁAHUT Katedra Optoelektroniki, Politechnika Śląska w Gliwicach MODEL CZUJNIKA ŚWIATŁOWODOWEGO NA BAZIE WIELOMODOWYCH STRUKTUR INTERFERENCYJNYCH

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1 Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm

Bardziej szczegółowo

WYKŁAD 9 METODY ZMIENNEJ METRYKI

WYKŁAD 9 METODY ZMIENNEJ METRYKI WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać

Bardziej szczegółowo

Iteracje. Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony.

Iteracje. Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony. Iteracje Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony. Iteracja inaczej zwana jest pętlą i oznacza wielokrotne wykonywanie instrukcji. Iteracje

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca

Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca Wstęp do optyki i fizyki materii skondensowanej O: Wojciech Wasilewski FMS: Mateusz Goryca 1 Zasady części O Wykład przeglądowy Ćwiczenia rozszerzające lub ilustrujące Sprawdzane prace domowe psi.fuw.edu.pl/main/wdoifms

Bardziej szczegółowo

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wejściowych Paweł Fotowicz * Przedstawiono ścisłą metodę obliczania niepewności rozszerzonej, polegającą na wyznaczeniu

Bardziej szczegółowo

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x. Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje

Bardziej szczegółowo

Bernard Ziętek OPTOELEKTRONIKA

Bernard Ziętek OPTOELEKTRONIKA Uniwersytet Mikołaja Kopernika Bernard Ziętek OPTOELEKTRONIKA Wydanie III, uzupełnione i poprawione Toruń 2011 SPIS TREŚCI PRZEDMOWA DO III WYDANIA 1 PRZEDMOWA DO II WYDANIA 3 PRZEDMOWA DO I WYDANIA 4

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie

Bardziej szczegółowo

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

Problem Odwrotny rozchodzenia się fali Love'a w falowodach sprężystych obciążonych cieczą lepką

Problem Odwrotny rozchodzenia się fali Love'a w falowodach sprężystych obciążonych cieczą lepką Problem Odwrotny rozchodzenia się fali Love'a w falowodach sprężystych obciążonych cieczą lepką Dr hab. Piotr Kiełczyński, prof. w IPPT PAN, Instytut Podstawowych Problemów Techniki PAN Zakład Teorii Ośrodków

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 0.04.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 16 - przypomnienie dyfrakcja

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

Technika falo- i światłowodowa

Technika falo- i światłowodowa Technika falo- i światłowodowa Falowody elementy planarne (płytki, paski) Światłowody elementy cylindryczne (włókna światłowodowe) płytkowy paskowy włókno optyczne Rdzeń o wyższym współczynniku załamania

Bardziej szczegółowo

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Równania Maxwella. Wstęp E B H J D

Równania Maxwella. Wstęp E B H J D Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),

Bardziej szczegółowo